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Abstract In this paper we give an explicit formula for the n times Smarandache reverse

auto correlated sequence of natural numbers.
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Let A = {a(m)}∞m=1 be a sequence. If the sequence B = {b(m)}∞m=1 satisfying

b(m) =

m∑

k=1

a(k)a(m− k + 1), m ≥ 1, (1)

then B is called the Smarandache reverse auto correlated sequence of A, and denoted by SRACS(A).

Further, for any positive integer n, let SRACS(n, A) denote the n times Smarandache reverse auto cor-

related sequence of A. Then we have SRACS(1, A) = SRACS(A), SRACS(2, A) = SRACS(SRACS(A))

and

SRACS(n, A) = SRACS(SRACS(n− 1, A)), n ≥ 1. (2)

Recentely, Muthy [1] proposed the following conjecture:

Conjecture. For any positive integer n, if a(m) = m (m ≥ 1) and SRACS(n, A) = B =

{b(m)}∞m=1, then

b(m) =


2n+1 + m− 1

2n+1 − 1


 , m ≥ 1 (3)

In this paper we completely verify the above-mentioned conjecture as follows.

Theorem. For any positive integer n, if a(m) = m (m ≥ 1) and SRACS(n, A) = B = {b(m)}∞m=1,

then b(m) (m ≥ 1) satisfy (3).

Proof. For a fixed sequence A = {a(m)}∞m=1, let

f(A; x) = a(1) + a(2)x + a(3)x2 + · · · =
∞∑

m=1

a(m)xm−1. (4)

Further, let B = {b(m)}∞m=1 be the Smarandache reverse auto correlated sequence of A, and let

g(A; x) = b(1) + b(2)x + b(3)x2 + · · · =
∞∑

m=1

b(m)xm−1. (5)
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Then, by the definition of multiplication of power series (see [2]), we see from (1), (4) and (5) that

g(A; x) = (f(A; x))2. (6)

Furthermore, for a fixed positive integer n, if SRACS(n, A) = B = {b(m)}∞m=1, and

g(n, A; x) = b(1) + b(2)x + b(3)x2 + · · · =
∞∑

m=1

b(m)xm−1, (7)

then from (2) and (6) we obtain

g(n, A; x) = (f(A; x))2
n

. (8)

If a(m) = m for m ≥ 1, then we get

f(A; x) = 1 + 2x + 3x2 + · · · =
∞∑

m=1

mxm−1 = (1− x)−2, (9)

by (4). Therefore, by (8), if SRACS(n, A) = B = {b(m)}∞m=1 and g(n, A; x) satisfies (7), then from

(9) we obtain

g(n, A; x) = (1− x)−2n+1
=

∞∑
m=1


2n+1 + m− 1

2n+1 − 1


 xm−1, (10)

Thus, by (7) and (10), we get (3). The theorem is proved.
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