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Abstract: A Roman domination function on a complementary prism graph GGc is a

function f : V ∪ V c → {0, 1, 2} such that every vertex with label 0 has a neighbor with

label 2. The Roman domination number γR(GGc) of a graph G = (V, E) is the minimum

of
∑

x∈V ∪V c f(x) over such functions, where the complementary prism GGc of G is graph

obtained from disjoint union of G and its complement Gc by adding edges of a perfect

matching between corresponding vertices of G and Gc. In this paper, we have investigated

few properties of γR(GGc) and its relation with other parameters are obtained.
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§1. Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set E(G). Let n = |V | and

m = |E| denote the number of vertices and edges of a graph G, respectively. For any vertex v

of G, let N(v) and N [v] denote its open and closed neighborhoods respectively. α0(G)(α1(G)),

is the minimum number of vertices (edges) in a vertex (edge) cover of G. β0(G)(β1(G)), is the

minimum number of vertices (edges) in a maximal independent set of vertex (edge) of G. Let

deg(v) be the degree of vertex v in G. Then △(G) and δ(G) be maximum and minimum degree

of G, respectively. If M is a matching in a graph G with the property that every vertex of G is

incident with an edge of M , then M is a perfect matching in G. The complement Gc of a graph

G is the graph having the same set of vertices as G denoted by V c and in which two vertices

are adjacent, if and only if they are not adjacent in G. Refer to [5] for additional graph theory

terminology.

A dominating set D ⊆ V for a graph G is such that each v ∈ V is either in D or adjacent

to a vertex of D. The domination number γ(G) is the minimum cardinality of a dominating

set of G. Further, a dominating set D is a minimal dominating set of G, if and only if for each

vertex v ∈ D, D− v is not a dominating set of G. For complete review on theory of domination
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and its related parameters, we refer [1], [6]and [7].

For a graph G = (V, E), let f : V → {0, 1, 2} and let (V0, V1, V2) be the ordered partition

of V induced by f , where Vi = {v ∈ V/f(v) = i} and |Vi| = ni for i = 0, 1, 2. There exist 1-1

correspondence between the functions f : V → {0, 1, 2} and the ordered partitions (V0, V1, V2)

of V . Thus we write f = (V0, V1, V2).

A function f = (V0, V1, V2) is a Roman dominating function (RDF) if V2 ≻ V0, where ≻
signifies that the set V2 dominates the set V0. The weight of a Roman dominating function

is the value f(V ) =
∑

vǫV f(v) = 2|V2| + |V1|. Roman dominating number γR(G), equals the

minimum weight of an RDF of G, we say that a function f = (V0, V1, V2) is a γR-function

if it is an RDF and f(V ) = γR(G). Generally, let I ⊂ {0, 1, 2, · · · , n}. A Smarandachely

Roman s-dominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a function

f : V → {0, 1, 2, · · · , n} satisfying the condition that |f(u) − f(v)| ≥ s for each edge uv ∈ E

with f(u) or f(v) ∈ I. Particularly, if we choose n = s = 2 and I = {0}, such a Smarandachely

Roman s-dominating function is nothing but the Roman domination function. For more details

on Roman dominations and its related parameters we refer [3]-[4] and [9]-[11].

In [8], Haynes etal., introduced the concept of domination and total domination in com-

plementary prisms. Analogously, we initiate the Roman domination in complementary prism

as follows:

A Roman domination function on a complementary prism graph GGc is a function f :

V ∪V c → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman

domination number γR(GGc) of a graph G = (V, E) is the minimum of
∑

x∈V ∪V c f(x) over such

functions, where the complementary prism GGc of G is graph obtained from disjoint union of G

and its complement Gc by adding edges of a perfect matching between corresponding vertices

of G and Gc.

§2. Results

We begin by making a couple of observations.

Observation 2.1 For any graph G with order n and size m,

m(GGc) = n(n + 1)/2.

Observation 2.2 For any graph G,

(i) β1(GGc) = n.

(ii) α1(GGc) + β1(GGc) = 2n.

Proof Let G be a graph and GGc be its complementary prism graph with perfect matching

M . If one to one correspondence between vertices of a graph G and its complement Gc in GGc,

then GGc has even order and M is a 1-regular spanning sub graph of GGc, thus (i) follows and

due to the fact of α1(G) + β1(G) = n,(ii) follows. �
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Observation 2.3 For any graph G,

γ(GGc) = n

if and only if G or Gc is totally disconnected graph.

Proof Let there be n vertices of degree 1 in GGc. Let D be a dominating set of GGc and

v be a vertex of G of degree n− 1, v ∈ D. In GGc, v dominates n vertices and remaining n− 1

vertices are pendent vertices which has to dominate itself. Hence γ(GGc) = n. Conversely, if

γ(GGc) = n, then there are n vertices in minimal dominating set D. �

Theorem 2.1 For any graph G,

γR(GGc) = α1(GGc) + β1(GGc)

if and only if G being an isolated vertex.

Proof If G is an isolated vertex, then GGc is K2 and γR(GGc) = 2, α1(GGc) = 1 and

β1(GGc) = 1. Conversely, if γR(GGc) = α1(GGc) + β1(GGc). By above observation, then we

have γR(GGc) = 2|V2| + |V1|. Thus we consider the following cases:

Case 1 If V2 = φ, |V1| = 2, then V0 = φ and GGc ∼= K2.

Case 2 If |V2| = 1, |V1| = φ, then GGc is a complete graph.

Hence the result follows. �

Theorem 2.2 Let G and Gc be two complete graphs then GGc is also complete if and only if

G ∼= K1.

Proof If G ∼= K1 then Gc ∼= K1 and GGc ∼= K2 which is a complete graph. Conversely, if

GGc is complete graph then any vertex v of G is adjacent to n− 1 vertices of G and n vertices

of Gc. According to definition of complementary prism this is not possible for graph other than

K1. �

Theorem 2.3 For any graph G,

γ(GGc) < γR(GGc) ≤ 2γ(GGc).

Further,the upper bound is attained if V1(GGc) = φ.

Proof Let f = (V0, V1, V2) be γR-function. If V2 ≻ V0 and (V1 ∪ V2) dominates GGc, then

γ(GGc) < |V1 ∪ V2| = |V1| + 2|V2| = γR(GGc). Thus the result follows.

Let f = (V0, V1, V2) be an RDF of GGc with |D| = γ(GGc). Let V2 = D, V1 = φ and

V0 = V − D. Since f is an RDF and γR(GGc) denotes minimum weight of f(V ). It follows

γR(GGc) ≤ f(V ) = |V1| + 2|V2| = 2|S| = 2γ(GGc). Hence the upper bound follows. For graph

GGc, let v be vertex not in V1, implies that either v ∈ V2 or v ∈ V0. If v ∈ V2 then v ∈ D,

γR(GGc) = 2|V2| + |V1| = 2|D| = 2γ(GGc). If v ∈ V0 then N(v) ⊆ V2 or N(v) ⊆ V0 as v does

not belong to V1. Hence the result. �
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Theorem 2.4 For any graph G,

2 ≤ γR(GGc) ≤ (n + 1).

Further, the lower bound is attained if and only if G ∼= K1 and the upper bound is attained if

G or Gc is totally disconnected graph.

Proof Let G be a graph with n ≥ 1. If f = {V0, V1, V2} be a RDF of GGc, then

γR(GGc) ≥ 2. Thus the lower bound follows.

Upper bound is proved by using mathematical induction on number of vertices of G. For

n = 1, GGc ∼= K2, γR(GGc) = n + 1. For n = 2, GGc ∼= P4, γR(GGc) = n + 1. Assume the

result to be true for some graph H with n − 1 vertices, γR(HHc) ≤ n. Let G be a graph

obtained by adding a vertex v to H . If v is adjacent to a vertex w in H which belongs to

V2, then v ∈ V0, γR(GGc) = n < n + 1. If v is adjacent to a vertex either in V0 or V1, then

γR(GGc) = n + 1. If v is adjacent to all vertices of H then γR(GGc) < n < n + 1. Hence upper

bound follows for any number of vertices of G.

Now, we prove the second part. If G ∼= K1, then γR(GGc) = 2. On the other hand, if

γR(GGc) = 2 = 2|V2| + |V1| then we have following cases:

Case 1 If |V2| = 1, |V1| = 0, then there exist a vertex v ∈ V (GGc) such that degree of

v = (n − 1), thus one and only graph with this property is GGc ∼= K2. Hence G = K1.

Case 2 If |V2| = 0, |V1| = 2, then there are only two vertices in the GGc which are connected

by an edge. Hence the result.

If G is totally disconnected then Gc is a complete graph. Any vertex vc in Gc dominates

n vertices in GGc. Remaining n − 1 vertices of GGc are in V1. Hence γR(GGc) = n + 1. �

Proposition 2.1([3]) For any path Pn and cycle Cn with n ≥ 3 vertices,

γR(Pn) = γR(Cn) = ⌈2n/3⌉,

where ⌈x⌉ is the smallest integer not less than x.

Theorem 2.5 For any graph G,

(i) if G = Pn with n ≥ 3 vertices, then

γR(GGc) = 4 + ⌈2(n − 3)/3⌉;

(ii) if G = Cn with n ≥ 4 vertices, then

γR(GGc) = 4 + ⌈2(n − 2)/3⌉.

Proof (i) Let G = Pn be a path with with n ≥ 3 vertices. Then we have the following

cases:

Case 1 Let f = (V0, V1, V2) be an RDF and a pendent vertex v is adjacent to a vertex u in

G. The vertex vc is not adjacent to a vertex uc in V c. But the vertex of vc in V c is adjacent
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to n vertices of GGc. Let vc ∈ V2 and N(vc) ⊆ V0. There are n vertices left and uc ∈ N [u] but

{N(uc) − u} ⊆ V0. Hence u ∈ V2, N(u) ⊆ V0. There are (n − 3) vertices left, whose induced

subgraph H forms a path with γR(H) = ⌈2(n−3)/3⌉, this implies that γR(G) = 4+⌈2(n−3)/3⌉.

Case 2 If v is not a pendent vertex, let it be adjacent to vertices u and w in G. Repeating

same procedure as above case , γR(GGc) = 6 + ⌈2(n− 3)/3⌉, which is a contradiction to fact of

RDF.

(ii) Let G = Cn be a cycle with n ≥ 4 vertices. Let f = (V0, V1, V2) be an RDF and w be

a vertex adjacent to vertex u and v in G, and wc is not adjacent to uc and vc in V c. But wc is

adjacent to (n − 2) vertices of GGc. Let wc ∈ V2 and N(wc) ⊆ V0. There are (n + 1)-vertices

left with uc or vc ∈ V2. With out loss of generality, let uc ∈ V2, N(uc) ⊆ V0. There are

(n − 2) vertices left, whose induced subgraph H forms a path with γR(H) = ⌈2(n − 2)/3⌉ and

V2 = {w, uc}, this implies that γR(G) = 4 + ⌈2(n − 2)/3⌉. �

Theorem 2.6 For any graph G,

max{γR(G), γR(Gc)} < γR(GGc) ≤ (γR(G) + γR(Gc)).

Further, the upper bound is attained if and only if the graph G is isomorphic with K1.

Proof Let G be a graph and let f : V → {0, 1, 2} and f = (V0, V1, V2) be RDF . Since GGc

has 2n vertices when G has n vertices, hence max{γR(G), γR(Gc)} < γR(GGc) follows.

For any graph G with n ≥ 1 vertices. By Theorem 2.4, we have γR(GGc) ≤ (n + 1) and

(γR(G) + γR(Gc)) ≤ (n + 2) = (n + 1) + 1. Hence the upper bound follows.

Let G ∼= K1. Then GGc = K2, thus the upper bound is attained. Conversely, suppose

G ≇ K1. Let u and v be two adjacent vertices in G and u is adjacent to v and uc in GGc.

The set {u, vc} is a dominating set out of which u ∈ V2, v
c ∈ V1. γR(G) = 2, γR(Gc) = 0 and

γR(GGc) = 3 which is a contradiction. Hence no two vertices are adjacent in G. �

Theorem 2.7 If degree of every vertex of a graph G is one less than number of vertices of G,

then

γR(GGc) = γ(GGc) + 1.

Proof Let f = (V0, V1, V2) be an RDF and let v be a vertex of G of degree n − 1. In

GGc, v is adjacent to n vertices. If D is a minimum dominating set of GGc then v ∈ D,

v ∈ V2 also N(v) ⊆ V0. Remaining n − 1 belongs to V1 and D. |D| = γ(GGc) = n and

γR(GGc) = n + 1 = γ(GGc) + 1. �

Theorem 2.8 For any graph G with n ≥ 1 vertices,

γR(GGc) ≤ [2n − (∆(GGc) + 1)].

Further, the bound is attained if G is a complete graph.

Proof Let G be any graph with n ≥ 1 vertices. Then GGc has 2n- vertices. Let f =

(V0, V1, V2) be an RDF and v be any vertex of GGc such that deg(v) = ∆(GGc). Then v
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dominates ∆(GGc) + 1 vertices. Let v ∈ V2 andN(v) ⊆ V0. There are (2n − (∆(GGc) + 1)

vertices left in GGc, which belongs to one of V0, V1 or V2. If all these vertices ∈ V1, then

γR(GGc) = 2|V2| + |V1| = 2 + (2n − ∆(GGc) + 1) = 2n − ∆(GGc) + 1. Hence lower bound is

attained when G ∼= Kn, where v is a vertex of G. If not all remaining vertices belong to V1,

then there may be vertices belonging to V2 and which implies there neighbors belong to V0.

Hence the result follows. �

Theorem 2.9 For any graph G,

γR(GGc)c ≤ γR(GGc).

Further, the bound is attained for one of the following conditions:

(i) GGc ∼= (GGc)c;

(ii) GGc is a complete graph.

Proof Let G be a graph, GGc be its complementary graph and (GGc)c be complement

of complementary prism. According to definition of GGc there should be one to one matching

between vertices of G and Gc, where as in (GGc)c there will be one to (n−1) matching between

vertices of G and Gc implies that adjacency of vertices will be more in (GGc)c. Hence the result.

If GGc ∼= (GGc)c, domination and Roman domination of these two graphs are same. The only

complete graph GGc can be is K2. (GGc)c will be two isolated vertices, γR(GGc) = 2 and

γR(GGc)c = 2. Hence bound is attained. �

To prove our next results, we make use of following definitions:

A rooted tree is a tree with a countable number of vertices, in which a particular vertex is

distinguished from the others and called the root. In a rooted tree, the parent of a vertex is

the vertex connected to it on the path to the root; every vertex except the root has a unique

parent. A child of a vertex v is a vertex of which v is the parent. A leaf is a vertex without

children.

A graph with exactly one induced cycle is called unicyclic.

Theorem 2.10 For any rooted tree T ,

γR(TT c) = 2|S2| + |S1|,

where S1 ⊆ V1 and S2 ⊆ V2.

Proof Let T be a rooted tree and f = (V0, V1, V2) be RDF of a complementary prism TT c.

We label all parent vertices of T as P1, P2, ....Pk where Pk is root of a tree T . Let Sp be set of all

parent vertices of T , Sl be set of all leaf vertices of T and v ∈ Sl be a vertex farthest from Pk.

The vertex vc is adjacent to (n − 1)−vertices in TT c. Let vc ∈ S2, and N(vc) ⊆ V0. Let P1 be

parent vertex of v ∈ T . For i=1 to k if Pi is not assigned weight then Pi ∈ S2 and N(Pi) ⊆ V0.

If Pi is assigned weight and check its leaf vertices in T , then we consider the following cases:

Case 1 If Pi has at least 2 leaf vertices, then Pi ∈ S2 and N(Pi) ⊆ V0.
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Case 2 If Pi has at most 1 leaf vertex, then all such leaf vertices belong to S1. Thus γR(GGc) =

2|S2| + |S1| follows. �

Theorem 2.11 Let Gc be a complement of a graph G. Then the complementary prism GGc is

(i) isomorphic with a tree T if and only if G or Gc has at most two vertices.

(ii) (n + 1)/2-regular graph if and only if G is (n − 1)/2-regular.

(iii) unicyclic graph if and only if G has exactly 3 vertices.

Proof (i) Suppose GGc is a tree T with the graph G having minimum three vertices.

Then we have the following cases:

Case 1 Let u, v and w be vertices of G with v is adjacent to both u and w. In GGc, uc is

connected to u and wc also vc is connected to v. Hence there is a closed path u-v-w-wc-uc-u,

which is a contradicting to our assumption.

Case 2 If vertices u, v and w are totally disconnected in G, then Gc is a complete graph. Since

every complete graph G with n ≥ 3 has cycle. Hence GGc is not a tree.

Case 3 If u and v are adjacent but which is not adjacent to w in G, then in GGc there is a

closed path u-uc-wc-vc-vc-u, again which is a contradicting to assumption.

On the other hand, if G has one vertex, then GGc ∼= K2 and if G have two vertices, then

GGc ∼= P4. In both the cases GGc is a tree.

(ii) Let G be r-regular graph, where r = (n − 1)/2, then Gc is n − r − 1 regular. In

GGc, degree of every vertex in G is r + 1 = (n + 1)/2 and degree of every vertex in Gc

is n − r = (n + 1)/2, which implies GGc is (n + 1)/2-regular. Conversely, suppose GGc is

s = (n + 1)/2-regular. Let E be set of all edges making perfect match between G and Gc. In

GGc−E, G is s−1-regular and Gc is (n−s−1)-regular. Hence the graph G is (n−1)/2-regular.

(iii) If GGc has at most two vertices, then from (i), GGc is a tree. Minimum vertices

required for a graph to be unicyclic is 3. Because of perfect matching in complementary prism

and G and Gc are connected if there are more than 3 vertices there will be more than 1 cycle.�
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