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Abstract: For an integer n ≥ 2, let I ⊂ {0, 1, 2, · · · , n}. A Smarandachely Roman s-

dominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a function

f : V → {0, 1, 2, · · · , n} satisfying the condition that |f(u)− f(v)| ≥ s for each edge uv ∈ E

with f(u) or f(v) ∈ I . Similarly, a Smarandachely Roman edge s-dominating function for

an integer s, 2 ≤ s ≤ n on a graph G = (V, E) is a function f : E → {0, 1, 2, · · · , n}

satisfying the condition that |f(e) − f(h)| ≥ s for adjacent edges e, h ∈ E with f(e) or

f(h) ∈ I . Particularly, if we choose n = s = 2 and I = {0}, such a Smarandachely Roman s-

dominating function or Smarandachely Roman edge s-dominating function is called Roman

dominating function or Roman edge dominating function. The Roman edge domination

number γre(G) of G is the minimum of f(E) =
∑

e∈E
f(e) over such functions. In this

paper we first show that for any connected graph G of q ≥ 3, γre(G) + γe(G)/2 ≤ q and

γre(G) ≤ 4q/5, where γe(G) is the edge domination number of G. Also we prove that for

any γre(G)-function f = {E0, E1, E2} of a connected graph G of q ≥ 3, |E0| ≥ q/5 + 1,

|E1| ≤ 4q/5 − 2 and |E2| ≤ 2q/5.

Key Words: Smarandachely Roman s-dominating function, Smarandachely Roman edge

s-dominating function.
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§1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). As usual |V | = p and

|E| = q denote the number of vertices and edges of the graph G, respectively. The open

neighborhood N(e) of the edge e is the set of all edges adjacent to e in G. And its closed

neighborhood is N [e] = N(e)∪ {e}. Similarly, the open neighborhood of a set S ⊆ E is the set

N(S) =
⋃

e∈S N(e), and its closed neighborhood is N [S] = N(S) ∪ S.

The degree of an edge e = uv of G is defined by deg e = deg u + deg v − 2 and δ′(G)

(∆′(G)) is the minimum (maximum) degree among the edges of G (the degree of an edge is the

number of edges adjacent to it). A vertex of degree one is called a pendant vertex or a leaf and

its neighbor is called a support vertex.
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Let e ∈ S ⊆ E. Edge h is called a private neighbor of e with respect to S (denoted by h is

an S-pn of e) if h ∈ N [e] −N [S − {e}]. An S-pn of e is external if it is an edge of E − S. The

set pn(e, S) = N [e] −N [S − {e}] of all S-pn’s of e is called the private neighborhood set of e

with respect to S. The set S is said to be irredundant if for every e ∈ S, pn(e, S) 6= ∅. And a

set S of edges is called independent if no two edges in S are adjacent.

A set D ⊆ V is said to be a dominating set of G, if every vertex in V −D is adjacent to

some vertex in D. The minimum cardinality of such a set is called the domination number of

G and is denoted by γ(G). For a complete review on the topic of domination and its related

parameters, see [5].

Mitchell and Hedetniemi in [6] introduced the notion of edge domination as follows. A set

F of edges in a graph G is an edge dominating set if every edge in E − F is adjacent to at

least one edge in F . The minimum number of edges in such a set is called the edge domination

number of G and is denoted by γe(G). This concept is also studied in [1].

The concept of Roman dominating function (RDF) was introduced by E. J. Cockayne, P. A.

Dreyer, S. M. Hedetniemi and S. T. Hedetniemi in [3]. (See also [2,4,8]). A Roman dominating

function on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that

every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.

The weight of a Roman dominating function is the value f(V ) =
∑

u∈V f(u). The Roman

domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman

dominating function on G.

A Roman edge dominating function (REDF) on a graph G = (V,E) is a function f :

E → {0, 1, 2} satisfying the condition that every edge e for which f(e) = 0 is adjacent to at

least one edge h for which f(h) = 2. The weight of a Roman edge dominating function is

the value f(E) =
∑

e∈E f(e). The Roman edge domination number of a graph G, denoted by

γre(G), equals the minimum weight of a Roman edge dominating function on G. A Roman edge

dominating function f : E → {0, 1, 2} can be represented by the ordered partition (E0, E1, E2)

of E, where Ei = {e ∈ E | f(e) = i} and |Ei| = qi for i = 0, 1, 2. This concept is studied in

Soner et al. in [9] (see also [7]). A γ − set, γr − set and γre-set, can be defined as a minimum

dominating set (MDS), a minimum Roman dominating set (MRDS) and a minimum Roman

edge dominating set (MREDS), respectively.

Theorem A. For a graph G of order p,

γe(G) ≤ γre(G) ≤ 2γe(G).

It is clear that if G has at least one edge then 1 ≤ γre(G) ≤ q, where q is the number of

edges in G. However if a graph is totally disconnected or trivial, we define γre(G) = 0. We

note that E(G) is the unique maximum REDS of G. Since every edge dominating set in G is a

dominating set in the line graph of G and an independent set of edges of G is an independent set

of vertices in the line graph of G, the following results can easily be proved from the well-known

analogous results for dominating sets of vertices and independent sets.

Proposition 1. A Roman edge dominating set S is minimal if and only if for each e ∈ S, one

of the following two conditions holds.
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(i) N(e) ∩ S = ∅.

(ii) There exists an edge h ∈ E − S, such that N(h) ∩ S = {e}.

Proposition 2. Let S = E1 ∪ E2 be a REDS such that |E1| + 2|E2| = γre(G). Then

|E(G) − S| ≤
∑

e∈S

deg(e),

and the equality holds if and only if S is independent and for every e ∈ E − S there exists only

one edge h ∈ S such that N(e) ∩ S = {h}.

Proof Since every edge in E(G) − S is adjacent to at least one edge of S, each edge in

E(G) − S contributes at least one to the sum of the degrees of the edges of S, hence

|E(G) − S| ≤ ∑

e∈S deg(e)

Let |E(G) − S| =
∑

e∈S deg(e). Suppose S is not independent. Since S is a REDS, every

edge in E − S is counted in the sum
∑

e∈S deg(e). Hence if e1 and e2 have a common point in

S, then e1 is counted in deg(e2) and vice versa. Then the sum exceeds |E − S| by at least two,

contrary to the hypothesis. Hence S must be independent.

Now suppose N(e) ∩ S = ∅ or |N(e) ∩ S| ≥ 2 for e ∈ E − S. Since S is a REDS the

former case does not occur. Let e1 and e2 belong to N(e)∩S. In this case
∑

e∈S deg(e) exceeds

|E(G) − S| by at least one since e1 is counted twice: once in deg(e1) and once in deg(e2), a

contradiction. Hence equality holds if S is independent and for every e ∈ E − S there exists

only one edge h ∈ S such that N(e) ∩ S = {h}. Conversely, if S is independent and for every

e ∈ E − S there exists only one edge h ∈ S such that N(e) ∩ S = {h}, then equality holds. �

Proposition 3. Let G be a graph and S = E1 ∪ E2 be a minimum REDS of G such that

|S| = 1, then the following condition hold.

(i) S is independent.

(ii) |E − S| =
∑

e∈S deg(e).

(iii) ∆′(G) = q − 1.

(iv) q/(∆′ + 1) = 1.

An immediate consequence of the above result is.

Corollary 1 For any (p, q) graph, γre(G) = p− q+1 if and only if G has γre components each

of which is isomorphic to a star.

Proposition 4. Let G be a graph of q edges which contains a edge of degree q − 1, then

γe(G) = 1 and γre(G) = 2.

Proposition 5.([9]) Let f = (E0, E1, E2) be any REDF. Then

(i) 〈E1〉 has maximum degree one.

(ii) Each edge of E0 is adjacent to at most two edges of E1.

(iii) E2 is an γe-set of H = G[E0 ∪ E2].
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Proposition 6. Let f = (E0, E1, E2) be any γre-function. Then

(i) No any edge of E1 is adjacent to any edge of E2.

(ii) Let H = G[E0 ∪ E2]. Then each edge e ∈ E2 has at least two H-pn’s (i.e private

neighbors relative to E2 in the graph H).

(iii) If e is isolated in G[E2] and has precisely one external H-pn, say h ∈ E0, then

N(h) ∩E1 = ∅.

Proof (i) Let e1, e2 ∈ E, where e1 adjacent to e2, f(e1) = 1 and f(e2) = 2. Form f ′ by

changing f(e1) to 0. Then f’ is a REDF with f ′(E) < f(E), a contradiction.

(ii) By Proposition 5(iii), E2 is an γe-set of H and hence is a maximal irredundant set in

H . Therefore, each e ∈ E2 has at least one E2-pn in H .

Let e be isolated in G[E2]. Then e is a E2-pn of e. Suppose that e has no external E2-pn.

Then the function produced by changing f(e) from 2 to 1 is an REDF of smaller weight, a

contradiction. Hence, e has at least two E2-pns in H .

Suppose that e is not isolated in G[E2] and has precisely one E2-pn (in H), say w. Consider

the function produced by changing f(e) to 0 and f(h) to 1. The edge e is still dominated because

it has a neighbor in E2. All of e’s neighbors in E0 are also obtained, since every edge in E0 has

another neighbor in E2 except for h, which is now in E1. Therefore, this new function is an

REDF of smaller weight, which is a contradiction. Again, we can conclude that e has at least

two E2-pns in H.

(iii) Suppose the contrary. Define a new function f ′ with f ′(e) = 0, f ′(e′) = 0 for e′ ∈
N(h)∩E1, f

′(h) = 2, and f ′(x) = f(x) for all other edges x. f ′(E) = f(E)−|N(h)∩E1 | < f(E),

contradicting the minimality of f . �

Proposition 7. Let f = (E0, E1, E2) be a γre-function of an isolate-free graph G, such that

|E2| = q2 is a maximum. Then

(i) E1 is independent.

(ii) The set E0 dominates the set E1.

(iii) Each edge of E0 is adjacent to at most one edge of E1.

(iv) Let e ∈ G[E2] have exactly two external H-pn’s e1 and e2 in E0. Then there do not

exist edges h1, h2 ∈ E1 such that (h1, e1, e, e2, h2) is the edge sequence of a path P6.

Proof (i) By Proposition 5(i), G[E1] consists of disjoint K2’s and P3’s. If there exists a

P3, then we can change the function values of its edges to 0 and 2. The resulting function

g = (W0,W1,W2) is a γre-function with |W2| > |E2|, which is a contradiction. Therefore, E1 is

an independent set.

(ii) By (i) and Proposition 6(i), no edge e ∈ E1 is adjacent to an edge in E1 ∪ E2. Since

G is isolate-free, e is adjacent to some edge in E0. Hence the set E0 dominates the set E1.

(iii) Let e ∈ E0 and B = N(e) ∩ E1, where |B| = 2. Note that |B| ≤ 2, by Proposition

5(ii). Let

W0 = (E0 ∪B) − {e},
W1 = E1 −B,
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W2 = E2 ∪ {e}.

We know that E2 dominates E0, so that g = (W0,W1,W2) is an REDF.

g(E) = |W1| + 2|W2| = |E1| − B + 2|E2| − 2 = f(E). Hence, g is a γre-function with

|W2| > |E2|, which is a contradiction.

iv) Suppose the contrary. Form a new function by changing the function values of (h1, e1, e, e2, h2)

from (1, 0, 2, 0, 1) to (0, 2, 0, 0, 2). Then the new function is a γre-function with bigger value of

q2, which is a contradiction. �

§2. Graph for Which γre(G) = 2γe(G)

From Theorem A we know that for any graph G, γre(G) ≤ 2γe(G). We will say that a graph

G is a Roman edge graph if γre(G) = 2γe(G).

Proposition 8. A graph G is Roman edge graph if and only if it has a γre-function f =

(E0, E1, E2) with q1 = |E1| = 0.

Proof Let G be a Roman edge graph and let f = (E0, E1, E2) be a γre-function of G.

Proposition 5(iii) we know that E2 dominates E0, and E1 ∪ E2 dominates E, and hence

γe(G) ≤ |E1 ∪ E2| = |E1| + |E2| ≤ |E1| + 2|E2| = γre(G).

But since G is Roman edge, we know that

2γe(G) = 2|E1| + 2|E2| = γre(G) = |E1| + 2|E2|.

Hence, q1 = |E1| = 0.

Conversely, let f = (E0, E1, E2) be a γre-function of G with q1 = |E1| = 0. Then,

γre(G) = 2|E2|, and since by definition E1∪E2 dominates E, it follows that E2 is a dominating

set of G. But by Proposition 5(iii), we know that E2 is a γe-set of G[E0 ∪E2], i.e. γe(G) = |E2|
and γre(G) = 2γe(G), i.e. G is a Roman edge graph. �

§3. Bound on the Sum γre(G) + γe(G)/2

For q-edge graphs, always γre(G) ≤ q, with equality when G is isomorphic with mK2 or mP3.

In this section we prove that γre(G) + γe(G)/2 ≤ q and γre(G) ≤ 4q/5 when G is a connected

q-edge graph.

Theorem 9. For any connected graph G of q ≥ 3,

(i) γre(G) + γe(G)/2 ≤ q.

(ii) γre(G) ≤ 4q/5.

Proof Let f = (E0, E1, E2) be a γre(G)-function such that |E2| is maximum. It is proved

in Proposition 6(i) that for such a function no edge of E1 is adjacent to any edge of E2 and every

edge e of E2 has at least two E2-private neighbors, one of them can be e itself if it is isolated in
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E2 (true for every γre(G)-function). The set E1 is independent and every edge of E0 has at most

one neighbor in E1. Moreover we add the condition the number µ(f) of edges of E2 with only

one neighbor in E0 is minimum. Suppose that NE0(e) = {h} for some e ∈ E2. Then partition

E′
0 = (E0\{h}) ∪ {e} ∪ NE1(h), E

′
1 = E1\NE1(h) and E′

2 = (E2\{e}) ∪ {h} is a Roman edge

dominating function f ′ such that w(f ′) = w(f)−1 if NE1(h) 6= ∅, or w(f ′) = w(f), |E′
2| = |E2|

but µ(f ′) < µ(f) if NE1(h) = ∅ since then, G being connected q ≥ 3, h is not isolated in E0.

Therefore every edge of E2 has at least two neighbors in E0. Let A be a largest subset of E2

such that for each e ∈ A there exists a subset Ae of NE0(e) such that the set Ae is disjoint,

|Ae| ≥ 2 and sets ∪e∈AAe = ∪e∈ANE0(e). Note that Ae contains all the external E2-private

neighbors of e. A′ = E2\A.

Case 1 A′ = ∅.

In this case |E0| ≥ 2|E2| and |E1| ≤ |E0| since every edge of E0 has at most one neighbor

in E1. Since E0 is an edge dominating set of G and |E0|/2 ≥ |E2| we have

(i) γre(G) + γe(G)/2 ≤ |E1| + 2|E2| + |E0|/2 ≤ |E0| + |E1| + |E2| = q.

(ii) 5γre(G) = 5|E1|+10|E2| = 4q−4|E0|+|E1|+6|E2| = 4q−3(|E0|−2|E2|)−(|E0|−|E1|) ≤
4q. Hence γre(G) ≤ 4q/5.

Case 2 A′ 6= ∅.

Let B = ∪e∈AAe and B′ = E0\B. Every edge ε in A′ has exactly one E2-private neighbor

ε′ in E0 and NB′(ε) = {ε′} for otherwise ε could be added to A. This shows that |A′| = |B′|.
Moreover since |NE0(ε)| ≥ 2, each edge ε ∈ A′ has at least one neighbor in B. Let εB ∈
B ∩NE0(ε) and let εA be the edge of A such that εB ∈ AεA

. The edge εA is well defined since

the sets Ae with e ∈ A form a partition of B.

Claim 1 |AεA
| = 2 for each ε ∈ A′ and each εB ∈ B ∩NE0(ε).

Proof of Claim 1 If |AεA
| > 2, then by putting A′

εA
= AεA

\{εB} and Aε = {ε′, εB} we can

see that A1 = A ∪ {ε} contradicts the choice of A. Hence |AεA
| = 2, εA has a unique external

E2-private neighbor ε′A and AεA
= {εB, ε

′
A}. Note that the edges εA and ε are isolated in E2

since they must have a second E2-private neighbor.

Claim 2 If ε, y ∈ A′ then εB 6= yB and AεA
6= AyA

.

Proof of Claim 2 Let ε′ and y′ be respectively the unique external E2-private neighbors of ε

and y. Suppose that εB = yB, and thus εA = yA. The function g : E(G) → {0, 1, 2} defined by

g(εB) = 2, g(ε) = g(y) = g(εA) = 0, g(ε′A) = g(y′) = g(ε′) = 1 and g(e) = f(e) otherwise, is a

REDF of G of weight less than γre(G), a contradiction. Hence εB 6= yB. Since AεA
⊇ {εB, ε

′
A}

and |AεA
| = 2, the edge yB is not in AεA

. Therefore AεA
6= AyA

.

Let A′′ = {εA | ε ∈ A′ and εB ∈ B ∩NE0(ε)} and B′′ = ∪e∈A′′Ae. By Claims 1 and 2,

|B′′| + 2|A′′| and |A′′| ≥ |A′|.

Let A′′′ = E2\(A′ ∪A′′) and B′′′ = ∪e∈A′′′Ae = E0\(B′ ∪B′′). By the definition of the sets Ae,

|B′′′| ≥ |2A′′′|.
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Claim 3 If ε ∈ A′ and εB ∈ B ∩NE0(ε), then ε′, εB and ε′A have no neighbor in E1. Hence

B′′′ dominates E1.

Proof of Claim 3 Let h be a edge of E1. If h has a neighbor inB′∪B′′, Let g : E(G) → {0, 1, 2}
be defined by g(ε′A) = 2, g(h) = g(εA) = 0, g(e) = f(e) otherwise if h is adjacent to ε′A,

g(ε′) = 2, g(h) = g(ε) = 0, g(e) = f(e) otherwise if h is adjacent to ε′,

g(εB) = 2, g(h) = g(εA) = g(ε) = 0, g(ε′A) = g(ε′) = 1 , g(e) = f(e) otherwise if h is

adjacent to εB. In each case, g is a REDF of weight less than γre(G), a contradiction. Therefore

N(h) ⊆ B′′′.

We are now ready to establish the two parts of the Theorem.

(i) By Claim 3, B′′′ ∪A′ ∪A′′ is an edge dominating set of G. Therefore, since |A′| = |B′|
and |B′′′| ≥ |2A′′′| we have,

γe(G) ≤ |B′′′|+ |A′|+ |A′′| ≤ |B′′′|+ |B′′| ≤ (2|B′′′|−2|A′′′|)+ (2|B′′|−2|A′′|)+ (2|B′|−2|A′|).

Hence γe(G) ≤ 2|E0| − 2|E2| and γre(G) + γe(G)/2 ≤ (|E1| + 2|E2|) + (|E0| − |E2|) = q.

(ii) By Claim 3 and since each edge of E1 has at most one neighbor in E0 and |E1| ≤ |B′′′|.
Using this inequality and since |A′| = |B′| and |B′′′| ≥ |2A′′′| we get

5γre(G) = 5|E1| + 10|E2| = 4q − 4|E0| + |E1| + 6|E2| ≤ 4q − 4|B′| − 4|B′′| − 4|B′′′|
+|B′′′| + 6|A′| + 6|A′′| + 6|A′′′| ≤ 4q + 2(|A′| − |A′′|) + 3(2|A′′′| − |B′′′|) ≤ 4q.

Hence γre(G) ≤ 4q/5. �

Corollary 10 Let f = (E0, E1, E2) be a γre(G) − function of a connected graph G. If

k|E2| ≤ |E0| such that k ≥ 4, then γre(G) ≤ (k − 1)q/k.

§4. Bounds on |E0|, |E1| and |E2| for a γre(G)-Function (E0, E1, E2)

Theorem 11. Let f = (E0, E1, E2) be any γre(G)− function of a connected graph G of q ≥ 3.

Then

(1) 1 ≤ |E2| ≤ 2q/5;

(2) 0 ≤ |E1| ≤ 4q/5 − 2;

(3) q/5 + 1 ≤ |E0| ≤ q − 1.

Proof By Theorem 9, |E1| + 2|E2| ≤ 4q/5.

(1) If E2 = ∅, then E1 = q and E0 = ∅. The REDF (0, q, 0) is not minimum since

|E1| + 2|E2| > 4q/5. Hence |E2| ≥ 1. On the other hand, |E2| ≤ 2q/5 − |E1|/2 ≤ 2q/5.

(2) Since |E2| ≥ 1, then |E1| ≤ 4q/5 − 2|E2| ≤ 4q/5 − 2.

(3) The upper bound comes from |E0| ≤ q − |E2| ≤ q − 1. For the lower bound, adding on

side by side 2|E0| + 2|E1| + 2|E2| = 2q,−|E1| − 2|E2| ≥ −4q/5 and −|E1| ≥ −4q/5 + 2 gives

2|E0| ≥ 2q/5 + 2. Therefor, |E0| ≥ q/5 + 1. �
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