On the Roman Edge Domination Number of a Graph

K. Ebadi ${ }^{1}$, E. Khodadadi ${ }^{2}$ and L. Pushpalatha ${ }^{3}$
${ }^{1}$ Department of Studies in Mathematics, University of Mysore, Mysore-570006, India
${ }^{2}$ Department of Mathematics Islamic Azad University of Malekan, Iran
${ }^{c}$ Department of Mathematics, Yuvaraja's College, Mysore, India

Email: Karam _Ebadi@yahoo.com

Abstract

For an integer $n \geq 2$, let $I \subset\{0,1,2, \cdots, n\}$. A Smarandachely Roman s dominating function for an integer $s, 2 \leq s \leq n$ on a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a function $f: V \rightarrow\{0,1,2, \cdots, n\}$ satisfying the condition that $|f(u)-f(v)| \geq s$ for each edge $u v \in E$ with $f(u)$ or $f(v) \in I$. Similarly, a Smarandachely Roman edge s-dominating function for an integer $s, 2 \leq s \leq n$ on a graph $G=(V, E)$ is a function $f: E \rightarrow\{0,1,2, \cdots, n\}$ satisfying the condition that $|f(e)-f(h)| \geq s$ for adjacent edges $e, h \in E$ with $f(e)$ or $f(h) \in I$. Particularly, if we choose $n=s=2$ and $I=\{0\}$, such a Smarandachely Roman s dominating function or Smarandachely Roman edge s-dominating function is called Roman dominating function or Roman edge dominating function. The Roman edge domination number $\gamma_{r e}(G)$ of G is the minimum of $f(E)=\sum_{e \in E} f(e)$ over such functions. In this paper we first show that for any connected graph G of $q \geq 3, \gamma_{r e}(G)+\gamma_{e}(G) / 2 \leq q$ and $\gamma_{r e}(G) \leq 4 q / 5$, where $\gamma_{e}(G)$ is the edge domination number of G. Also we prove that for any $\gamma_{r e}(G)$-function $f=\left\{E_{0}, E_{1}, E_{2}\right\}$ of a connected graph G of $q \geq 3,\left|E_{0}\right| \geq q / 5+1$, $\left|E_{1}\right| \leq 4 q / 5-2$ and $\left|E_{2}\right| \leq 2 q / 5$.

Key Words: Smarandachely Roman s-dominating function, Smarandachely Roman edge s-dominating function.

AMS(2010): 05C69

§1. Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. As usual $|V|=p$ and $|E|=q$ denote the number of vertices and edges of the graph G, respectively. The open neighborhood $N(e)$ of the edge e is the set of all edges adjacent to e in G. And its closed neighborhood is $N[e]=N(e) \cup\{e\}$. Similarly, the open neighborhood of a set $S \subseteq E$ is the set $N(S)=\bigcup_{e \in S} N(e)$, and its closed neighborhood is $N[S]=N(S) \cup S$.

The degree of an edge $e=u v$ of G is defined by deg $e=\operatorname{deg} u+\operatorname{deg} v-2$ and $\delta^{\prime}(G)$ $\left(\Delta^{\prime}(G)\right)$ is the minimum (maximum) degree among the edges of G (the degree of an edge is the number of edges adjacent to it). A vertex of degree one is called a pendant vertex or a leaf and its neighbor is called a support vertex.

[^0]Let $e \in S \subseteq E$. Edge h is called a private neighbor of e with respect to S (denoted by h is an S-pn of e) if $h \in N[e]-N[S-\{e\}]$. An S-pn of e is external if it is an edge of $E-S$. The set $p n(e, S)=N[e]-N[S-\{e\}]$ of all S-pn's of e is called the private neighborhood set of e with respect to S. The set S is said to be irredundant if for every $e \in S, p n(e, S) \neq \varnothing$. And a set S of edges is called independent if no two edges in S are adjacent.

A set $D \subseteq V$ is said to be a dominating set of G, if every vertex in $V-D$ is adjacent to some vertex in D. The minimum cardinality of such a set is called the domination number of G and is denoted by $\gamma(G)$. For a complete review on the topic of domination and its related parameters, see [5].

Mitchell and Hedetniemi in [6] introduced the notion of edge domination as follows. A set F of edges in a graph G is an edge dominating set if every edge in $E-F$ is adjacent to at least one edge in F. The minimum number of edges in such a set is called the edge domination number of G and is denoted by $\gamma_{e}(G)$. This concept is also studied in [1].

The concept of Roman dominating function (RDF) was introduced by E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi in [3]. (See also [2,4,8]). A Roman dominating function on a graph $G=(V, E)$ is a function $f: V \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of a Roman dominating function is the value $f(V)=\sum_{u \in V} f(u)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, equals the minimum weight of a Roman dominating function on G.

A Roman edge dominating function (REDF) on a graph $G=(V, E)$ is a function f : $E \rightarrow\{0,1,2\}$ satisfying the condition that every edge e for which $f(e)=0$ is adjacent to at least one edge h for which $f(h)=2$. The weight of a Roman edge dominating function is the value $f(E)=\sum_{e \in E} f(e)$. The Roman edge domination number of a graph G, denoted by $\gamma_{r e}(G)$, equals the minimum weight of a Roman edge dominating function on G. A Roman edge dominating function $f: E \rightarrow\{0,1,2\}$ can be represented by the ordered partition $\left(E_{0}, E_{1}, E_{2}\right)$ of E, where $E_{i}=\{e \in E \mid f(e)=i\}$ and $\left|E_{i}\right|=q_{i}$ for $i=0,1,2$. This concept is studied in Soner et al. in [9] (see also [7]). A $\gamma-$ set, $\gamma_{r}-$ set and $\gamma_{r e}$-set, can be defined as a minimum dominating set (MDS), a minimum Roman dominating set (MRDS) and a minimum Roman edge dominating set (MREDS), respectively.

Theorem A. For a graph G of order p,

$$
\gamma_{e}(G) \leq \gamma_{r e}(G) \leq 2 \gamma_{e}(G)
$$

It is clear that if G has at least one edge then $1 \leq \gamma_{r e}(G) \leq q$, where q is the number of edges in G. However if a graph is totally disconnected or trivial, we define $\gamma_{r e}(G)=0$. We note that $E(G)$ is the unique maximum REDS of G. Since every edge dominating set in G is a dominating set in the line graph of G and an independent set of edges of G is an independent set of vertices in the line graph of G, the following results can easily be proved from the well-known analogous results for dominating sets of vertices and independent sets.

Proposition 1. A Roman edge dominating set S is minimal if and only if for each $e \in S$, one of the following two conditions holds.
(i) $N(e) \cap S=\varnothing$.
(ii) There exists an edge $h \in E-S$, such that $N(h) \cap S=\{e\}$.

Proposition 2. Let $S=E_{1} \cup E_{2}$ be a REDS such that $\left|E_{1}\right|+2\left|E_{2}\right|=\gamma_{r e}(G)$. Then

$$
|E(G)-S| \leq \sum_{e \in S} d e g(e)
$$

and the equality holds if and only if S is independent and for every $e \in E-S$ there exists only one edge $h \in S$ such that $N(e) \cap S=\{h\}$.

Proof Since every edge in $E(G)-S$ is adjacent to at least one edge of S, each edge in $E(G)-S$ contributes at least one to the sum of the degrees of the edges of S, hence

$$
|E(G)-S| \leq \sum_{e \in S} \operatorname{deg}(e)
$$

Let $|E(G)-S|=\sum_{e \in S} d e g(e)$. Suppose S is not independent. Since S is a REDS, every edge in $E-S$ is counted in the sum $\sum_{e \in S} \operatorname{deg}(e)$. Hence if e_{1} and e_{2} have a common point in S, then e_{1} is counted in $\operatorname{deg}\left(e_{2}\right)$ and vice versa. Then the sum exceeds $|E-S|$ by at least two, contrary to the hypothesis. Hence S must be independent.

Now suppose $N(e) \cap S=\varnothing$ or $|N(e) \cap S| \geq 2$ for $e \in E-S$. Since S is a REDS the former case does not occur. Let e_{1} and e_{2} belong to $N(e) \cap S$. In this case $\sum_{e \in S} d e g(e)$ exceeds $|E(G)-S|$ by at least one since e_{1} is counted twice: once in $\operatorname{deg}\left(e_{1}\right)$ and once in $\operatorname{deg}\left(e_{2}\right)$, a contradiction. Hence equality holds if S is independent and for every $e \in E-S$ there exists only one edge $h \in S$ such that $N(e) \cap S=\{h\}$. Conversely, if S is independent and for every $e \in E-S$ there exists only one edge $h \in S$ such that $N(e) \cap S=\{h\}$, then equality holds.

Proposition 3. Let G be a graph and $S=E_{1} \cup E_{2}$ be a minimum $R E D S$ of G such that $|S|=1$, then the following condition hold.
(i) S is independent.
(ii) $|E-S|=\sum_{e \in S} \operatorname{deg}(e)$.
(iii) $\Delta^{\prime}(G)=q-1$.
(iv) $q /\left(\Delta^{\prime}+1\right)=1$.

An immediate consequence of the above result is.
Corollary 1 For any (p, q) graph, $\gamma_{r e}(G)=p-q+1$ if and only if G has $\gamma_{r e}$ components each of which is isomorphic to a star.

Proposition 4. Let G be a graph of q edges which contains a edge of degree $q-1$, then $\gamma_{e}(G)=1$ and $\gamma_{r e}(G)=2$.

Proposition 5.([9]) Let $f=\left(E_{0}, E_{1}, E_{2}\right)$ be any REDF. Then
(i) $\left\langle E_{1}\right\rangle$ has maximum degree one.
(ii) Each edge of E_{0} is adjacent to at most two edges of E_{1}.
(iii) E_{2} is an γ_{e}-set of $H=G\left[E_{0} \cup E_{2}\right]$.

Proposition 6. Let $f=\left(E_{0}, E_{1}, E_{2}\right)$ be any $\gamma_{r e}$-function. Then
(i) No any edge of E_{1} is adjacent to any edge of E_{2}.
(ii) Let $H=G\left[E_{0} \cup E_{2}\right]$. Then each edge $e \in E_{2}$ has at least two H-pn's (i.e private neighbors relative to E_{2} in the graph H).
(iii) If e is isolated in $G\left[E_{2}\right]$ and has precisely one external H-pn, say $h \in E_{0}$, then $N(h) \cap E_{1}=\varnothing$.

Proof (i) Let $e_{1}, e_{2} \in E$, where e_{1} adjacent to $e_{2}, f\left(e_{1}\right)=1$ and $f\left(e_{2}\right)=2$. Form f^{\prime} by changing $f\left(e_{1}\right)$ to 0 . Then f^{\prime} is a REDF with $f^{\prime}(E)<f(E)$, a contradiction.
(ii) By Proposition 5(iii), E_{2} is an γ_{e}-set of H and hence is a maximal irredundant set in H. Therefore, each $e \in E_{2}$ has at least one E_{2}-pn in H.

Let e be isolated in $G\left[E_{2}\right]$. Then e is a E_{2}-pn of e. Suppose that e has no external E_{2}-pn. Then the function produced by changing $f(e)$ from 2 to 1 is an REDF of smaller weight, a contradiction. Hence, e has at least two E_{2}-pns in H.

Suppose that e is not isolated in $G\left[E_{2}\right]$ and has precisely one E_{2}-pn (in H), say w. Consider the function produced by changing $f(e)$ to 0 and $f(h)$ to 1 . The edge e is still dominated because it has a neighbor in E_{2}. All of e's neighbors in E_{0} are also obtained, since every edge in E_{0} has another neighbor in E_{2} except for h , which is now in E_{1}. Therefore, this new function is an REDF of smaller weight, which is a contradiction. Again, we can conclude that e has at least two E_{2}-pns in H.
(iii) Suppose the contrary. Define a new function f^{\prime} with $f^{\prime}(e)=0, f^{\prime}\left(e^{\prime}\right)=0$ for $e^{\prime} \in$ $N(h) \cap E_{1}, f^{\prime}(h)=2$, and $f^{\prime}(x)=f(x)$ for all other edges x. $f^{\prime}(E)=f(E)-\left|N(h) \cap E_{1}\right|<f(E)$, contradicting the minimality of f.

Proposition 7. Let $f=\left(E_{0}, E_{1}, E_{2}\right)$ be a $\gamma_{r e}$-function of an isolate-free graph G, such that $\left|E_{2}\right|=q_{2}$ is a maximum. Then
(i) E_{1} is independent.
(ii) The set E_{0} dominates the set E_{1}.
(iii) Each edge of E_{0} is adjacent to at most one edge of E_{1}.
(iv) Let $e \in G\left[E_{2}\right]$ have exactly two external H-pn's e_{1} and e_{2} in E_{0}. Then there do not exist edges $h_{1}, h_{2} \in E_{1}$ such that $\left(h_{1}, e_{1}, e, e_{2}, h_{2}\right)$ is the edge sequence of a path P_{6}.

Proof (i) By Proposition $5(i), G\left[E_{1}\right]$ consists of disjoint K_{2} 's and P_{3} 's. If there exists a P_{3}, then we can change the function values of its edges to 0 and 2. The resulting function $g=\left(W_{0}, W_{1}, W_{2}\right)$ is a $\gamma_{r e}$-function with $\left|W_{2}\right|>\left|E_{2}\right|$, which is a contradiction. Therefore, E_{1} is an independent set.
(ii) By (i) and Proposition 6(i), no edge $e \in E_{1}$ is adjacent to an edge in $E_{1} \cup E_{2}$. Since G is isolate-free, e is adjacent to some edge in E_{0}. Hence the set E_{0} dominates the set E_{1}.
(iii) Let $e \in E_{0}$ and $B=N(e) \cap E_{1}$, where $|B|=2$. Note that $|B| \leq 2$, by Proposition 5(ii). Let

$$
\begin{aligned}
& W_{0}=\left(E_{0} \cup B\right)-\{e\} \\
& W_{1}=E_{1}-B
\end{aligned}
$$

$$
W_{2}=E_{2} \cup\{e\} .
$$

We know that E_{2} dominates E_{0}, so that $g=\left(W_{0}, W_{1}, W_{2}\right)$ is an REDF.
$g(E)=\left|W_{1}\right|+2\left|W_{2}\right|=\left|E_{1}\right|-B+2\left|E_{2}\right|-2=f(E)$. Hence, g is a $\gamma_{r e}$-function with $\left|W_{2}\right|>\left|E_{2}\right|$, which is a contradiction.
$i v)$ Suppose the contrary. Form a new function by changing the function values of ($h_{1}, e_{1}, e, e_{2}, h_{2}$) from $(1,0,2,0,1)$ to $(0,2,0,0,2)$. Then the new function is a $\gamma_{r e}$-function with bigger value of q_{2}, which is a contradiction.

§2. Graph for Which $\gamma_{r e}(G)=2 \gamma_{e}(G)$

From Theorem A we know that for any graph $G, \gamma_{r e}(G) \leq 2 \gamma_{e}(G)$. We will say that a graph G is a Roman edge graph if $\gamma_{r e}(G)=2 \gamma_{e}(G)$.

Proposition 8. A graph G is Roman edge graph if and only if it has a $\gamma_{r e}$-function $f=$ $\left(E_{0}, E_{1}, E_{2}\right)$ with $q_{1}=\left|E_{1}\right|=0$.

Proof Let G be a Roman edge graph and let $f=\left(E_{0}, E_{1}, E_{2}\right)$ be a $\gamma_{r e}$-function of G. Proposition 5(iii) we know that E_{2} dominates E_{0}, and $E_{1} \cup E_{2}$ dominates E, and hence

$$
\gamma_{e}(G) \leq\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right| \leq\left|E_{1}\right|+2\left|E_{2}\right|=\gamma_{r e}(G)
$$

But since G is Roman edge, we know that

$$
2 \gamma_{e}(G)=2\left|E_{1}\right|+2\left|E_{2}\right|=\gamma_{r e}(G)=\left|E_{1}\right|+2\left|E_{2}\right|
$$

Hence, $q_{1}=\left|E_{1}\right|=0$.
Conversely, let $f=\left(E_{0}, E_{1}, E_{2}\right)$ be a $\gamma_{r e}$-function of G with $q_{1}=\left|E_{1}\right|=0$. Then, $\gamma_{r e}(G)=2\left|E_{2}\right|$, and since by definition $E_{1} \cup E_{2}$ dominates E, it follows that E_{2} is a dominating set of G. But by Proposition 5(iii), we know that E_{2} is a γ_{e}-set of $G\left[E_{0} \cup E_{2}\right]$, i.e. $\gamma_{e}(G)=\left|E_{2}\right|$ and $\gamma_{r e}(G)=2 \gamma_{e}(G)$, i.e. G is a Roman edge graph.

§3. Bound on the $\operatorname{Sum} \gamma_{r e}(G)+\gamma_{e}(G) / 2$

For q-edge graphs, always $\gamma_{r e}(G) \leq q$, with equality when G is isomorphic with $m K_{2}$ or $m P_{3}$. In this section we prove that $\gamma_{r e}(G)+\gamma_{e}(G) / 2 \leq q$ and $\gamma_{r e}(G) \leq 4 q / 5$ when G is a connected q-edge graph.

Theorem 9. For any connected graph G of $q \geq 3$,
(i) $\gamma_{r e}(G)+\gamma_{e}(G) / 2 \leq q$.
(ii) $\gamma_{r e}(G) \leq 4 q / 5$.

Proof Let $f=\left(E_{0}, E_{1}, E_{2}\right)$ be a $\gamma_{r e}(G)$-function such that $\left|E_{2}\right|$ is maximum. It is proved in Proposition 6(i) that for such a function no edge of E_{1} is adjacent to any edge of E_{2} and every edge e of E_{2} has at least two E_{2}-private neighbors, one of them can be e itself if it is isolated in
E_{2} (true for every $\gamma_{r e}(G)$-function). The set E_{1} is independent and every edge of E_{0} has at most one neighbor in E_{1}. Moreover we add the condition the number $\mu(f)$ of edges of E_{2} with only one neighbor in E_{0} is minimum. Suppose that $N_{E_{0}}(e)=\{h\}$ for some $e \in E_{2}$. Then partition $E_{0}^{\prime}=\left(E_{0} \backslash\{h\}\right) \cup\{e\} \cup N_{E_{1}}(h), E_{1}^{\prime}=E_{1} \backslash N_{E_{1}}(h)$ and $E_{2}^{\prime}=\left(E_{2} \backslash\{e\}\right) \cup\{h\}$ is a Roman edge dominating function f^{\prime} such that $w\left(f^{\prime}\right)=w(f)-1$ if $N_{E_{1}}(h) \neq \varnothing$, or $w\left(f^{\prime}\right)=w(f),\left|E_{2}^{\prime}\right|=\left|E_{2}\right|$ but $\mu\left(f^{\prime}\right)<\mu(f)$ if $N_{E_{1}}(h)=\varnothing$ since then, G being connected $q \geq 3, h$ is not isolated in E_{0}. Therefore every edge of E_{2} has at least two neighbors in E_{0}. Let A be a largest subset of E_{2} such that for each $e \in A$ there exists a subset A_{e} of $N_{E_{0}}(e)$ such that the set A_{e} is disjoint, $\left|A_{e}\right| \geq 2$ and sets $\cup_{e \in A} A_{e}=\cup_{e \in A} N_{E_{0}}(e)$. Note that A_{e} contains all the external E_{2}-private neighbors of $e . A^{\prime}=E_{2} \backslash A$.

Case $1 A^{\prime}=\varnothing$.
In this case $\left|E_{0}\right| \geq 2\left|E_{2}\right|$ and $\left|E_{1}\right| \leq\left|E_{0}\right|$ since every edge of E_{0} has at most one neighbor in E_{1}. Since E_{0} is an edge dominating set of G and $\left|E_{0}\right| / 2 \geq\left|E_{2}\right|$ we have
(i) $\gamma_{r e}(G)+\gamma_{e}(G) / 2 \leq\left|E_{1}\right|+2\left|E_{2}\right|+\left|E_{0}\right| / 2 \leq\left|E_{0}\right|+\left|E_{1}\right|+\left|E_{2}\right|=q$.
(ii) $5 \gamma_{r e}(G)=5\left|E_{1}\right|+10\left|E_{2}\right|=4 q-4\left|E_{0}\right|+\left|E_{1}\right|+6\left|E_{2}\right|=4 q-3\left(\left|E_{0}\right|-2\left|E_{2}\right|\right)-\left(\left|E_{0}\right|-\left|E_{1}\right|\right) \leq$ $4 q$. Hence $\gamma_{r e}(G) \leq 4 q / 5$.

Case $2 A^{\prime} \neq \varnothing$.
Let $B=\cup_{e \in A} A_{e}$ and $B^{\prime}=E_{0} \backslash B$. Every edge ε in A^{\prime} has exactly one E_{2}-private neighbor ε^{\prime} in E_{0} and $N_{B^{\prime}}(\varepsilon)=\left\{\varepsilon^{\prime}\right\}$ for otherwise ε could be added to A. This shows that $\left|A^{\prime}\right|=\left|B^{\prime}\right|$. Moreover since $\left|N_{E_{0}}(\varepsilon)\right| \geq 2$, each edge $\varepsilon \in A^{\prime}$ has at least one neighbor in B. Let $\varepsilon_{B} \in$ $B \cap N_{E_{0}}(\varepsilon)$ and let ε_{A} be the edge of A such that $\varepsilon_{B} \in A_{\varepsilon_{A}}$. The edge ε_{A} is well defined since the sets A_{e} with $e \in A$ form a partition of B.

Claim $1\left|A_{\varepsilon_{A}}\right|=2$ for each $\varepsilon \in A^{\prime}$ and each $\varepsilon_{B} \in B \cap N_{E_{0}}(\varepsilon)$.
Proof of Claim 1 If $\left|A_{\varepsilon_{A}}\right|>2$, then by putting $A_{\varepsilon_{A}}^{\prime}=A_{\varepsilon_{A}} \backslash\left\{\varepsilon_{B}\right\}$ and $A_{\varepsilon}=\left\{\varepsilon^{\prime}, \varepsilon_{B}\right\}$ we can see that $A_{1}=A \cup\{\varepsilon\}$ contradicts the choice of A. Hence $\left|A_{\varepsilon_{A}}\right|=2, \varepsilon_{A}$ has a unique external E_{2}-private neighbor ε_{A}^{\prime} and $A_{\varepsilon_{A}}=\left\{\varepsilon_{B}, \varepsilon_{A}^{\prime}\right\}$. Note that the edges ε_{A} and ε are isolated in E_{2} since they must have a second E_{2}-private neighbor.

Claim 2 If $\varepsilon, y \in A^{\prime}$ then $\varepsilon_{B} \neq y_{B}$ and $A_{\varepsilon_{A}} \neq A_{y_{A}}$.
Proof of Claim 2 Let ε^{\prime} and y^{\prime} be respectively the unique external E_{2}-private neighbors of ε and y. Suppose that $\varepsilon_{B}=y_{B}$, and thus $\varepsilon_{A}=y_{A}$. The function $g: E(G) \rightarrow\{0,1,2\}$ defined by $g\left(\varepsilon_{B}\right)=2, g(\varepsilon)=g(y)=g\left(\varepsilon_{A}\right)=0, g\left(\varepsilon_{A}^{\prime}\right)=g\left(y^{\prime}\right)=g\left(\varepsilon^{\prime}\right)=1$ and $g(e)=f(e)$ otherwise, is a REDF of G of weight less than $\gamma_{r e}(G)$, a contradiction. Hence $\varepsilon_{B} \neq y_{B}$. Since $A_{\varepsilon_{A}} \supseteq\left\{\varepsilon_{B}, \varepsilon_{A}^{\prime}\right\}$ and $\left|A_{\varepsilon_{A}}\right|=2$, the edge y_{B} is not in $A_{\varepsilon_{A}}$. Therefore $A_{\varepsilon_{A}} \neq A_{y_{A}}$.

Let $A^{\prime \prime}=\left\{\varepsilon_{A} \mid \varepsilon \in A^{\prime}\right.$ and $\left.\varepsilon_{B} \in B \cap N_{E_{0}}(\varepsilon)\right\}$ and $B^{\prime \prime}=\cup_{e \in A^{\prime \prime}} A_{e}$. By Claims 1 and 2 ,

$$
\left|B^{\prime \prime}\right|+2\left|A^{\prime \prime}\right| \text { and }\left|A^{\prime \prime}\right| \geq\left|A^{\prime}\right|
$$

Let $A^{\prime \prime \prime}=E_{2} \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)$ and $B^{\prime \prime \prime}=\cup_{e \in A^{\prime \prime \prime}} A_{e}=E_{0} \backslash\left(B^{\prime} \cup B^{\prime \prime}\right)$. By the definition of the sets A_{e},

$$
\left|B^{\prime \prime \prime}\right| \geq\left|2 A^{\prime \prime \prime}\right|
$$

Claim 3 If $\varepsilon \in A^{\prime}$ and $\varepsilon_{B} \in B \cap N_{E_{0}}(\varepsilon)$, then $\varepsilon^{\prime}, \varepsilon_{B}$ and ε_{A}^{\prime} have no neighbor in E_{1}. Hence $B^{\prime \prime \prime}$ dominates E_{1}.

Proof of Claim 3 Let h be a edge of E_{1}. If h has a neighbor in $B^{\prime} \cup B^{\prime \prime}$, Let $g: E(G) \rightarrow\{0,1,2\}$ be defined by $g\left(\varepsilon_{A}^{\prime}\right)=2, g(h)=g\left(\varepsilon_{A}\right)=0, g(e)=f(e)$ otherwise if h is adjacent to ε_{A}^{\prime}, $g\left(\varepsilon^{\prime}\right)=2, g(h)=g(\varepsilon)=0, g(e)=f(e)$ otherwise if h is adjacent to ε^{\prime},
$g\left(\varepsilon_{B}\right)=2, g(h)=g\left(\varepsilon_{A}\right)=g(\varepsilon)=0, g\left(\varepsilon_{A}^{\prime}\right)=g\left(\varepsilon^{\prime}\right)=1, g(e)=f(e)$ otherwise if h is adjacent to ε_{B}. In each case, g is a REDF of weight less than $\gamma_{r e}(G)$, a contradiction. Therefore $N(h) \subseteq B^{\prime \prime \prime}$.

We are now ready to establish the two parts of the Theorem.
(i) By Claim 3, $B^{\prime \prime \prime} \cup A^{\prime} \cup A^{\prime \prime}$ is an edge dominating set of G. Therefore, since $\left|A^{\prime}\right|=\left|B^{\prime}\right|$ and $\left|B^{\prime \prime \prime}\right| \geq\left|2 A^{\prime \prime \prime}\right|$ we have,
$\gamma_{e}(G) \leq\left|B^{\prime \prime \prime}\right|+\left|A^{\prime}\right|+\left|A^{\prime \prime}\right| \leq\left|B^{\prime \prime \prime}\right|+\left|B^{\prime \prime}\right| \leq\left(2\left|B^{\prime \prime \prime}\right|-2\left|A^{\prime \prime \prime}\right|\right)+\left(2\left|B^{\prime \prime}\right|-2\left|A^{\prime \prime}\right|\right)+\left(2\left|B^{\prime}\right|-2\left|A^{\prime}\right|\right)$.
Hence $\gamma_{e}(G) \leq 2\left|E_{0}\right|-2\left|E_{2}\right|$ and $\gamma_{r e}(G)+\gamma_{e}(G) / 2 \leq\left(\left|E_{1}\right|+2\left|E_{2}\right|\right)+\left(\left|E_{0}\right|-\left|E_{2}\right|\right)=q$.
(ii) By Claim 3 and since each edge of E_{1} has at most one neighbor in E_{0} and $\left|E_{1}\right| \leq\left|B^{\prime \prime \prime}\right|$. Using this inequality and since $\left|A^{\prime}\right|=\left|B^{\prime}\right|$ and $\left|B^{\prime \prime \prime}\right| \geq\left|2 A^{\prime \prime \prime}\right|$ we get

$$
\begin{aligned}
5 \gamma_{r e}(G)= & 5\left|E_{1}\right|+10\left|E_{2}\right|=4 q-4\left|E_{0}\right|+\left|E_{1}\right|+6\left|E_{2}\right| \leq 4 q-4\left|B^{\prime}\right|-4\left|B^{\prime \prime}\right|-4\left|B^{\prime \prime \prime}\right| \\
& +\left|B^{\prime \prime \prime}\right|+6\left|A^{\prime}\right|+6\left|A^{\prime \prime}\right|+6\left|A^{\prime \prime \prime}\right| \leq 4 q+2\left(\left|A^{\prime}\right|-\left|A^{\prime \prime}\right|\right)+3\left(2\left|A^{\prime \prime \prime}\right|-\left|B^{\prime \prime \prime}\right|\right) \leq 4 q .
\end{aligned}
$$

Hence $\gamma_{r e}(G) \leq 4 q / 5$.
Corollary 10 Let $f=\left(E_{0}, E_{1}, E_{2}\right)$ be a $\gamma_{r e}(G)$-function of a connected graph G. If $k\left|E_{2}\right| \leq\left|E_{0}\right|$ such that $k \geq 4$, then $\gamma_{r e}(G) \leq(k-1) q / k$.
$\S 4$. Bounds on $\left|E_{0}\right|,\left|E_{1}\right|$ and $\left|E_{2}\right|$ for a $\gamma_{r e}(G)$-Function $\left(E_{0}, E_{1}, E_{2}\right)$

Theorem 11. Let $f=\left(E_{0}, E_{1}, E_{2}\right)$ be any $\gamma_{r e}(G)-$ function of a connected graph G of $q \geq 3$. Then
(1) $1 \leq\left|E_{2}\right| \leq 2 q / 5$;
(2) $0 \leq\left|E_{1}\right| \leq 4 q / 5-2$;
(3) $q / 5+1 \leq\left|E_{0}\right| \leq q-1$.

Proof By Theorem 9, $\left|E_{1}\right|+2\left|E_{2}\right| \leq 4 q / 5$.
(1) If $E_{2}=\varnothing$, then $E_{1}=q$ and $E_{0}=\varnothing$. The REDF $(0, q, 0)$ is not minimum since $\left|E_{1}\right|+2\left|E_{2}\right|>4 q / 5$. Hence $\left|E_{2}\right| \geq 1$. On the other hand, $\left|E_{2}\right| \leq 2 q / 5-\left|E_{1}\right| / 2 \leq 2 q / 5$.
(2) Since $\left|E_{2}\right| \geq 1$, then $\left|E_{1}\right| \leq 4 q / 5-2\left|E_{2}\right| \leq 4 q / 5-2$.
(3) The upper bound comes from $\left|E_{0}\right| \leq q-\left|E_{2}\right| \leq q-1$. For the lower bound, adding on side by side $2\left|E_{0}\right|+2\left|E_{1}\right|+2\left|E_{2}\right|=2 q,-\left|E_{1}\right|-2\left|E_{2}\right| \geq-4 q / 5$ and $-\left|E_{1}\right| \geq-4 q / 5+2$ gives $2\left|E_{0}\right| \geq 2 q / 5+2$. Therefor, $\left|E_{0}\right| \geq q / 5+1$.

References

[1] S. Arumugam and S. Velamal, Edge domination in graphs, Taiwanese Journal of Mathematics, 2(1998),173-179.
[2] E. W. Chambers, B. Kinnersley, N. Prince and D. B. West, Extremal problems for Roman domination, Discrete Math., 23(2009),1575-1586.
[3] E. J. Cockayne, P. A. Dreyer Jr, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278(2004),11-22.
[4] O. Favaron, H. Karami, R. Khoeilar and S. M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math, 309(2009),3447-3451.
[5] T. W. Haynes, S. T Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York,(1998).
[6] S. Mitchell and S.T. Hedetniemi, Edge domination in tree, Proc $8^{\text {th }}$ SE Conference on Combinatorics, Graph Theory and Computing, 19(1977)489-509.
[7] Karam Ebadi and L. Pushpalatha, Smarandachely Roman edge s-dominating function, International J. Math. Combin., 2(2010)95-101.
[8] B. P. Mobaraky and S. M. Sheikholeslami, bounds on Roman domination numbers of graphs, Discrete Math., 60(2008), 247-253.
[9] N. D. Soner, B. Chaluvaraju and J. P. Srivastava, Roman edge domination in graphs, Proc. Nat. Acad. Sci. India Sect. A, 79(2009), 45-50.

[^0]: ${ }^{1}$ Received August 3, 2010. Accepted December 15, 2010.

