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Abstract For any positive integer n, the famous F.Smarandache function S(n) is defined

as the smallest positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}.
The main purpose of this paper is using the elementary methods to study a mean value

problem involving the F.Smarandache function, and give a sharper asymptotic formula for it.
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§1. Introduction and result

For any positive integer n, the famous F.Smarandache function S(n) is defined as the
smallest positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}. For
example, the first few values of S(n) are S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5,
S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, · · · . About the elementary properties of
S(n), some authors had studied it, and obtained some interesting results, see reference [2], [3]
and [4]. For example, Farris Mark and Mitchell Patrick [2] studied the elementary properties
of S(n), and gave an estimates for the upper and lower bound of S(pα). That is, they showed
that

(p− 1)α + 1 ≤ S(pα) ≤ (p− 1)[α + 1 + logp α] + 1.

Murthy [3] proved that if n be a prime, then SL(n) = S(n), where SL(n) defined as
the smallest positive integer k such that n | [1, 2, · · · , k], and [1, 2, · · · , k] denotes the
least common multiple of 1, 2, · · · , k. Simultaneously, Murthy [3] also proposed the following
problem:

SL(n) = S(n), S(n) 6= n ? (1)

Le Maohua [4] completely solved this problem, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

n = 12 or n = pα1
1 pα2

2 · · · pαr
r p,

where p1, p2, · · · , pr, p are distinct primes, and α1, α2, · · · , αr are positive integers satisfying
p > pαi

i , i = 1, 2, · · · , r.
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Dr. Xu Zhefeng [5] studied the value distribution problem of S(n), and proved the following
conclusion:

Let P (n) denotes the largest prime factor of n, then for any real number x > 1, we have
the asymptotic formula

∑

n≤x

(S(n)− P (n))2 =
2ζ

(
3
2

)
x

3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
,

where ζ(s) denotes the Riemann zeta-function.
On the other hand, Lu Yaming [6] studied the solutions of an equation involving the

F.Smarandache function S(n), and proved that for any positive integer k ≥ 2, the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinite groups positive integer solutions (m1,m2, · · · ,mk).
Jozsef Sandor [7] proved for any positive integer k ≥ 2, there exist infinite groups positive

integer solutions (m1, m2, · · · , mk) satisfied the following inequality:

S(m1 + m2 + · · ·+ mk) > S(m1) + S(m2) + · · ·+ S(mk).

Also, there exist infinite groups of positive integer solutions (m1,m2, · · · ,mk) such that

S(m1 + m2 + · · ·+ mk) < S(m1) + S(m2) + · · ·+ S(mk).

The main purpose of this paper is using the elementary and analytic methods to study the
mean value properties of [S(n)− S(S(n))]2, and give an interesting mean value formula for it.
That is, we shall prove the following conclusion:

Theorem. Let k be any fixed positive integer. Then for any real number x > 2, we have
the asymptotic formula

∑

n≤x

[S(n)− S(S(n))]2 =
2
3
· ζ

(
3
2

)
· x 3

2 ·
k∑

i=1

ci

lni x
+ O

(
x

3
2

lnk+1 x

)
,

where ζ(s) is the Riemann zeta-function, ci (i = 1, 2, · · · , k) are computable constants and
c1 = 1.

§2. Proof of the Theorem

In this section, we shall prove our theorem directly. In fact for any positive integer n > 1,
let n = pα1

1 pα2
2 · · · pαs

s be the factorization of n into prime powers, then from [3] we know that

S(n) = max{S(pα1
1 ), S(pα2

2 ), · · · , S(pαs
s )} ≡ S(pα). (2)

Now we consider the summation
∑

n≤x

[S(n)− S(S(n))]2 =
∑

n∈A

[S(n)− S(S(n))]2 +
∑

n∈B

[S(n)− S(S(n))]2 , (3)
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where A and B denote the subsets of all positive integer in the interval [1, x]. A denotes the
set involving all integers n ∈ [1, x] such that S(n) = S(p2) for some prime p; B denotes the
set involving all integers n ∈ [1, x] such that S(n) = S(pα) with α = 1 or α ≥ 3. If n ∈ A,
then n = p2m with P (m) < 2p, where P (m) denotes the largest prime factor of m. So from
the definition of S(n) we have S(n) = S(mp2) = S(p2) = 2p and S(S(n)) = S(2p) = p if p > 2.

From (2) and the definition of A we have

∑

n∈A

[S(n)− S(S(n))]2

=
∑

n≤x

p2‖n,
√

n<p2

[
S(p2)− S(S(p2))

]2
+

∑

n≤x

p2‖n, p2≤√n

[
S(p2)− S(S(p2))

]2

=
∑

p2n≤x

n<p2, (p, n)=1

[
S(p2)− S(S(p2))

]2
+

∑

p2n≤x

p2≤n, (p, n)=1

[
S(p2)− S(S(p2))

]2

=
∑

p2n≤x

n<p2, (p, n)=1

p2 +
∑

p2n≤x

n≥p2, (p, n)=1

p2 + O(1)

=
∑

n≤√x

∑

n<p2≤ x
n

p2 + O




∑

m≤x
1
4

∑

p≤( x
m )

1
3

p2


 + O




∑

p≤x
1
4

∑

p2≤n≤ x
p2

p2




=
∑

n≤√x

∑

p≤
√

x
n

p2 + O

(
x

5
4

lnx

)
, (4)

where p2‖n denotes p2|n and p3 † n.

By the Abel’s summation formula (See Theorem 4.2 of [8]) and the Prime Theorem (See
Theorem 3.2 of [9]):

π(x) =
k∑

i=1

ai · x
lni x

+ O

(
x

lnk+1 x

)
,

where ai (i = 1, 2, · · · , k) are computable constants and a1 = 1.

We have

∑

p≤
√

x
n

p2 =
x

n
· π

(√
x

n

)
−

∫ √
x
n

3
2

2y · π(y)dy

=
1
3
· x

3
2

n
3
2
·

k∑

i=1

bi

lni √
x
n

+ O

(
x

3
2

n
3
2 · lnk+1 x

)
, (5)

where we have used the estimate n ≤ √
x, and all bi are computable constants and b1 = 1.

Note that
∞∑

n=1

1
n

3
2

= ζ

(
3
2

)
, and

∞∑
n=1

lni n

n
3
2

is convergent for all i = 1, 2, 3, · · · , k. So from
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(4) and (5) we have

∑

n∈A

[S(n)− S(S(n))]2

=
∑

n≤√x

[
1
3
· x

3
2

n
3
2
·

k∑

i=1

bi

lni √
x
n

+ O

(
x

3
2

n
3
2 · lnk+1 x

)]
+ O

(
x

5
4

lnx

)

=
2
3
· ζ

(
3
2

)
· x 3

2 ·
k∑

i=1

ci

lni x
+ O

(
x

3
2

lnk+1 x

)
, (6)

where ci (i = 1, 2, 3, · · · , k) are computable constants and c1 = 1.
Now we estimate the summation in set B. For any positive integer n ∈ B, if S(n) = S(p) =

p, then [S(n)− S(S(n))]2 = [S(p)− S(S(p))]2 = 0; If S(n) = S(pα) with α ≥ 3, then

[S(n)− S(S(n))]2 = [S(pα)− S(S(pα))]2 ≤ α2p2

and α ≤ lnx. So that we have

∑

n∈B

[S(n)− S(S(n))]2 ¿
∑

npα≤x

α≥3

α2 · p2 ¿ x · ln2 x. (7)

Combining (3), (6) and (7) we may immediately deduce the asymptotic formula

∑

n≤x

[S(n)− S(S(n))]2 =
2
3
· ζ

(
3
2

)
· x 3

2 ·
k∑

i=1

ci

lni x
+ O

(
x

3
2

lnk+1 x

)
,

where ci (i = 1, 2, 3, · · · , k) are computable constants and c1 = 1.
This completes the proof of Theorem.
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