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RIGHT FEEBLE GROUPS

HIBA F. FAYOUMI AND HEE SIK KIM

Abstract. Right feeble groups are defined as groupoids (X, ∗)
such that (i) x, y ∈ X implies the existence of a, b ∈ X such that a∗
x = y and b∗y = x. Furthermore, (ii) if x, y, z ∈ X then there is an
element w ∈ X such that x∗(y∗z) = w∗z. These groupoids have a
“remnant” group structure, which includes many other groupoids.
In this paper, we investigate some properties of these groupoids.
Enough examples are supplied to support the argument that they
form a suitable class for systematic investigation.

1. Introduction

Among the many generalizations of the idea of groups already in the
literature [2, 4, 7] we believe that the class of right feeble groups has
not been discussed in its undisguised form until now. The terminology
“feeble” comes from the fact that conditions (i) and (ii) defined in sec-
tion 3 are replacements of the existence of inverses and the associative
law. Indeed, suppose that the right feeble group (X, ∗) contains an
identity element e, where x∗e = e∗x = x for all x ∈ X . Thus a∗x = e
and b∗e = x implies b = x and a = x−1, i.e., the existence of inverses is
assured. Also rule (ii) reads that for any x, y, z in the groupoid (X, ∗)
there is an element w ∈ X such that x ∗ (y ∗ z) = w ∗ z. For groups we
find that w = x ∗ y and thus rule (ii) is a more general version of the
associative law.

2. Preliminaries

Amid the various kinds of groupoids, leftoids play a special role.
For instance, let f : X → X be any function, we define (X, ∗, f) by
the formula: x ∗ y := f(x). Thus, if we consider the groupoid-product
(X, ∗, f)✷(X, •, g) := (X,✷), with x✷y = (x∗y)•(y∗x) = f(x)•g(y) =
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g(f(x)), it follows that (X,✷) = (X,✷, g ◦ f) is also a leftoid model of
the composition of functions (g ◦ f)(x) = g(f(x)). If f(x) = x, then
x ∗ y = f(x) = x produces the left zero semigroup for which we obtain
(x ∗ y) • (y ∗ x) = x • y = x✷y if (X, ∗) is the left zero semigroup. If
(X, •) is the left zero semigroup, then (x ∗ y) • (y ∗ x) = x ∗ y = x✷y
as well. Meaning, the left zero semigroup acts like a multiplicative
identity in (Bin(X),✷) ([5]). H. Fayoumi ([3]) introduced the notion
of the center ZBin(X) in the semigroup Bin(X) of all binary systems
on a set X , and showed that if (X, •) ∈ ZBin(X), then x 6= y implies
{x, y} = {x • y, y • x}. Moreover, she showed that a groupoid (X, •) ∈
ZBin(X) if and only if it is a locally-zero groupoid.
Suppose that f : X → X is a surjection. If x, y ∈ X , then f(a) = y

and f(b) = y for some choice of a and b, i.e., a ∗ b = f(a) = y and
b ∗ y = f(b) = x, so that condition (i) holds. Also x ∗ (y ∗ z) = f(x)
and w ∗ z = f(w). Since x = w guarantees that f(x) = f(w), it follows
that condition (ii) holds as well and that the leftoid (X, ∗, f) is a right
feeble group.
Given a set X and a function f : X → X , we consider a groupoid

(X, ∗, f), where x∗y := f(x) for any x, y ∈ X . Such a groupoid is called
a leftoid over f ([5]). Similarly, we define a rightoid, i.e., x∗y := g(y) for
all x, y ∈ X , where g : X → X is a function. Another idea of interest
that will be useful in what follows is that of Smarandache disjointness.
Given algebra types (X, ∗) (type-P1) and (X, ◦) (type-P2), we shall
consider them to be Smarandachedisjoint ([1]) if the following two
conditions hold:

(A) If (X, ∗) is a type-P1-algebra with |X | > 1 then it cannot be a
Smarandache -type-P2-algebra (X, ◦);

(B) If (X, ◦) is a type-P2-algebra with |X | > 1 then it cannot be a
Smarandache -type-P1-algebra (X, ∗).

Thus, if K1 and K2 are two classes of mathematical objects, it may be
that K1∩K2 consists precisely of one single object. Frequently this one
single object is “trivial” in some way. For example, let K1 be the class
of d-algebras ([6]) and let K2 be the class of groups. If (X, ∗, 0) is both
a d-algebra and a group with identity e, then 0 ∗ x = 0 implies x = e,
the identity of the group, and thus X = {0}. Hence, e = 0 as well and
e ∗ e = e = 0 = 0 ∗ 0.
Note that we may enlarge K1 to the class of all groupoids (X, ∗, 0)

for which 0 ∗ x = 0 for all x ∈ X , to obtain the same conclusion.
Similarly, K2 may be enlarged to the class of groupoids (X, ∗, e) where
a ∗ x = a implies x = e. Hence K1 ∩K2 consists of the single groupoid
(X = {u}, u ∗ u = u), and K1 and K2 are then Smarandache disjoint.



RIGHT FEEBLE GROUPS 3

If (X, ∗) is both a leftoid and a rightoid, then x ∗ y = C, a constant
from X . In this case, if (X, ∗) has x ∗ y = C and (X, •) has x • y = D,
then the groupoids are isomorphic. Indeed, let ϕ : X → X be any
bijection such that ϕ(C) = D, so that ϕ(x ∗ y) = ϕ(C) = D = ϕ(x) •
ϕ(y). Hence, leftoids and rightoids on a setX are Smarandache disjoint
up to isomorphism of groupoids.

3. Right feeble groups

A groupoid (X, ∗) is said to be a right feeble group if

(i) for any x, y ∈ X , there exist a, b ∈ X such that a ∗ x = y, and
b ∗ y = x,

(ii) for any x, y, z ∈ X , there exists w ∈ X such that x ∗ (y ∗ z) =
w ∗ z.

Example 3.1. Let R be the set of all real numbers. If we define
a binary operation “∗” on R by x ∗ y := 1

2
(x + y) for any x, y ∈ R,

then (R, ∗) is a right feeble group. In fact, given x, y ∈ R, if we take
a := 2y − x, and b := 2x − y, then a ∗ x = y and b ∗ y = x. Since
x∗ (y ∗z) = 1

2
(x+ y+z

2
), we let w := x+ 1

2
y− 1

2
z, then x∗ (y ∗z) = w ∗z.

Note that (R, ∗) in Example 3.1 is neither a group nor a semigroup.
Assume that (R, ∗) is a group with identity e. Then x ∗ e = x for all
x ∈ R. It follows that x+e

2
= x for all x ∈ R, which shows that x = e

for all x ∈ R, i.e., |R| = 1, a contradiction. Moreover, 1 ∗ (3 ∗ 5) = 5

2
6=

7

2
= (1 ∗ 3) ∗ 5.

Example 3.2. Let (X,+, ·) be a field and let α, β, γ ∈ X . If we
define a binary operation “∗” on X by x ∗ y := α + βx + γy for any
x, y ∈ X , then (X, ∗) is a right feeble group.
In fact, for any x, y ∈ X , if we let a := 1

β
(y − α − γx), and b :=

1

β
(x − α − γy), then it is easy to see that a ∗ x = y and b ∗ y = x.

Given x, y, z, w ∈ X , since x ∗ (y ∗ z) = α(1 + γ) + β(x+ y) + γ2z and
w ∗ z = α + βw + γx, if we take w := 1

β
[αγ + β(x + y) + γ(γ − 1)x],

then x∗ (y ∗ z) = w ∗ z. This shows that (X, ∗) is a right feeble group.

Proposition 3.3. Every group is a right feeble group.

Proof. Let (X, ∗) be a group with identity e. Given x, y ∈ X , if
we take a := y ∗ x−1, and b := x ∗ y−1, then a ∗ x = (y ∗ x−1) ∗ x =
y ∗ (x−1 ∗x) = y and b∗y = (x∗y−1)∗y = x∗ e = x. Given x, y, z ∈ X ,
if we let w := x ∗ y, then x ∗ (y ∗ z) = (x ∗ y) ∗ z = w ∗ z. Once again
proving that (X, ∗) is a right feeble group. �
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Proposition 3.4. Let (X, ∗) be a leftoid for ϕ. If ϕ(X) = X , then
(X, ∗) is a right feeble group.

Proof. Given x, y ∈ X , since ϕ is onto, there exists a ∈ X such that
ϕ(a) = y. Since (X, ∗) is a leftoid for ϕ, we have a ∗ x = ϕ(a) = y.
Similarly, if we take b ∈ X such that ϕ(b) = x, then b ∗ y = ϕ(b) = x.
Given x, y, z ∈ X , since (X, ∗) is a leftoid for ϕ, we have x∗ (y ∗ z) =

ϕ(x) = x ∗ z. �

The notion of Smarandache was introduced by Smarandache and
Kandasamy in ([8]) studied the concept of Smarandache groupoids and
Smarandache Bol groupoids. Padilla in ([9]) examined Smarandache
algebraic structures. Allen, Kim and Neggers ([1]) introduced Smaran-
dache disjointness in BCK/d-algebras. For more information on the
notion of Smarandache we refer to ([8]).
In the next theorem, we consider the class of groups and the class of
leftoids.

Theorem 3.5. The class of groups and the class of leftoids are

Smarandache disjoint.

Proof. Let (X, ∗) be both a leftoid for ϕ and a group. Then e =
x ∗ x−1 = ϕ(x) for any x ∈ X , where e is the identity for the group
(X, ∗). It follows that x ∗ y = ϕ(x) = e = x ∗ x for any x, y ∈ X .
Since (X, ∗) is a group, we obtain x = y for all x, y ∈ X , proving that
|X| = 1. �

Proposition 3.6. Let (X, ∗) be a right feeble group. If f : (X, ∗) →
(Y, •) is an epimorphism of groupoids, then (Y, •) is a right feeble group.

Proof. Given x, y ∈ Y , since f is onto, there exist a, b ∈ X such
that x = f(a), and y = f(b). Since (X, ∗) is a right feeble group,
there exist p, q, r, s ∈ X such that p ∗ a = b, q ∗ b = a, r ∗ b = a, and
s ∗ a = b. It follows that y = f(b) = f(p ∗ a) = f(p) • f(a) = f(p) • x
and x = f(a) = f(q ∗ b) = f(q) • f(b) = f(q) • y.
Given x, y, z ∈ Y , since f is onto, there exist a, b, c ∈ X such that

x = f(a), y = f(b), and z = f(z). Since (X, ∗) is a right feeble group,
there exists w ∈ X such that a∗(b∗c) = w∗c. It follows that x•(y•z) =
f(a) • (f(b) • f(c)) = f(a ∗ (b ∗ c)) = f(w ∗ c) = f(w) • f(c) = f(w) • z,
proving that (Y, •) is also a right feeble group. �

Proposition 3.7. Let (X, ∗), and (Y, •) be right feeble groups and

let Z := X×Y . Define (x, y)▽(u, v) := (x∗u, y•v) for all (x, y), (u, v) ∈
Z. Then (Z,▽) is also a right feeble group.

Proof. Straightforward. �
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Example 3.8. Let R be the set of all real numbers and “+” be the
usual addition onX . Then (R,+) forms a group. By Proposition 3.2, it
is a right feeble group. Let A := [0,∞). Then (A,+) is a subgroupoid
of (R,+), but not a right feeble group. In fact, if we assume (A,+) is a
right feeble group, then, for any x, y ∈ A, there exist a, b ∈ R such that
a+ x = y, and b+ y = x. It follows that y = a+ x = a+ (b+ y). Since
a, b ∈ [0,∞), we obtain a = b = 0, proving that x = b+ y = 0 + y = y
for all x, y ∈ A, a contradiction. �

In Example 3.8, the subgroupoid (A,+) is not a right feeble group.
Hence, the following question: If (A, ∗) is a subgroupoid of a right
feeble group (X, ∗), under what condition(s) will (A, ∗) be a right feeble
group?
To solve this problem, we introduce the notion of “divisibility”.

Let (X, ∗) be a groupoid. A subgroupoid (A, ∗) is said to be divisible
in (X, ∗) if a ∗ x = y and x, y ∈ A, then a ∈ A.

Example 3.9. (a) Let R be the set of all real numbers and let Q be
the set of all rational numbers without 0. Define a binary operation “∗”
on R by x ∗ y := xy (the usual multiplication). Assume that a ∗ x = y
and x, y ∈ Q. Since x 6= 0, we have a = yx−1 ∈ Q, which shows that
(Q, ∗) is divisible.

(b) Let R be the set of all real numbers and let Z be the set of all
integers. Then 1

2
· 4 = 2 and 4, 2 ∈ Z, but 1

2
6∈ Z, which shows that

(Z, ∗) is not divisible.

If (A, ∗) and (B, ∗) are divisible in a groupoid (X, ∗), and if a∗x = y,
where x, y ∈ A∩B, then a ∈ A∩B, and A∩B 6= ∅ implies (A∩B, ∗)
is divisible in (X, ∗).

Theorem 3.10. Let (X, ∗) be a right feeble group. If (A, ∗) is

divisible in (X, ∗), then (A, ∗) is a right feeble group.

Proof. (i) Given x, y ∈ A, since (X, ∗) is a right feeble group, there
exist a, b ∈ X such that a∗x = y, and b∗y = x. Since (A, ∗) is divisible
and x, y ∈ A, we have a, b ∈ A such that a ∗ x = y, and b ∗ y = x.
(ii) Given x, y, z ∈ A, we let u := x∗(y∗z). Since (A, ∗) is a subgroupoid
of (X, ∗), we have u ∈ A. Since A is divisible and z ∈ A, there exists
w ∈ A such that w ∗ z = u = x ∗ (y ∗ z). Hence, (A, ∗) is a right feeble
group. �
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4. Right entire and right asymmetric

Let (X, ∗) be a groupoid. We define a set ρ(X, ∗) by

ρ(X, ∗) := {x ∈ X|X ∗ x = X}.

Proposition 4.1. If (X, ∗) is a right feeble group, then ρ(X, ∗) = X .

Proof. For any x, y ∈ X , since (X, ∗) is a right feeble group, there
exist a, b ∈ X such that y = a ∗ x, x = b ∗ y. It follows that y = a ∗ x ∈
X ∗ x. Hence X ⊆ X ∗ x, i.e., X = X ∗ x, for all x ∈ X . This means
that x ∈ ρ(X, ∗) for all x ∈ X , proving that X = ρ(X, ∗). �

The groupoid (X, ∗) discussed in Proposition 4.1 is said to be right

entire. It follows immediately that right feeble groups are right entire
groups.

Proposition 4.2. Let (X, ∗), (Y, •) be right entire groups and let

Z := X×Y . Define (x, y)▽(u, v) := (x∗u, y•v) for all (x, y), (u, v) ∈ Z.
Then (Z,▽) is also a right entire groupoid.

Proof. Straightforward. �

Proposition 4.3. Let (X, ∗) be a right entire groupoid. If f :
(X, ∗) → (Y, •) is an epimorphism of groupoids, then (Y, •) is a right

entire groupoid.

Proof. Given x, y ∈ Y , since f is onto, there exist p, q ∈ X such that
x = f(q), y = f(p). Since (X, ∗) is right entire, there exists r ∈ X such
that r ∗ p = q and hence x = f(q) = f(r ∗ p) = f(r) • f(p) = f(r) • y.
This shows that Y = Y • y for all y ∈ Y , proving that ρ(Y, •) = Y . �

Proposition 4.4. If (X, ∗) is a leftoid for ϕ and right entire, then

ϕ(X) = X .

Proof. Let (X, ∗) be a leftoid for ϕ and a right entire groupoid.
Then X ∗ x = X for all x ∈ X , i.e., there exists b ∈ X such that
a = b ∗ x for any a ∈ X . Since (X, ∗) is a leftoid for ϕ, we have
a = b ∗ x = ϕ(b) ∈ ϕ(X) for all a ∈ X , proving that X ⊆ ϕ(X). �

A groupoid (X, ∗) is said to be right asymmetric if a ∗ x = y, and
b ∗ y = x for some a, b ∈ X , then x = y.

Example 4.5. Let X := [0,∞) and let x∗y := x+y for all x, y ∈ X .
Then (X, ∗) is right asymmetric. In fact, if a∗x = y, and b∗y = x, then
a+x = y, and b+y = x, and hence y = a+x = a+(b+y) = (a+b)+y.
It follows that a+ b = 0, i.e., a = b = 0. This shows that x = y.
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Theorem 4.6. The class of right entire groupoids and the class of

right asymmetric groupoids are Smarandache disjoint.

Proof. Assume (X, ∗) be both a right entire groupoid and a right
asymmetric groupoid. Then X ∗ x = X,X ∗ y = X for all x, y ∈ X .
It follows that a ∗ x = y, and b ∗ y = x for some a, b ∈ X . Since
(X, ∗) is right asymmetric, we obtain x = y for all x, y ∈ X . Hence,
|X| = 1. �

5. Some relations

Given a groupoid (X, ∗), we define a binary operation “≤” on X by

x ≤ y ⇐⇒ ∃ a ∈ X s.t. a ∗ x = y.

Proposition 5.1. If (X, ∗) is a right entire groupoid, then ≤ is

reflexive.

Proof. Assume (X, ∗) is right entire. Then ρ(X, ∗) = X , i.e., X ∗x =
X for all x ∈ X . It follows that there exists a ∈ X such that x = a ∗ x
for any x ∈ X , i.e., x ≤ x for any x ∈ X . �

Proposition 5.2. A groupoid (X, ∗) is right asymmetric if and only

if ≤ is anti-symmetric.

Proof. Let (X, ∗) be a right asymmetric groupoid. Assume x ≤ y
and y ≤ x. Then there exist a, b ∈ X such that a∗x = y, and b∗y = x.
Since (X, ∗) is right asymmetric, we obtain x = y. The converse is
trivial and we omit the proof. �

Proposition 5.3. If (X, ∗) is a right feeble group, then ≤ is transi-

tive.

Proof. Assume that x ≤ y, and y ≤ z. Then there exist a, b ∈ X
such that a ∗ x = y, and b ∗ y = z. Since (X, ∗) is a right feeble group,
there exists c ∈ X such that z = b ∗ y = b ∗ (a ∗x) = c ∗x, which shows
that x ≤ z. �

Proposition 5.4. Let (X, ∗) be a groupoid with e ∈ X such that

e ∗ x = x for all x ∈ X . Then x ≤ x for all x ∈ X .

Note that ‘(X, ∗) has a left identity’ does not mean X ∗ x = X for
some x ∈ X . For example, let N := {0, 1, 2, · · · }. Then (N,+) has an
identity 0 and 0 + x = x for all x ∈ N, but N+ 2 = {2, 3, · · · } 6= N.

Proposition 5.5. Let (X, ∗) be a groupoid and let a ∈ X such that

a ∗X = X . Then there exists x ∈ X such that x ≤ y for any y ∈ X .
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Proof. If a ∗X = X , then there exists x ∈ X such that y = a ∗ x for
any y ∈ X . It follows that x ≤ y. �

Let N := {0, 1, 2, · · · }. Then 0 + N = N and hence y ≤ y for all
y ∈ N.

Proposition 5.6. Let (A, ∗) be a divisible subgroupoid of a groupoid

(X, ∗). If x, y ∈ A such that x ≤ y in (X, ∗), then x ≤ y in (A, ∗).

Proof. Let x, y ∈ A such that x ≤ y in (X, ∗). Then there exists
a ∈ X such that a ∗ x = y. Since (A, ∗) is divisible and x, y ∈ A, we
have a ∈ A, i.e., x ≤ y in (A, ∗). �

Theorem 5.7. Let (X, ∗) be a right entire groupoid. If (A, ∗) is a
divisible subgroupoid of (X, ∗), then (A, ∗) is right entire.

Proof. Given a ∈ A, since (X, ∗) is right entire, we have X ∗ a = X .
It follows that there exists y ∈ X such that x = y ∗ a for any x ∈ A.
Since (A, ∗) is divisible, we obtain y ∈ A and hence x = y ∗ a ∈ A ∗ a.
Hence A ⊆ A ∗ a for all a ∈ A. Clearly, A ∗ a ⊆ A, proving that
A = A ∗ a for any a ∈ A. �

Proposition 5.8. Let (X, ∗) be a right asymmetric groupoid. If

(A, ∗) is a divisible groupoid in (X, ∗), then (A, ∗) is also right asym-

metric.

Proof. If x, y ∈ A, then x, y ∈ X . Since (X, ∗) is right asymmetric,
if a ∗ x = y, and b ∗ y = x for some a, b ∈ X , then x = y. We show
that a, b ∈ A. Consider a ∗ x = y. Since x, y ∈ A and A is divisible, we
obtain a ∈ A. Similarly, b ∈ A. Hence (A, ∗) is right asymmetric. �

Proposition 5.9. Let (X, ∗) be a group with identity e. Then every

subgroup (A, ∗) of (X, ∗) is divisible.

Proof. Let x, y ∈ A such that a ∗ x = y for some a ∈ X . It follows
that a = y ∗ x−1 ∈ A since (A, ∗) is a subgroup of X . This shows that
(A, ∗) is divisible in (X, ∗). �
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