Roman Domination in Complementary Prism Graphs

B.Chaluvaraju and V.Chaitra

1(Department of Mathematics, Bangalore University, Central College Campus, Bangalore -560 001, India)
E-mail: bchaluvaraju@gmail.com, chaitrashok@gmail.com

Abstract

A Roman domination function on a complementary prism graph $G G^{c}$ is a function $f: V \cup V^{c} \rightarrow\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2. The Roman domination number $\gamma_{R}\left(G G^{c}\right)$ of a graph $G=(V, E)$ is the minimum of $\sum_{x \in V \cup V^{c}} f(x)$ over such functions, where the complementary prism $G G^{c}$ of G is graph obtained from disjoint union of G and its complement G^{c} by adding edges of a perfect matching between corresponding vertices of G and G^{c}. In this paper, we have investigated few properties of $\gamma_{R}\left(G G^{c}\right)$ and its relation with other parameters are obtained.

Key Words: Graph, domination number, Roman domination number, Smarandachely Roman s-domination function, complementary prism, Roman domination of complementary prism.

AMS(2010): 05C69, 05C70

§1. Introduction

In this paper, G is a simple graph with vertex set $V(G)$ and edge set $E(G)$. Let $n=|V|$ and $m=|E|$ denote the number of vertices and edges of a graph G, respectively. For any vertex v of G, let $N(v)$ and $N[v]$ denote its open and closed neighborhoods respectively. $\alpha_{0}(G)\left(\alpha_{1}(G)\right)$, is the minimum number of vertices (edges) in a vertex (edge) cover of G. $\beta_{0}(G)\left(\beta_{1}(G)\right)$, is the minimum number of vertices (edges) in a maximal independent set of vertex (edge) of G. Let $\operatorname{deg}(v)$ be the degree of vertex v in G. Then $\triangle(G)$ and $\delta(G)$ be maximum and minimum degree of G, respectively. If M is a matching in a graph G with the property that every vertex of G is incident with an edge of M, then M is a perfect matching in G. The complement G^{c} of a graph G is the graph having the same set of vertices as G denoted by V^{c} and in which two vertices are adjacent, if and only if they are not adjacent in G. Refer to [5] for additional graph theory terminology.

A dominating set $D \subseteq V$ for a graph G is such that each $v \in V$ is either in D or adjacent to a vertex of D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. Further, a dominating set D is a minimal dominating set of G, if and only if for each vertex $v \in D, D-v$ is not a dominating set of G. For complete review on theory of domination

[^0]and its related parameters, we refer [1], [6] and [7].
For a graph $G=(V, E)$, let $f: V \rightarrow\{0,1,2\}$ and let $\left(V_{0}, V_{1}, V_{2}\right)$ be the ordered partition of V induced by f, where $V_{i}=\{v \in V / f(v)=i\}$ and $\left|V_{i}\right|=n_{i}$ for $i=0,1,2$. There exist 1-1 correspondence between the functions $f: V \rightarrow\{0,1,2\}$ and the ordered partitions $\left(V_{0}, V_{1}, V_{2}\right)$ of V. Thus we write $f=\left(V_{0}, V_{1}, V_{2}\right)$.

A function $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a Roman dominating function (RDF) if $V_{2} \succ V_{0}$, where \succ signifies that the set V_{2} dominates the set V_{0}. The weight of a Roman dominating function is the value $f(V)=\sum_{v \epsilon V} f(v)=2\left|V_{2}\right|+\left|V_{1}\right|$. Roman dominating number $\gamma_{R}(G)$, equals the minimum weight of an RDF of G, we say that a function $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a γ_{R}-function if it is an RDF and $f(V)=\gamma_{R}(G)$. Generally, let $I \subset\{0,1,2, \cdots, n\}$. A Smarandachely Roman s-dominating function for an integer $s, 2 \leq s \leq n$ on a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a function $f: V \rightarrow\{0,1,2, \cdots, n\}$ satisfying the condition that $|f(u)-f(v)| \geq s$ for each edge $u v \in E$ with $f(u)$ or $f(v) \in I$. Particularly, if we choose $n=s=2$ and $I=\{0\}$, such a Smarandachely Roman s-dominating function is nothing but the Roman domination function. For more details on Roman dominations and its related parameters we refer [3]-[4] and [9]-[11].

In [8], Haynes etal., introduced the concept of domination and total domination in complementary prisms. Analogously, we initiate the Roman domination in complementary prism as follows:

A Roman domination function on a complementary prism graph $G G^{c}$ is a function f : $V \cup V^{c} \rightarrow\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2. The Roman domination number $\gamma_{R}\left(G G^{c}\right)$ of a graph $G=(V, E)$ is the minimum of $\sum_{x \in V \cup V^{c}} f(x)$ over such functions, where the complementary prism $G G^{c}$ of G is graph obtained from disjoint union of G and its complement G^{c} by adding edges of a perfect matching between corresponding vertices of G and G^{c}.

§2. Results

We begin by making a couple of observations.
Observation 2.1 For any graph G with order n and size m,

$$
m\left(G G^{c}\right)=n(n+1) / 2
$$

Observation 2.2 For any graph G,
(i) $\beta_{1}\left(G G^{c}\right)=n$.
(ii) $\alpha_{1}\left(G G^{c}\right)+\beta_{1}\left(G G^{c}\right)=2 n$.

Proof Let G be a graph and $G G^{c}$ be its complementary prism graph with perfect matching M. If one to one correspondence between vertices of a graph G and its complement G^{c} in $G G^{c}$, then $G G^{c}$ has even order and M is a 1-regular spanning sub graph of $G G^{c}$, thus (i) follows and due to the fact of $\alpha_{1}(G)+\beta_{1}(G)=n$,(ii) follows.

Observation 2.3 For any graph G,

$$
\gamma\left(G G^{c}\right)=n
$$

if and only if G or G^{c} is totally disconnected graph.
Proof Let there be n vertices of degree 1 in $G G^{c}$. Let D be a dominating set of $G G^{c}$ and v be a vertex of G of degree $n-1, v \in D$. In $G G^{c}, v$ dominates n vertices and remaining $n-1$ vertices are pendent vertices which has to dominate itself. Hence $\gamma\left(G G^{c}\right)=n$. Conversely, if $\gamma\left(G G^{c}\right)=n$, then there are n vertices in minimal dominating set D.

Theorem 2.1 For any graph G,

$$
\gamma_{R}\left(G G^{c}\right)=\alpha_{1}\left(G G^{c}\right)+\beta_{1}\left(G G^{c}\right)
$$

if and only if G being an isolated vertex.
Proof If G is an isolated vertex, then $G G^{c}$ is K_{2} and $\gamma_{R}\left(G G^{c}\right)=2, \alpha_{1}\left(G G^{c}\right)=1$ and $\beta_{1}\left(G G^{c}\right)=1$. Conversely, if $\gamma_{R}\left(G G^{c}\right)=\alpha_{1}\left(G G^{c}\right)+\beta_{1}\left(G G^{c}\right)$. By above observation, then we have $\gamma_{R}\left(G G^{c}\right)=2\left|V_{2}\right|+\left|V_{1}\right|$. Thus we consider the following cases:

Case 1 If $V_{2}=\phi,\left|V_{1}\right|=2$, then $V_{0}=\phi$ and $G G^{c} \cong K_{2}$.
Case 2 If $\left|V_{2}\right|=1,\left|V_{1}\right|=\phi$, then $G G^{c}$ is a complete graph.
Hence the result follows.

Theorem 2.2 Let G and G^{c} be two complete graphs then $G G^{c}$ is also complete if and only if $G \cong K_{1}$ 。

Proof If $G \cong K_{1}$ then $G^{c} \cong K_{1}$ and $G G^{c} \cong K_{2}$ which is a complete graph. Conversely, if $G G^{c}$ is complete graph then any vertex v of G is adjacent to $n-1$ vertices of G and n vertices of G^{c}. According to definition of complementary prism this is not possible for graph other than K_{1}.

Theorem 2.3 For any graph G,

$$
\gamma\left(G G^{c}\right)<\gamma_{R}\left(G G^{c}\right) \leq 2 \gamma\left(G G^{c}\right)
$$

Further, the upper bound is attained if $V_{1}\left(G G^{c}\right)=\phi$.
Proof Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be γ_{R}-function. If $V_{2} \succ V_{0}$ and $\left(V_{1} \cup V_{2}\right)$ dominates $G G^{c}$, then $\gamma\left(G G^{c}\right)<\left|V_{1} \cup V_{2}\right|=\left|V_{1}\right|+2\left|V_{2}\right|=\gamma_{R}\left(G G^{c}\right)$. Thus the result follows.

Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an $R D F$ of $G G^{c}$ with $|D|=\gamma\left(G G^{c}\right)$. Let $V_{2}=D, V_{1}=\phi$ and $V_{0}=V-D$. Since f is an $R D F$ and $\gamma_{R}\left(G G^{c}\right)$ denotes minimum weight of $f(V)$. It follows $\gamma_{R}\left(G G^{c}\right) \leq f(V)=\left|V_{1}\right|+2\left|V_{2}\right|=2|S|=2 \gamma\left(G G^{c}\right)$. Hence the upper bound follows. For graph $G G^{c}$, let v be vertex not in V_{1}, implies that either $v \in V_{2}$ or $v \in V_{0}$. If $v \in V_{2}$ then $v \in D$, $\gamma_{R}\left(G G^{c}\right)=2\left|V_{2}\right|+\left|V_{1}\right|=2|D|=2 \gamma\left(G G^{c}\right)$. If $v \in V_{0}$ then $N(v) \subseteq V_{2}$ or $N(v) \subseteq V_{0}$ as v does not belong to V_{1}. Hence the result.

Theorem 2.4 For any graph G,

$$
2 \leq \gamma_{R}\left(G G^{c}\right) \leq(n+1)
$$

Further, the lower bound is attained if and only if $G \cong K_{1}$ and the upper bound is attained if G or G^{c} is totally disconnected graph.

Proof Let G be a graph with $n \geq 1$. If $f=\left\{V_{0}, V_{1}, V_{2}\right\}$ be a $R D F$ of $G G^{c}$, then $\gamma_{R}\left(G G^{c}\right) \geq 2$. Thus the lower bound follows.

Upper bound is proved by using mathematical induction on number of vertices of G. For $n=1, G G^{c} \cong K_{2}, \gamma_{R}\left(G G^{c}\right)=n+1$. For $n=2, G G^{c} \cong P_{4}, \gamma_{R}\left(G G^{c}\right)=n+1$. Assume the result to be true for some graph H with $n-1$ vertices, $\gamma_{R}\left(H H^{c}\right) \leq n$. Let G be a graph obtained by adding a vertex v to H. If v is adjacent to a vertex w in H which belongs to V_{2}, then $v \in V_{0}, \gamma_{R}\left(G G^{c}\right)=n<n+1$. If v is adjacent to a vertex either in V_{0} or V_{1}, then $\gamma_{R}\left(G G^{c}\right)=n+1$. If v is adjacent to all vertices of H then $\gamma_{R}\left(G G^{c}\right)<n<n+1$. Hence upper bound follows for any number of vertices of G.

Now, we prove the second part. If $G \cong K_{1}$, then $\gamma_{R}\left(G G^{c}\right)=2$. On the other hand, if $\gamma_{R}\left(G G^{c}\right)=2=2\left|V_{2}\right|+\left|V_{1}\right|$ then we have following cases:

Case 1 If $\left|V_{2}\right|=1,\left|V_{1}\right|=0$, then there exist a vertex $v \in V\left(G G^{c}\right)$ such that degree of $v=(n-1)$, thus one and only graph with this property is $G G^{c} \cong K_{2}$. Hence $G=K_{1}$.

Case 2 If $\left|V_{2}\right|=0,\left|V_{1}\right|=2$, then there are only two vertices in the $G G^{c}$ which are connected by an edge. Hence the result.

If G is totally disconnected then G^{c} is a complete graph. Any vertex v^{c} in G^{c} dominates n vertices in $G G^{c}$. Remaining $n-1$ vertices of $G G^{c}$ are in V_{1}. Hence $\gamma_{R}\left(G G^{c}\right)=n+1$.

Proposition 2.1([3]) For any path P_{n} and cycle C_{n} with $n \geq 3$ vertices,

$$
\gamma_{R}\left(P_{n}\right)=\gamma_{R}\left(C_{n}\right)=\lceil 2 n / 3\rceil \text {, }
$$

where $\lceil x\rceil$ is the smallest integer not less than x.
Theorem 2.5 For any graph G,
(i) if $G=P_{n}$ with $n \geq 3$ vertices, then

$$
\gamma_{R}\left(G G^{c}\right)=4+\lceil 2(n-3) / 3\rceil ;
$$

(ii) if $G=C_{n}$ with $n \geq 4$ vertices, then

$$
\gamma_{R}\left(G G^{c}\right)=4+\lceil 2(n-2) / 3\rceil
$$

Proof (i) Let $G=P_{n}$ be a path with with $n \geq 3$ vertices. Then we have the following cases:

Case 1 Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an $R D F$ and a pendent vertex v is adjacent to a vertex u in G. The vertex v^{c} is not adjacent to a vertex u^{c} in V^{c}. But the vertex of v^{c} in V^{c} is adjacent
to n vertices of $G G^{c}$. Let $v^{c} \in V_{2}$ and $N\left(v^{c}\right) \subseteq V_{0}$. There are n vertices left and $u^{c} \in N[u]$ but $\left\{N\left(u^{c}\right)-u\right\} \subseteq V_{0}$. Hence $u \in V_{2}, N(u) \subseteq V_{0}$. There are $(n-3)$ vertices left, whose induced subgraph H forms a path with $\gamma_{R}(H)=\lceil 2(n-3) / 3\rceil$, this implies that $\gamma_{R}(G)=4+\lceil 2(n-3) / 3\rceil$.

Case 2 If v is not a pendent vertex, let it be adjacent to vertices u and w in G. Repeating same procedure as above case , $\gamma_{R}\left(G G^{c}\right)=6+\lceil 2(n-3) / 3\rceil$, which is a contradiction to fact of RDF.
(ii) Let $G=C_{n}$ be a cycle with $n \geq 4$ vertices. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an $R D F$ and w be a vertex adjacent to vertex u and v in G, and w^{c} is not adjacent to u^{c} and v^{c} in V^{c}. But w^{c} is adjacent to $(n-2)$ vertices of $G G^{c}$. Let $w^{c} \in V_{2}$ and $N\left(w^{c}\right) \subseteq V_{0}$. There are $(n+1)$-vertices left with u^{c} or $v^{c} \in V_{2}$. With out loss of generality, let $u^{c} \in V_{2}, N\left(u^{c}\right) \subseteq V_{0}$. There are $(n-2)$ vertices left, whose induced subgraph H forms a path with $\gamma_{R}(H)=\lceil 2(n-2) / 3\rceil$ and $V_{2}=\left\{w, u^{c}\right\}$, this implies that $\gamma_{R}(G)=4+\lceil 2(n-2) / 3\rceil$.

Theorem 2.6 For any graph G,

$$
\max \left\{\gamma_{R}(G), \gamma_{R}\left(G^{c}\right)\right\}<\gamma_{R}\left(G G^{c}\right) \leq\left(\gamma_{R}(G)+\gamma_{R}\left(G^{c}\right)\right)
$$

Further, the upper bound is attained if and only if the graph G is isomorphic with K_{1}.
Proof Let G be a graph and let $f: V \rightarrow\{0,1,2\}$ and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be $R D F$. Since $G G^{c}$ has $2 n$ vertices when G has n vertices, hence $\max \left\{\gamma_{R}(G), \gamma_{R}\left(G^{c}\right)\right\}<\gamma_{R}\left(G G^{c}\right)$ follows.

For any graph G with $n \geq 1$ vertices. By Theorem 2.4, we have $\gamma_{R}\left(G G^{c}\right) \leq(n+1)$ and $\left(\gamma_{R}(G)+\gamma_{R}\left(G^{c}\right)\right) \leq(n+2)=(n+1)+1$. Hence the upper bound follows.

Let $G \cong K_{1}$. Then $G G^{c}=K_{2}$, thus the upper bound is attained. Conversely, suppose $G \nexists K_{1}$. Let u and v be two adjacent vertices in G and u is adjacent to v and u^{c} in $G G^{c}$. The set $\left\{u, v^{c}\right\}$ is a dominating set out of which $u \in V_{2}, v^{c} \in V_{1} . \gamma_{R}(G)=2, \gamma_{R}\left(G^{c}\right)=0$ and $\gamma_{R}\left(G G^{c}\right)=3$ which is a contradiction. Hence no two vertices are adjacent in G.

Theorem 2.7 If degree of every vertex of a graph G is one less than number of vertices of G, then

$$
\gamma_{R}\left(G G^{c}\right)=\gamma\left(G G^{c}\right)+1
$$

Proof Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an $R D F$ and let v be a vertex of G of degree $n-1$. In $G G^{c}, v$ is adjacent to n vertices. If D is a minimum dominating set of $G G^{c}$ then $v \in D$, $v \in V_{2}$ also $N(v) \subseteq V_{0}$. Remaining $n-1$ belongs to V_{1} and D. $|D|=\gamma\left(G G^{c}\right)=n$ and $\gamma_{R}\left(G G^{c}\right)=n+1=\gamma\left(G G^{c}\right)+1$.

Theorem 2.8 For any graph G with $n \geq 1$ vertices,

$$
\gamma_{R}\left(G G^{c}\right) \leq\left[2 n-\left(\Delta\left(G G^{c}\right)+1\right)\right]
$$

Further, the bound is attained if G is a complete graph.
Proof Let G be any graph with $n \geq 1$ vertices. Then $G G^{c}$ has $2 n$ - vertices. Let $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ be an $R D F$ and v be any vertex of $G G^{c}$ such that $\operatorname{deg}(v)=\Delta\left(G G^{c}\right)$. Then v
dominates $\Delta\left(G G^{c}\right)+1$ vertices. Let $v \in V_{2}$ and $N(v) \subseteq V_{0}$. There are $\left(2 n-\left(\Delta\left(G G^{c}\right)+1\right)\right.$ vertices left in $G G^{c}$, which belongs to one of V_{0}, V_{1} or V_{2}. If all these vertices $\in V_{1}$, then $\gamma_{R}\left(G G^{c}\right)=2\left|V_{2}\right|+\left|V_{1}\right|=2+\left(2 n-\Delta\left(G G^{c}\right)+1\right)=2 n-\Delta\left(G G^{c}\right)+1$. Hence lower bound is attained when $G \cong K_{n}$, where v is a vertex of G. If not all remaining vertices belong to V_{1}, then there may be vertices belonging to V_{2} and which implies there neighbors belong to V_{0}. Hence the result follows.

Theorem 2.9 For any graph G,

$$
\gamma_{R}\left(G G^{c}\right)^{c} \leq \gamma_{R}\left(G G^{c}\right)
$$

Further, the bound is attained for one of the following conditions:
(i) $G G^{c} \cong\left(G G^{c}\right)^{c}$;
(ii) $G G^{c}$ is a complete graph.

Proof Let G be a graph, $G G^{c}$ be its complementary graph and $\left(G G^{c}\right)^{c}$ be complement of complementary prism. According to definition of $G G^{c}$ there should be one to one matching between vertices of G and G^{c}, where as in $\left(G G^{c}\right)^{c}$ there will be one to $(n-1)$ matching between vertices of G and G^{c} implies that adjacency of vertices will be more in $\left(G G^{c}\right)^{c}$. Hence the result. If $G G^{c} \cong\left(G G^{c}\right)^{c}$, domination and Roman domination of these two graphs are same. The only complete graph $G G^{c}$ can be is K_{2}. $\left(G G^{c}\right)^{c}$ will be two isolated vertices, $\gamma_{R}\left(G G^{c}\right)=2$ and $\gamma_{R}\left(G G^{c}\right)^{c}=2$. Hence bound is attained.

To prove our next results, we make use of following definitions:
A rooted tree is a tree with a countable number of vertices, in which a particular vertex is distinguished from the others and called the root. In a rooted tree, the parent of a vertex is the vertex connected to it on the path to the root; every vertex except the root has a unique parent. A child of a vertex v is a vertex of which v is the parent. A leaf is a vertex without children.

A graph with exactly one induced cycle is called unicyclic.
Theorem 2.10 For any rooted tree T,

$$
\gamma_{R}\left(T T^{c}\right)=2\left|S_{2}\right|+\left|S_{1}\right|
$$

where $S_{1} \subseteq V_{1}$ and $S_{2} \subseteq V_{2}$.
Proof Let T be a rooted tree and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be $R D F$ of a complementary prism $T T^{c}$. We label all parent vertices of T as $P_{1}, P_{2}, \ldots P_{k}$ where P_{k} is root of a tree T. Let S_{p} be set of all parent vertices of T, S_{l} be set of all leaf vertices of T and $v \in S_{l}$ be a vertex farthest from P_{k}. The vertex v^{c} is adjacent to $(n-1)$-vertices in $T T^{c}$. Let $v^{c} \in S_{2}$, and $N\left(v^{c}\right) \subseteq V_{0}$. Let P_{1} be parent vertex of $v \in T$. For $i=1$ to k if P_{i} is not assigned weight then $P_{i} \in S_{2}$ and $N\left(P_{i}\right) \subseteq V_{0}$. If P_{i} is assigned weight and check its leaf vertices in T, then we consider the following cases:

Case 1 If P_{i} has at least 2 leaf vertices, then $P_{i} \in S_{2}$ and $N\left(P_{i}\right) \subseteq V_{0}$.

Case 2 If P_{i} has at most 1 leaf vertex, then all such leaf vertices belong to S_{1}. Thus $\gamma_{R}\left(G G^{c}\right)=$ $2\left|S_{2}\right|+\left|S_{1}\right|$ follows.

Theorem 2.11 Let G^{c} be a complement of a graph G. Then the complementary prism $G G^{c}$ is
(i) isomorphic with a tree T if and only if G or G^{c} has at most two vertices.
(ii) $(n+1) / 2$-regular graph if and only if G is $(n-1) / 2$-regular.
(iii) unicyclic graph if and only if G has exactly 3 vertices.

Proof (i) Suppose $G G^{c}$ is a tree T with the graph G having minimum three vertices. Then we have the following cases:

Case 1 Let u, v and w be vertices of G with v is adjacent to both u and w. In $G G^{c}, u^{c}$ is connected to u and w^{c} also v^{c} is connected to v. Hence there is a closed path $u-v-w-w^{c}-u^{c}-u$, which is a contradicting to our assumption.

Case 2 If vertices u, v and w are totally disconnected in G, then G^{c} is a complete graph. Since every complete graph G with $n \geq 3$ has cycle. Hence $G G^{c}$ is not a tree.

Case 3 If u and v are adjacent but which is not adjacent to w in G, then in $G G^{c}$ there is a closed path $u-u^{c}-w^{c}-v^{c}-v^{c}-u$, again which is a contradicting to assumption.

On the other hand, if G has one vertex, then $G G^{c} \cong K_{2}$ and if G have two vertices, then $G G^{c} \cong P_{4}$. In both the cases $G G^{c}$ is a tree.
(ii) Let G be r-regular graph, where $r=(n-1) / 2$, then G^{c} is $n-r-1$ regular. In $G G^{c}$, degree of every vertex in G is $r+1=(n+1) / 2$ and degree of every vertex in G^{c} is $n-r=(n+1) / 2$, which implies $G G^{c}$ is $(n+1) / 2$-regular. Conversely, suppose $G G^{c}$ is $s=(n+1) / 2$-regular. Let E be set of all edges making perfect match between G and G^{c}. In $G G^{c}-E, G$ is $s-1$-regular and G^{c} is $(n-s-1)$-regular. Hence the graph G is $(n-1) / 2$-regular.
(iii) If $G G^{c}$ has at most two vertices, then from (i), $G G^{c}$ is a tree. Minimum vertices required for a graph to be unicyclic is 3 . Because of perfect matching in complementary prism and G and G^{c} are connected if there are more than 3 vertices there will be more than 1 cycle.

Acknowledgement

Thanks are due to Prof. N. D Soner for his help and valuable suggestions in the preparation of this paper.

References

[1] B.D.Acharya, H.B.Walikar and E.Sampathkumar, Recent developments in the theory of domination in graphs, MRI Lecture Notes in Math., 1 (1979), Mehta Research Institute, Alahabad.
[2] B.Chaluvaraju and V.Chaitra, Roman domination in odd and even graph, South East Asian Journal of Mathematics and Mathematical Science (to appear).
[3] E.J.Cockayne, P.A.Dreyer Jr, S.M.Hedetniemi and S.T.Hedetniemi, Roman domination in graphs, Discrete Mathematics, 278 (2004) 11-24.
[4] O.Favaron, H.Karamic, R.Khoeilar and S.M.Sheikholeslami, Note on the Roman domination number of a graph, Discrete Mathematics, 309 (2009) 3447-3451.
[5] F.Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
[6] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).
[7] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Domination in graphs: Advanced topics, Marcel Dekker, Inc., New York (1998).
[8] T.W.Haynes, M.A.Henning and L.C. van der Merwe, Domination and total domination in complementary prisms, Journal of Combinatorial Optimization,18 (1)(2009) 23-37.
[9] Nader Jafari Rad, Lutz Volkmann, Roman domination perfect graphs, An.st.Univ ovidius constanta., 19(3)(2011)167-174.
[10] I.Stewart, Defend the Roman Empire, Sci. Amer., 281(6)(1999)136-139.
[11] N.D.Soner, B.Chaluvaraju and J.P.Srivatsava, Roman edge domination in graphs, Proc. Nat. Acad. Sci. India. Sect. A, Vol. 79 (2009) 45-50.

[^0]: ${ }^{1}$ Received April 8, 2012. Accepted June 8, 2012.

