On the F.Smarandache function and its mean value

Zhongtian Lv
Department of Basic Courses, Xi'an Medical College
Xi'an, Shaanxi, P.R.China
Received December 19, 2006

Abstract

For any positive integer n, the famous F.Smarandache function $S(n)$ is defined as the smallest positive integer m such that $n \mid m!$. That is, $S(n)=\min \{m: n \mid m!, n \in N\}$. The main purpose of this paper is using the elementary methods to study a mean value problem involving the F.Smarandache function, and give a sharper asymptotic formula for it.

Keywords F.Smarandache function, mean value, asymptotic formula.

§1. Introduction and result

For any positive integer n, the famous F.Smarandache function $S(n)$ is defined as the smallest positive integer m such that $n \mid m$!. That is, $S(n)=\min \{m: n \mid m!, n \in N\}$. For example, the first few values of $S(n)$ are $S(1)=1, S(2)=2, S(3)=3, S(4)=4, S(5)=5$, $S(6)=3, S(7)=7, S(8)=4, S(9)=6, S(10)=5, \cdots$. About the elementary properties of $S(n)$, some authors had studied it, and obtained some interesting results, see reference [2], [3] and [4]. For example, Farris Mark and Mitchell Patrick [2] studied the elementary properties of $S(n)$, and gave an estimates for the upper and lower bound of $S\left(p^{\alpha}\right)$. That is, they showed that

$$
(p-1) \alpha+1 \leq S\left(p^{\alpha}\right) \leq(p-1)\left[\alpha+1+\log _{p} \alpha\right]+1
$$

Murthy [3] proved that if n be a prime, then $S L(n)=S(n)$, where $S L(n)$ defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, and $[1,2, \cdots, k]$ denotes the least common multiple of $1,2, \cdots, k$. Simultaneously, Murthy [3] also proposed the following problem:

$$
\begin{equation*}
S L(n)=S(n), \quad S(n) \neq n ? \tag{1}
\end{equation*}
$$

Le Maohua [4] completely solved this problem, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

$$
n=12 \text { or } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} p
$$

where $p_{1}, p_{2}, \cdots, p_{r}, p$ are distinct primes, and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ are positive integers satisfying $p>p_{i}^{\alpha_{i}}, i=1,2, \cdots, r$.

Dr. Xu Zhefeng [5] studied the value distribution problem of $S(n)$, and proved the following conclusion:

Let $P(n)$ denotes the largest prime factor of n, then for any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x}(S(n)-P(n))^{2}=\frac{2 \zeta\left(\frac{3}{2}\right) x^{\frac{3}{2}}}{3 \ln x}+O\left(\frac{x^{\frac{3}{2}}}{\ln ^{2} x}\right)
$$

where $\zeta(s)$ denotes the Riemann zeta-function.
On the other hand, Lu Yaming [6] studied the solutions of an equation involving the F.Smarandache function $S(n)$, and proved that for any positive integer $k \geq 2$, the equation

$$
S\left(m_{1}+m_{2}+\cdots+m_{k}\right)=S\left(m_{1}\right)+S\left(m_{2}\right)+\cdots+S\left(m_{k}\right)
$$

has infinite groups positive integer solutions $\left(m_{1}, m_{2}, \cdots, m_{k}\right)$.
Jozsef Sandor [7] proved for any positive integer $k \geq 2$, there exist infinite groups positive integer solutions $\left(m_{1}, m_{2}, \cdots, m_{k}\right)$ satisfied the following inequality:

$$
S\left(m_{1}+m_{2}+\cdots+m_{k}\right)>S\left(m_{1}\right)+S\left(m_{2}\right)+\cdots+S\left(m_{k}\right) .
$$

Also, there exist infinite groups of positive integer solutions ($m_{1}, m_{2}, \cdots, m_{k}$) such that

$$
S\left(m_{1}+m_{2}+\cdots+m_{k}\right)<S\left(m_{1}\right)+S\left(m_{2}\right)+\cdots+S\left(m_{k}\right) .
$$

The main purpose of this paper is using the elementary and analytic methods to study the mean value properties of $[S(n)-S(S(n))]^{2}$, and give an interesting mean value formula for it. That is, we shall prove the following conclusion:

Theorem. Let k be any fixed positive integer. Then for any real number $x>2$, we have the asymptotic formula

$$
\sum_{n \leq x}[S(n)-S(S(n))]^{2}=\frac{2}{3} \cdot \zeta\left(\frac{3}{2}\right) \cdot x^{\frac{3}{2}} \cdot \sum_{i=1}^{k} \frac{c_{i}}{\ln ^{i} x}+O\left(\frac{x^{\frac{3}{2}}}{\ln ^{k+1} x}\right)
$$

where $\zeta(s)$ is the Riemann zeta-function, $c_{i}(i=1,2, \cdots, k)$ are computable constants and $c_{1}=1$.

§2. Proof of the Theorem

In this section, we shall prove our theorem directly. In fact for any positive integer $n>1$, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ be the factorization of n into prime powers, then from [3] we know that

$$
\begin{equation*}
S(n)=\max \left\{S\left(p_{1}^{\alpha_{1}}\right), S\left(p_{2}^{\alpha_{2}}\right), \cdots, S\left(p_{s}^{\alpha_{s}}\right)\right\} \equiv S\left(p^{\alpha}\right) \tag{2}
\end{equation*}
$$

Now we consider the summation

$$
\begin{equation*}
\sum_{n \leq x}[S(n)-S(S(n))]^{2}=\sum_{n \in A}[S(n)-S(S(n))]^{2}+\sum_{n \in B}[S(n)-S(S(n))]^{2} \tag{3}
\end{equation*}
$$

where A and B denote the subsets of all positive integer in the interval $[1, x] . A$ denotes the set involving all integers $n \in[1, x]$ such that $S(n)=S\left(p^{2}\right)$ for some prime $p ; B$ denotes the set involving all integers $n \in[1, x]$ such that $S(n)=S\left(p^{\alpha}\right)$ with $\alpha=1$ or $\alpha \geq 3$. If $n \in A$, then $n=p^{2} m$ with $P(m)<2 p$, where $P(m)$ denotes the largest prime factor of m. So from the definition of $S(n)$ we have $S(n)=S\left(m p^{2}\right)=S\left(p^{2}\right)=2 p$ and $S(S(n))=S(2 p)=p$ if $p>2$.

From (2) and the definition of A we have

$$
\begin{align*}
& \sum_{n \in A}[S(n)-S(S(n))]^{2} \\
= & \sum_{\substack{n \leq x \\
p^{2} \| n, \sqrt{n}<p^{2}}}\left[S\left(p^{2}\right)-S\left(S\left(p^{2}\right)\right)\right]^{2}+\sum_{\substack{n \leq x \\
p^{2} \| n, p^{2} \leq \sqrt{n}}}\left[S\left(p^{2}\right)-S\left(S\left(p^{2}\right)\right)\right]^{2} \\
= & \sum_{\substack{p^{2} n \leq x \\
n<p^{2},(p, n)=1}}\left[S\left(p^{2}\right)-S\left(S\left(p^{2}\right)\right)\right]^{2}+\sum_{\substack{p^{2} n \leq x \\
p^{2} \leq n,(p, n)=1}}\left[S\left(p^{2}\right)-S\left(S\left(p^{2}\right)\right)\right]^{2} \\
= & \sum_{\substack{p^{2} n \leq x \\
n<p^{2},(p, n)=1}} p^{2}+\sum_{\substack{p^{2} n \leq x \\
n \geq p^{2},(p, n)=1}} O(1) \\
= & \sum_{n \leq \sqrt{x}} \sum_{n<p^{2} \leq \frac{x}{n}} p^{2}+O\left(\sum_{m \leq x^{\frac{1}{4}}} \sum_{p \leq\left(\frac{x}{m}\right)^{\frac{1}{3}}} p^{2}\right)+O\left(\sum_{p \leq x^{\frac{1}{4}} p^{2} \leq n \leq \frac{x}{p^{2}}} p^{2}\right) \\
= & \sum_{n \leq \sqrt{x}} \sum_{p \leq \sqrt{\frac{x}{n}}} p^{2}+O\left(\frac{x^{\frac{5}{4}}}{\ln x}\right),
\end{align*}
$$

where $p^{2} \| n$ denotes $p^{2} \mid n$ and $p^{3} \dagger n$.
By the Abel's summation formula (See Theorem 4.2 of [8]) and the Prime Theorem (See Theorem 3.2 of [9]):

$$
\pi(x)=\sum_{i=1}^{k} \frac{a_{i} \cdot x}{\ln ^{i} x}+O\left(\frac{x}{\ln ^{k+1} x}\right)
$$

where $a_{i}(i=1,2, \cdots, k)$ are computable constants and $a_{1}=1$.
We have

$$
\begin{align*}
\sum_{p \leq \sqrt{\frac{x}{n}}} p^{2} & =\frac{x}{n} \cdot \pi\left(\sqrt{\frac{x}{n}}\right)-\int_{\frac{3}{2}}^{\sqrt{\frac{x}{n}}} 2 y \cdot \pi(y) d y \\
& =\frac{1}{3} \cdot \frac{x^{\frac{3}{2}}}{n^{\frac{3}{2}}} \cdot \sum_{i=1}^{k} \frac{b_{i}}{\ln ^{i} \sqrt{\frac{x}{n}}}+O\left(\frac{x^{\frac{3}{2}}}{n^{\frac{3}{2}} \cdot \ln ^{k+1} x}\right), \tag{5}
\end{align*}
$$

where we have used the estimate $n \leq \sqrt{x}$, and all b_{i} are computable constants and $b_{1}=1$.
Note that $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}=\zeta\left(\frac{3}{2}\right)$, and $\sum_{n=1}^{\infty} \frac{\ln ^{i} n}{n^{\frac{3}{2}}}$ is convergent for all $i=1,2,3, \cdots, k$. So from
(4) and (5) we have

$$
\begin{align*}
& \sum_{n \in A}[S(n)-S(S(n))]^{2} \\
= & \sum_{n \leq \sqrt{x}}\left[\frac{1}{3} \cdot \frac{x^{\frac{3}{2}}}{n^{\frac{3}{2}}} \cdot \sum_{i=1}^{k} \frac{b_{i}}{\ln ^{i} \sqrt{\frac{x}{n}}}+O\left(\frac{x^{\frac{3}{2}}}{n^{\frac{3}{2}} \cdot \ln ^{k+1} x}\right)\right]+O\left(\frac{x^{\frac{5}{4}}}{\ln x}\right) \\
= & \frac{2}{3} \cdot \zeta\left(\frac{3}{2}\right) \cdot x^{\frac{3}{2}} \cdot \sum_{i=1}^{k} \frac{c_{i}}{\ln ^{i} x}+O\left(\frac{x^{\frac{3}{2}}}{\ln ^{k+1} x}\right), \tag{6}
\end{align*}
$$

where $c_{i}(i=1,2,3, \cdots, k)$ are computable constants and $c_{1}=1$.
Now we estimate the summation in set B. For any positive integer $n \in B$, if $S(n)=S(p)=$ p, then $[S(n)-S(S(n))]^{2}=[S(p)-S(S(p))]^{2}=0$; If $S(n)=S\left(p^{\alpha}\right)$ with $\alpha \geq 3$, then

$$
[S(n)-S(S(n))]^{2}=\left[S\left(p^{\alpha}\right)-S\left(S\left(p^{\alpha}\right)\right)\right]^{2} \leq \alpha^{2} p^{2}
$$

and $\alpha \leq \ln x$. So that we have

$$
\begin{equation*}
\sum_{n \in B}[S(n)-S(S(n))]^{2} \ll \sum_{\substack{n p^{\alpha} \leq x \\ \alpha \geq 3}} \alpha^{2} \cdot p^{2} \ll x \cdot \ln ^{2} x \tag{7}
\end{equation*}
$$

Combining (3), (6) and (7) we may immediately deduce the asymptotic formula

$$
\sum_{n \leq x}[S(n)-S(S(n))]^{2}=\frac{2}{3} \cdot \zeta\left(\frac{3}{2}\right) \cdot x^{\frac{3}{2}} \cdot \sum_{i=1}^{k} \frac{c_{i}}{\ln ^{i} x}+O\left(\frac{x^{\frac{3}{2}}}{\ln ^{k+1} x}\right)
$$

where $c_{i}(i=1,2,3, \cdots, k)$ are computable constants and $c_{1}=1$.
This completes the proof of Theorem.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[2] Farris Mark and Mitchell Patrick, Bounding the Smarandache function. Smarandache Nations Journal, 13(2002), 37-42.
[3] A. Murthy, Some notions on least common multiples, Smarandache Notions Journal, 12 (2001), 307-309.
[4] Le Maohua, An equation concerning the Smarandache LCM function, Smarandache Notions Journal, 14(2004), 186-188.
[5] Xu Zhefeng, The value distribution property of the Smarandache function, Acta Mathematica Sinica, Chinese Series, 49(2006), No.5, 1009-1012.
[6] Lu Yaming, On the solutions of an equation involving the Smarandache function, Scientia Magna, 2(2006), No.1, 76-79.
[7] Jozsef Sandor, On certain inequalities involving the Smarandache function, Scientia Magna, 2 (2006), No. 3, 78-80.
[8] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
[9] Pan Chengdong and Pan Chengbiao, The elementary proof of the Prime theorem, Shanghai, Shanghai Science and Technology Press, 1988.

