Roman Domination in Complementary Prism Graphs

B.Chaluvaraju and V.Chaitra

1(Department of Mathematics, Bangalore University, Central College Campus, Bangalore -560 001, India)

E-mail: bchaluvaraju@gmail.com, chaitrashok@gmail.com

Abstract: A Roman domination function on a complementary prism graph GG^c is a function $f: V \cup V^c \to \{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2. The Roman domination number $\gamma_R(GG^c)$ of a graph G=(V,E) is the minimum of $\sum_{x \in V \cup V^c} f(x)$ over such functions, where the complementary prism GG^c of G is graph obtained from disjoint union of G and its complement G^c by adding edges of a perfect matching between corresponding vertices of G and G^c . In this paper, we have investigated few properties of $\gamma_R(GG^c)$ and its relation with other parameters are obtained.

Key Words: Graph, domination number, Roman domination number, Smarandachely Roman s-domination function, complementary prism, Roman domination of complementary prism.

AMS(2010): 05C69, 05C70

§1. Introduction

In this paper, G is a simple graph with vertex set V(G) and edge set E(G). Let n = |V| and m = |E| denote the number of vertices and edges of a graph G, respectively. For any vertex v of G, let N(v) and N[v] denote its open and closed neighborhoods respectively. $\alpha_0(G)(\alpha_1(G))$, is the minimum number of vertices (edges) in a vertex (edge) cover of G. $\beta_0(G)(\beta_1(G))$, is the minimum number of vertices (edges) in a maximal independent set of vertex (edge) of G. Let deg(v) be the degree of vertex v in G. Then $\Delta(G)$ and $\delta(G)$ be maximum and minimum degree of G, respectively. If G is a matching in a graph G with the property that every vertex of G is incident with an edge of G, then G is a perfect matching in G. The complement G^c of a graph G is the graph having the same set of vertices as G denoted by G0 and in which two vertices are adjacent, if and only if they are not adjacent in G0. Refer to [5] for additional graph theory terminology.

A dominating set $D \subseteq V$ for a graph G is such that each $v \in V$ is either in D or adjacent to a vertex of D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. Further, a dominating set D is a minimal dominating set of G, if and only if for each vertex $v \in D$, D - v is not a dominating set of G. For complete review on theory of domination

¹Received April 8, 2012. Accepted June 8, 2012.

and its related parameters, we refer [1], [6] and [7].

For a graph G = (V, E), let $f: V \to \{0, 1, 2\}$ and let (V_0, V_1, V_2) be the ordered partition of V induced by f, where $V_i = \{v \in V/f(v) = i\}$ and $|V_i| = n_i$ for i = 0, 1, 2. There exist 1-1 correspondence between the functions $f: V \to \{0, 1, 2\}$ and the ordered partitions (V_0, V_1, V_2) of V. Thus we write $f = (V_0, V_1, V_2)$.

A function $f=(V_0,V_1,V_2)$ is a Roman dominating function (RDF) if $V_2 \succ V_0$, where \succ signifies that the set V_2 dominates the set V_0 . The weight of a Roman dominating function is the value $f(V) = \sum_{v \in V} f(v) = 2|V_2| + |V_1|$. Roman dominating number $\gamma_R(G)$, equals the minimum weight of an RDF of G, we say that a function $f=(V_0,V_1,V_2)$ is a γ_R -function if it is an RDF and $f(V) = \gamma_R(G)$. Generally, let $I \subset \{0,1,2,\cdots,n\}$. A Smarandachely Roman s-dominating function for an integer $s, 2 \le s \le n$ on a graph G=(V,E) is a function $f:V \to \{0,1,2,\cdots,n\}$ satisfying the condition that $|f(u)-f(v)| \ge s$ for each edge $uv \in E$ with f(u) or $f(v) \in I$. Particularly, if we choose n=s=2 and $I=\{0\}$, such a Smarandachely Roman s-dominating function is nothing but the Roman domination function. For more details on Roman dominations and its related parameters we refer [3]-[4] and [9]-[11].

In [8], Haynes et al., introduced the concept of domination and total domination in complementary prisms. Analogously, we initiate the Roman domination in complementary prism as follows:

A Roman domination function on a complementary prism graph GG^c is a function $f: V \cup V^c \to \{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2. The Roman domination number $\gamma_R(GG^c)$ of a graph G = (V, E) is the minimum of $\sum_{x \in V \cup V^c} f(x)$ over such functions, where the complementary prism GG^c of G is graph obtained from disjoint union of G and its complement G^c by adding edges of a perfect matching between corresponding vertices of G and G^c .

§2. Results

We begin by making a couple of observations.

Observation 2.1 For any graph G with order n and size m,

$$m(GG^c) = n(n+1)/2.$$

Observation 2.2 For any graph G,

- (i) $\beta_1(GG^c) = n$.
- (ii) $\alpha_1(GG^c) + \beta_1(GG^c) = 2n$.

Proof Let G be a graph and GG^c be its complementary prism graph with perfect matching M. If one to one correspondence between vertices of a graph G and its complement G^c in GG^c , then GG^c has even order and M is a 1-regular spanning sub graph of GG^c , thus (i) follows and due to the fact of $\alpha_1(G) + \beta_1(G) = n$, (ii) follows.

Observation 2.3 For any graph G,

$$\gamma(GG^c) = n$$

if and only if G or G^c is totally disconnected graph.

Proof Let there be n vertices of degree 1 in GG^c . Let D be a dominating set of GG^c and v be a vertex of G of degree n-1, $v \in D$. In GG^c , v dominates n vertices and remaining n-1 vertices are pendent vertices which has to dominate itself. Hence $\gamma(GG^c) = n$. Conversely, if $\gamma(GG^c) = n$, then there are n vertices in minimal dominating set D.

Theorem 2.1 For any graph G,

$$\gamma_R(GG^c) = \alpha_1(GG^c) + \beta_1(GG^c)$$

if and only if G being an isolated vertex.

Proof If G is an isolated vertex, then GG^c is K_2 and $\gamma_R(GG^c) = 2$, $\alpha_1(GG^c) = 1$ and $\beta_1(GG^c) = 1$. Conversely, if $\gamma_R(GG^c) = \alpha_1(GG^c) + \beta_1(GG^c)$. By above observation, then we have $\gamma_R(GG^c) = 2|V_2| + |V_1|$. Thus we consider the following cases:

Case 1 If $V_2 = \phi$, $|V_1| = 2$, then $V_0 = \phi$ and $GG^c \cong K_2$.

Case 2 If $|V_2| = 1$, $|V_1| = \phi$, then GG^c is a complete graph.

Hence the result follows.

Theorem 2.2 Let G and G^c be two complete graphs then GG^c is also complete if and only if $G \cong K_1$.

Proof If $G \cong K_1$ then $G^c \cong K_1$ and $GG^c \cong K_2$ which is a complete graph. Conversely, if GG^c is complete graph then any vertex v of G is adjacent to n-1 vertices of G and n vertices of G^c . According to definition of complementary prism this is not possible for graph other than K_1 .

Theorem 2.3 For any graph G,

$$\gamma(GG^c) < \gamma_R(GG^c) \le 2\gamma(GG^c).$$

Further, the upper bound is attained if $V_1(GG^c) = \phi$.

Proof Let $f = (V_0, V_1, V_2)$ be γ_R -function. If $V_2 \succ V_0$ and $(V_1 \cup V_2)$ dominates GG^c , then $\gamma(GG^c) < |V_1 \cup V_2| = |V_1| + 2|V_2| = \gamma_R(GG^c)$. Thus the result follows.

Let $f=(V_0,V_1,V_2)$ be an RDF of GG^c with $|D|=\gamma(GG^c)$. Let $V_2=D,V_1=\phi$ and $V_0=V-D$. Since f is an RDF and $\gamma_R(GG^c)$ denotes minimum weight of f(V). It follows $\gamma_R(GG^c) \leq f(V) = |V_1| + 2|V_2| = 2|S| = 2\gamma(GG^c)$. Hence the upper bound follows. For graph GG^c , let v be vertex not in V_1 , implies that either $v \in V_2$ or $v \in V_0$. If $v \in V_2$ then $v \in D$, $\gamma_R(GG^c) = 2|V_2| + |V_1| = 2|D| = 2\gamma(GG^c)$. If $v \in V_0$ then $N(v) \subseteq V_0$ or $N(v) \subseteq V_0$ as v does not belong to V_1 . Hence the result.

Theorem 2.4 For any graph G,

$$2 \le \gamma_R(GG^c) \le (n+1).$$

Further, the lower bound is attained if and only if $G \cong K_1$ and the upper bound is attained if G or G^c is totally disconnected graph.

Proof Let G be a graph with $n \geq 1$. If $f = \{V_0, V_1, V_2\}$ be a RDF of GG^c , then $\gamma_R(GG^c) \geq 2$. Thus the lower bound follows.

Upper bound is proved by using mathematical induction on number of vertices of G. For n=1, $GG^c \cong K_2$, $\gamma_R(GG^c)=n+1$. For n=2, $GG^c \cong P_4$, $\gamma_R(GG^c)=n+1$. Assume the result to be true for some graph H with n-1 vertices, $\gamma_R(HH^c) \leq n$. Let G be a graph obtained by adding a vertex v to H. If v is adjacent to a vertex v in H which belongs to V_2 , then $v \in V_0$, $\gamma_R(GG^c)=n< n+1$. If v is adjacent to a vertex either in V_0 or V_1 , then $\gamma_R(GG^c)=n+1$. If v is adjacent to all vertices of H then $\gamma_R(GG^c)< n< n+1$. Hence upper bound follows for any number of vertices of G.

Now, we prove the second part. If $G \cong K_1$, then $\gamma_R(GG^c) = 2$. On the other hand, if $\gamma_R(GG^c) = 2 = 2|V_2| + |V_1|$ then we have following cases:

Case 1 If $|V_2| = 1, |V_1| = 0$, then there exist a vertex $v \in V(GG^c)$ such that degree of v = (n-1), thus one and only graph with this property is $GG^c \cong K_2$. Hence $G = K_1$.

Case 2 If $|V_2| = 0$, $|V_1| = 2$, then there are only two vertices in the GG^c which are connected by an edge. Hence the result.

If G is totally disconnected then G^c is a complete graph. Any vertex v^c in G^c dominates n vertices in GG^c . Remaining n-1 vertices of GG^c are in V_1 . Hence $\gamma_R(GG^c)=n+1$.

Proposition 2.1([3]) For any path P_n and cycle C_n with $n \geq 3$ vertices,

$$\gamma_R(P_n) = \gamma_R(C_n) = \lceil 2n/3 \rceil,$$

where [x] is the smallest integer not less than x.

Theorem 2.5 For any graph G,

(i) if $G = P_n$ with $n \ge 3$ vertices, then

$$\gamma_R(GG^c) = 4 + \lceil 2(n-3)/3 \rceil;$$

(ii) if $G = C_n$ with $n \ge 4$ vertices, then

$$\gamma_R(GG^c) = 4 + \lceil 2(n-2)/3 \rceil.$$

Proof (i) Let $G = P_n$ be a path with with $n \ge 3$ vertices. Then we have the following cases:

Case 1 Let $f = (V_0, V_1, V_2)$ be an RDF and a pendent vertex v is adjacent to a vertex u in G. The vertex v^c is not adjacent to a vertex u^c in V^c . But the vertex of v^c in V^c is adjacent

to n vertices of GG^c . Let $v^c \in V_2$ and $N(v^c) \subseteq V_0$. There are n vertices left and $u^c \in N[u]$ but $\{N(u^c) - u\} \subseteq V_0$. Hence $u \in V_2, N(u) \subseteq V_0$. There are (n-3) vertices left, whose induced subgraph H forms a path with $\gamma_R(H) = \lceil 2(n-3)/3 \rceil$, this implies that $\gamma_R(G) = 4 + \lceil 2(n-3)/3 \rceil$.

Case 2 If v is not a pendent vertex, let it be adjacent to vertices u and w in G. Repeating same procedure as above case, $\gamma_R(GG^c) = 6 + \lceil 2(n-3)/3 \rceil$, which is a contradiction to fact of RDF.

(ii) Let $G = C_n$ be a cycle with $n \ge 4$ vertices. Let $f = (V_0, V_1, V_2)$ be an RDF and w be a vertex adjacent to vertex u and v in G, and w^c is not adjacent to u^c and v^c in V^c . But w^c is adjacent to (n-2) vertices of GG^c . Let $w^c \in V_2$ and $N(w^c) \subseteq V_0$. There are (n+1)-vertices left with u^c or $v^c \in V_2$. With out loss of generality, let $u^c \in V_2$, $N(u^c) \subseteq V_0$. There are (n-2) vertices left, whose induced subgraph H forms a path with $\gamma_R(H) = \lceil 2(n-2)/3 \rceil$ and $V_2 = \{w, u^c\}$, this implies that $\gamma_R(G) = 4 + \lceil 2(n-2)/3 \rceil$.

Theorem 2.6 For any graph G,

$$\max\{\gamma_R(G), \gamma_R(G^c)\} < \gamma_R(GG^c) \le (\gamma_R(G) + \gamma_R(G^c)).$$

Further, the upper bound is attained if and only if the graph G is isomorphic with K_1 .

Proof Let G be a graph and let $f: V \to \{0, 1, 2\}$ and $f = (V_0, V_1, V_2)$ be RDF. Since GG^c has 2n vertices when G has n vertices, hence $max\{\gamma_R(G), \gamma_R(G^c)\} < \gamma_R(GG^c)$ follows.

For any graph G with $n \ge 1$ vertices. By Theorem 2.4, we have $\gamma_R(GG^c) \le (n+1)$ and $(\gamma_R(G) + \gamma_R(G^c)) \le (n+2) = (n+1) + 1$. Hence the upper bound follows.

Let $G \cong K_1$. Then $GG^c = K_2$, thus the upper bound is attained. Conversely, suppose $G \ncong K_1$. Let u and v be two adjacent vertices in G and u is adjacent to v and u^c in GG^c . The set $\{u, v^c\}$ is a dominating set out of which $u \in V_2, v^c \in V_1$. $\gamma_R(G) = 2, \gamma_R(G^c) = 0$ and $\gamma_R(GG^c) = 3$ which is a contradiction. Hence no two vertices are adjacent in G.

Theorem 2.7 If degree of every vertex of a graph G is one less than number of vertices of G, then

$$\gamma_R(GG^c) = \gamma(GG^c) + 1.$$

Proof Let $f = (V_0, V_1, V_2)$ be an RDF and let v be a vertex of G of degree n-1. In GG^c, v is adjacent to n vertices. If D is a minimum dominating set of GG^c then $v \in D$, $v \in V_2$ also $N(v) \subseteq V_0$. Remaining n-1 belongs to V_1 and D. $|D| = \gamma(GG^c) = n$ and $\gamma_R(GG^c) = n+1 = \gamma(GG^c) + 1$.

Theorem 2.8 For any graph G with $n \ge 1$ vertices,

$$\gamma_R(GG^c) < [2n - (\Delta(GG^c) + 1)].$$

Further, the bound is attained if G is a complete graph.

Proof Let G be any graph with $n \ge 1$ vertices. Then GG^c has 2n- vertices. Let $f = (V_0, V_1, V_2)$ be an RDF and v be any vertex of GG^c such that $deg(v) = \Delta(GG^c)$. Then v

dominates $\Delta(GG^c) + 1$ vertices. Let $v \in V_2$ and $N(v) \subseteq V_0$. There are $(2n - (\Delta(GG^c) + 1))$ vertices left in GG^c , which belongs to one of V_0 , V_1 or V_2 . If all these vertices $\in V_1$, then $\gamma_R(GG^c) = 2|V_2| + |V_1| = 2 + (2n - \Delta(GG^c) + 1) = 2n - \Delta(GG^c) + 1$. Hence lower bound is attained when $G \cong K_n$, where v is a vertex of G. If not all remaining vertices belong to V_1 , then there may be vertices belonging to V_2 and which implies there neighbors belong to V_0 . Hence the result follows.

Theorem 2.9 For any graph G,

$$\gamma_R(GG^c)^c \le \gamma_R(GG^c).$$

Further, the bound is attained for one of the following conditions:

- (i) $GG^c \cong (GG^c)^c$;
- (ii) GG^c is a complete graph.

Proof Let G be a graph, GG^c be its complementary graph and $(GG^c)^c$ be complement of complementary prism. According to definition of GG^c there should be one to one matching between vertices of G and G^c , where as in $(GG^c)^c$ there will be one to (n-1) matching between vertices of G and G^c implies that adjacency of vertices will be more in $(GG^c)^c$. Hence the result. If $GG^c \cong (GG^c)^c$, domination and Roman domination of these two graphs are same. The only complete graph GG^c can be is K_2 . $(GG^c)^c$ will be two isolated vertices, $\gamma_R(GG^c) = 2$ and $\gamma_R(GG^c)^c = 2$. Hence bound is attained.

To prove our next results, we make use of following definitions:

A rooted tree is a tree with a countable number of vertices, in which a particular vertex is distinguished from the others and called the root. In a rooted tree, the parent of a vertex is the vertex connected to it on the path to the root; every vertex except the root has a unique parent. A child of a vertex v is a vertex of which v is the parent. A leaf is a vertex without children.

A graph with exactly one induced cycle is called *unicyclic*.

Theorem 2.10 For any rooted tree T,

$$\gamma_R(TT^c) = 2|S_2| + |S_1|,$$

where $S_1 \subseteq V_1$ and $S_2 \subseteq V_2$.

Proof Let T be a rooted tree and $f = (V_0, V_1, V_2)$ be RDF of a complementary prism TT^c . We label all parent vertices of T as P_1, P_2,P_k where P_k is root of a tree T. Let S_p be set of all parent vertices of T, S_l be set of all leaf vertices of T and $v \in S_l$ be a vertex farthest from P_k . The vertex v^c is adjacent to (n-1)-vertices in TT^c . Let $v^c \in S_2$, and $N(v^c) \subseteq V_0$. Let P_1 be parent vertex of $v \in T$. For i=1 to k if P_i is not assigned weight then $P_i \in S_2$ and $N(P_i) \subseteq V_0$. If P_i is assigned weight and check its leaf vertices in T, then we consider the following cases:

Case 1 If P_i has at least 2 leaf vertices, then $P_i \in S_2$ and $N(P_i) \subseteq V_0$.

Case 2 If P_i has at most 1 leaf vertex, then all such leaf vertices belong to S_1 . Thus $\gamma_R(GG^c) = 2|S_2| + |S_1|$ follows.

Theorem 2.11 Let G^c be a complement of a graph G. Then the complementary prism GG^c is

- (i) isomorphic with a tree T if and only if G or G^c has at most two vertices.
- (ii) (n+1)/2-regular graph if and only if G is (n-1)/2-regular.
- (iii) unicyclic graph if and only if G has exactly 3 vertices.
- *Proof* (i) Suppose GG^c is a tree T with the graph G having minimum three vertices. Then we have the following cases:
- Case 1 Let u, v and w be vertices of G with v is adjacent to both u and w. In GG^c , u^c is connected to u and w^c also v^c is connected to v. Hence there is a closed path u-v-w-u-u-u, which is a contradicting to our assumption.
- Case 2 If vertices u, v and w are totally disconnected in G, then G^c is a complete graph. Since every complete graph G with $n \ge 3$ has cycle. Hence GG^c is not a tree.
- Case 3 If u and v are adjacent but which is not adjacent to w in G, then in GG^c there is a closed path u- u^c - v^c - v^c - v^c - v^c -v, again which is a contradicting to assumption.

On the other hand, if G has one vertex, then $GG^c \cong K_2$ and if G have two vertices, then $GG^c \cong P_4$. In both the cases GG^c is a tree.

- (ii) Let G be r-regular graph, where r=(n-1)/2, then G^c is n-r-1 regular. In GG^c , degree of every vertex in G is r+1=(n+1)/2 and degree of every vertex in G^c is n-r=(n+1)/2, which implies GG^c is (n+1)/2-regular. Conversely, suppose GG^c is s=(n+1)/2-regular. Let E be set of all edges making perfect match between G and G^c . In GG^c-E , G is s-1-regular and G^c is (n-s-1)-regular. Hence the graph G is (n-1)/2-regular.
- (iii) If GG^c has at most two vertices, then from (i), GG^c is a tree. Minimum vertices required for a graph to be unicyclic is 3. Because of perfect matching in complementary prism and G and G^c are connected if there are more than 3 vertices there will be more than 1 cycle.

Acknowledgement

Thanks are due to Prof. N. D Soner for his help and valuable suggestions in the preparation of this paper.

References

[1] B.D.Acharya, H.B.Walikar and E.Sampathkumar, Recent developments in the theory of domination in graphs, *MRI Lecture Notes in Math.*, 1 (1979), Mehta Research Institute, Alahabad.

- [2] B.Chaluvaraju and V.Chaitra, Roman domination in odd and even graph, South East Asian Journal of Mathematics and Mathematical Science (to appear).
- [3] E.J.Cockayne, P.A.Dreyer Jr, S.M.Hedetniemi and S.T.Hedetniemi, Roman domination in graphs, *Discrete Mathematics*, 278 (2004) 11-24.
- [4] O.Favaron, H.Karamic, R.Khoeilar and S.M.Sheikholeslami, Note on the Roman domination number of a graph, *Discrete Mathematics*, 309 (2009) 3447-3451.
- [5] F.Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
- [6] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).
- [7] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, *Domination in graphs: Advanced topics*, Marcel Dekker, Inc., New York (1998).
- [8] T.W.Haynes, M.A.Henning and L.C. van der Merwe, Domination and total domination in complementary prisms, *Journal of Combinatorial Optimization*, 18 (1)(2009) 23-37.
- [9] Nader Jafari Rad, Lutz Volkmann, Roman domination perfect graphs, An.st. Univ ovidius constanta., 19(3)(2011)167-174.
- [10] I.Stewart, Defend the Roman Empire, Sci. Amer., 281(6)(1999)136-139.
- [11] N.D.Soner, B.Chaluvaraju and J.P.Srivatsava, Roman edge domination in graphs, Proc. Nat. Acad. Sci. India. Sect. A, Vol.79 (2009) 45-50.