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Abstract For any positive integer n, the famous F.Smarandache function S(n) is defined as

the smallest positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}.
The main purpose of this paper is using the elementary method to study the estimate problem

of S (Fn), and give a sharper lower bound estimate for it, where Fn = 22n

+ 1 is called the

Fermat number.
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§1. Introduction and result

For any positive integer n, the famous F.Smarandache function S(n) is defined as the
smallest positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}. For
example, the first few values of S(n) are S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5,
S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, · · · . About
the elementary properties of S(n), many authors had studied it, and obtained some interesting
results, see references [1], [2], [3], [4] and [5]. For example, Lu Yaming [2] studied the solutions
of an equation involving the F.Smarandache function S(n), and proved that for any positive
integer k ≥ 2, the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinite group positive integer solutions (m1,m2, · · · ,mk).
Dr. Xu Zhefeng [3] studied the value distribution problem of S(n), and proved the following

conclusion:
Let P (n) denotes the largest prime factor of n, then for any real number x > 1, we have

the asymptotic formula

∑

n≤x
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(
3
2

)
x

3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
,

where ζ(s) denotes the Riemann zeta-function.
Chen Guohui [4] studied the solvability of the equation

S2(x)− 5S(x) + p = x, (1)
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and proved the following conclusion:
Let p be a fixed prime. If p = 2, then the equation (1) has no positive integer solution; If

p = 3, then the equation (1) has only one positive integer solution x = 9; If p = 5, then the
equation (1) has only two positive integer solutions x = 1, 5; If p = 7, then the equation (1)
has only two positive integer solutions x = 21, 483. If p ≥ 11, then the equation (1) has only
one positive integer solution x = p(p− 4).

Le Maohua [5] studied the lower bound of S(2p−1(2p − 1)), and proved that for any odd
prime p, we have the estimate:

S
(
2p−1(2p − 1)

) ≥ 2p + 1.

Recently, in a still unpublished paper, Su Juanli improved the above lower bound as 6p + 1.
That is, she proved that for any prime p ≥ 7, we have the estimate

S
(
2p−1(2p − 1)

) ≥ 6p + 1.

The main purpose of this paper is using the elementary method to study the estimate
problem of S (Fn), and give a sharper lower bound estimate for it, where Fn = 22n

+ 1 is the
Fermat number. That is, we shall prove the following:

Theorem. For any positive integer n ≥ 3, we have the estimate

S (Fn) ≥ 8 · 2n + 1,

where Fn = 22n

+ 1 is called the Fermat number.

§2. Proof of the theorem

In this section, we shall complete the proof of our theorem directly. First note that the
Fermat number F1 = 5, F2 = 17, F3 = 257, F4 = 65537, they are all prime. So for n = 3
and 4, we have S (F3) = 257 ≥ 8 · 23 + 1, S (F4) = 65537 > 8 · 24 + 1. Now without loss of
generality we can assume that n ≥ 5. If Fn be a prime, then from the properties of S(n) we
have S (Fn) = Fn = 22n

+ 1 ≥ 8 · 2n + 1. If Fn be a composite number, then let p be any prime
divisor of Fn, it is clear that (2, p) = 1. Let m denotes the exponent of 2 modulo p. That is,
m denotes the smallest positive integer r such that

2r ≡ 1 (mod p).

Since p | Fn, so we have Fn = 22n

+1 ≡ 0 (mod p) or 22n ≡ −1 (mod p), and 22n+1 ≡ 1 (mod p).
From this and the properties of exponent (see Theorem 10.1 of reference [6]) we have m | 2n+1,
so m is a divisor of 2n+1. Let m = 2d, where 1 ≤ d ≤ n + 1. It is clear that p † 2d− 1, if d ≤ n.
So m = 2n+1 and m | φ(p) = p− 1. Therefore, 2n+1 | p− 1 or

p = h · 2n+1 + 1. (2)

Now we discuss the problem in following three cases:
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(A) If Fn has more than or equal to three distinct prime divisors, then note that 2n+1 + 1
and 2 · 2n+1 + 1 can not be both primes, since one of them can be divided by 3. So from (2)
we know that in all prime divisors of Fn, there exists at least one prime divisor pi such that
pi = hi · 2n+1 + 1 ≥ 4 · 2n+1 + 1 = 8 · 2n + 1.

(B) If Fn has just two distinct prime divisors, without loss of generality we can assume

Fn =
(
2n+1 + 1

)α · (3 · 2n+1 + 1
)β or Fn =

(
2 · 2n+1 + 1

)α · (3 · 2n+1 + 1
)β

.

If Fn =
(
2n+1 + 1

)α ·(3 · 2n+1 + 1
)β , and α ≥ 4 or β ≥ 2, then from the properties of S(n)

we have the estimate

S(Fn) ≥ max
{

S
((

2n+1 + 1
)α

)
, S

((
3 · 2n+1 + 1

)β
)}

= max
{
α · (2n+1 + 1

)
, β · (3 · 2n+1 + 1

)}

≥ 8 · 2n + 1.

If Fn = 22n

+ 1 =
(
2n+1 + 1

) · (3 · 2n+1 + 1
)

= 3 · 22n+2 + 2n+3 + 1, then note that n ≥ 5,
we have the congruence

0 ≡ 22n

+ 1− 1 = 3 · 22n+2 + 2n+3 ≡ 2n+3 (mod 2n+4).

This is impossible.
If Fn = 22n

+1 =
(
2n+1 + 1

)2·(3 · 2n+1 + 1
)

= 3·23n+3+3·22n+3+3·2n+1+22n+2+2n+2+1,
then we also have

0 ≡ 22n

+ 1− 1 = 3 · 23n+3 + 3 · 22n+3 + 3 · 2n+1 + 22n+2 + 2n+2 ≡ 3 · 2n+1 (mod 2n+2).

This is still impossible.
If Fn = 22n

+ 1 =
(
2n+1 + 1

)3 · (3 · 2n+1 + 1
)
, then we have

22n

+ 1 ≡ (
3 · 2n+1 + 1

)2 ≡ 3 · 2n+2 + 1 (mod 2n+4)

or

0 ≡ 22n ≡ (
3 · 2n+1 + 1

)2 − 1 ≡ 3 · 2n+2 (mod 2n+4).

Contradiction with 2n+4 † 3 · 2n+2.
If Fn =

(
2 · 2n+1 + 1

)α · (3 · 2n+1 + 1
)β , and α ≥ 2 or β ≥ 2, then from the properties of

S(n) we have the estimate

S(Fn) ≥ max
{

S
((

2 · 2n+1 + 1
)α

)
, S

((
3 · 2n+1 + 1

)β
)}

= max
{
α · (2 · 2n+1 + 1

)
, β · (3 · 2n+1 + 1

)}

≥ 8 · 2n + 1.

If Fn = 22n

+ 1 =
(
2 · 2n+1 + 1

) · (3 · 2n+1 + 1
)
, then we have

Fn = 22n

+ 1 = 3 · 22n+3 + 5 · 2n+1 + 1.

From this we may immediately deduce the congruence

0 ≡ 22n

= 3 · 22n+3 + 5 · 2n+1 ≡ 5 · 2n+1 (mod 22n+3).

This is not possible.
(C) If Fn has just one prime divisor, we can assume that
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Fn =
(
2n+1 + 1

)α or Fn =
(
2 · 2n+1 + 1

)α or Fn =
(
3 · 2n+1 + 1

)α
.

If Fn =
(
2n+1 + 1

)α, then it is clear that our theorem holds if α ≥ 4. If α = 1, 2 or 3, then
from the properties of the congruence we can deduce that Fn =

(
2n+1 + 1

)α is not possible.
If Fn =

(
2 · 2n+1 + 1

)α or
(
3 · 2n+1 + 1

)α, then our theorem holds if α ≥ 2. If α = 1, then
Fn be a prime, so our theorem also holds.

This completes the proof of Theorem.
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