Scientia Magna

Vol. 2 (2006), No. 1, 58-59

The Smarandache Reverse Auto Correlated Sequences of Natural Numbers

Maohue Le
Department of Mathematics, Zhanjiang Normal College
Zhanjiang, Guangdong, P.R.China

Abstract

In this paper we give an explicit formula for the n times Smarandache reverse auto correlated sequence of natural numbers.

Keywords Smarandache reverse auto correlated sequence, natural number.

Let $A=\{a(m)\}_{m=1}^{\infty}$ be a sequence. If the sequence $B=\{b(m)\}_{m=1}^{\infty}$ satisfying

$$
\begin{equation*}
b(m)=\sum_{k=1}^{m} a(k) a(m-k+1), m \geq 1, \tag{1}
\end{equation*}
$$

then B is called the Smarandache reverse auto correlated sequence of A, and denoted by $\operatorname{SRACS}(A)$. Further, for any positive integer n, let $\operatorname{SRACS}(n, A)$ denote the n times Smarandache reverse auto correlated sequence of A. Then we have $\operatorname{SRACS}(1, A)=\operatorname{SRACS}(A), \operatorname{SRACS}(2, A)=\operatorname{SRACS}(S R A C S(A))$ and

$$
\begin{equation*}
\operatorname{SRACS}(n, A)=\operatorname{SRACS}(S R A C S(n-1, A)), n \geq 1 . \tag{2}
\end{equation*}
$$

Recentely, Muthy [1] proposed the following conjecture:

Conjecture. For any positive integer n, if $a(m)=m(m \geq 1)$ and $\operatorname{SRACS}(n, A)=B=$ $\{b(m)\}_{m=1}^{\infty}$, then

$$
\begin{equation*}
b(m)=\binom{2^{n+1}+m-1}{2^{n+1}-1}, m \geq 1 \tag{3}
\end{equation*}
$$

In this paper we completely verify the above-mentioned conjecture as follows.

Theorem. For any positive integer n, if $a(m)=m(m \geq 1)$ and $S R A C S(n, A)=B=\{b(m)\}_{m=1}^{\infty}$, then $b(m)(m \geq 1)$ satisfy (3).

Proof. For a fixed sequence $A=\{a(m)\}_{m=1}^{\infty}$, let

$$
\begin{equation*}
f(A ; x)=a(1)+a(2) x+a(3) x^{2}+\cdots=\sum_{m=1}^{\infty} a(m) x^{m-1} . \tag{4}
\end{equation*}
$$

Further, let $B=\{b(m)\}_{m=1}^{\infty}$ be the Smarandache reverse auto correlated sequence of A, and let

$$
\begin{equation*}
g(A ; x)=b(1)+b(2) x+b(3) x^{2}+\cdots=\sum_{m=1}^{\infty} b(m) x^{m-1} . \tag{5}
\end{equation*}
$$

Then, by the definition of multiplication of power series (see [2]), we see from (1), (4) and (5) that

$$
\begin{equation*}
g(A ; x)=(f(A ; x))^{2} . \tag{6}
\end{equation*}
$$

Furthermore, for a fixed positive integer n, if $\operatorname{SRACS}(n, A)=B=\{b(m)\}_{m=1}^{\infty}$, and

$$
\begin{equation*}
g(n, A ; x)=b(1)+b(2) x+b(3) x^{2}+\cdots=\sum_{m=1}^{\infty} b(m) x^{m-1} \tag{7}
\end{equation*}
$$

then from (2) and (6) we obtain

$$
\begin{equation*}
g(n, A ; x)=(f(A ; x))^{2^{n}} . \tag{8}
\end{equation*}
$$

If $a(m)=m$ for $m \geq 1$, then we get

$$
\begin{equation*}
f(A ; x)=1+2 x+3 x^{2}+\cdots=\sum_{m=1}^{\infty} m x^{m-1}=(1-x)^{-2}, \tag{9}
\end{equation*}
$$

by (4). Therefore, by (8), if $\operatorname{SRACS}(n, A)=B=\{b(m)\}_{m=1}^{\infty}$ and $g(n, A ; x)$ satisfies (7), then from (9) we obtain

$$
\begin{equation*}
g(n, A ; x)=(1-x)^{-2^{n+1}}=\sum_{m=1}^{\infty}\binom{2^{n+1}+m-1}{2^{n+1}-1} x^{m-1}, \tag{10}
\end{equation*}
$$

Thus, by (7) and (10), we get (3). The theorem is proved.

References

[1] A.Murthy, Smarandache reverse auto correlated sequences and some Fibonacci derived Smarandache sequences, Smarandache Notions J., 12(2001), 279-282.
[2] I. Niven, Formal power series, Amer. Math. Monthly, 76(1969), 871-889.

