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Abstract The concept of Smarandache isotopy is introduced and its study is explored for

Smarandache: groupoids, quasigroups and loops just like the study of isotopy theory was
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§1. Introduction

In 2002, W. B. Vasantha Kandasamy initiated the study of Smarandache loops in her book
[12] where she introduced over 75 Smarandache concepts in loops. In her paper [13], she defined
a Smarandache loop (S-loop) as a loop with at least a subloop which forms a subgroup under the
binary operation of the loop. For more on loops and their properties, readers should check[11],
[1], [3], [4],[5] and [12]. In [12], Page 102, the author introduced Smarandache isotopes of loops
particularly Smarandache principal isotopes. She has also introduced the Smarandache concept
in some other algebraic structures as [14][15][16][17][18][19] account. The present author has
contributed to the study of S-quasigroups and S-loops in [6], [7] and [8] while Muktibodh [10]
did a study on the first.

In this study, the concept of Smarandache isotopy will be introduced and its study will
be explored in Smarandache: groupoids, quasigroups and loops just like the study of isotopy
theory was carried out for groupoids, quasigroups and loops as summarized in Bruck [1], Dene
and Keedwell [4], Pflugfelder [11].

§2. Definitions and notations

Definition 2.1. Let L be a non-empty set. Define a binary operation (·) on L : If
x ·y ∈ L ∀ x, y ∈ L, (L, ·) is called a groupoid. If the system of equations ; a ·x = b and y ·a = b

have unique solutions for x and y respectively, then (L, ·) is called a quasigroup. Furthermore, if
there exists a unique element e ∈ L called the identity element such that ∀ x ∈ L, x·e = e·x = x,
(L, ·) is called a loop.

If there exists at least a non-empty and non-trivial subset M of a groupoid(quasigroup
or semigroup or loop) L such that (M, ·) is a non-trivial subsemigroup(subgroup or subgroup
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or subgroup) of (L, ·), then L is called a Smarandache: groupoid(S-groupoid)
(
quasigroup(S-

quasigroup) or semigroup(S-semigroup) or loop(S-loop)
)

with Smarandache: subsemigroup(S-

subsemigroup)
(
subgroup(S-subgroup) or subgroup(S-subgroup) or subgroup(S-subgroup)

)
M .

Let (G, ·) be a quasigroup(loop). The bijection Lx : G → G defined as yLx = x·y ∀ x, y ∈ G

is called a left translation(multiplication) of G while the bijection Rx : G → G defined as
yRx = y · x ∀ x, y ∈ G is called a right translation(multiplication) of G.

The set SY M(L, ·) = SY M(L) of all bijections in a groupoid (L, ·) forms a group called
the permutation(symmetric) group of the groupoid (L, ·).

Definition 2.2. If (L, ·) and (G, ◦) are two distinct groupoids, then the triple (U, V,W ) :
(L, ·) → (G, ◦) such that U, V,W : L → G are bijections is called an isotopism if and only if

xU ◦ yV = (x · y)W ∀ x, y ∈ L.

So we call L and G groupoid isotopes. If L = G and W = I(identity mapping) then (U, V, I)
is called a principal isotopism, so we call G a principal isotope of L. But if in addition G is a
quasigroup such that for some f, g ∈ G, U = Rg and V = Lf , then (Rg, Lf , I) : (G, ·) → (G, ◦)
is called an f, g-principal isotopism while (G, ·) and (G, ◦) are called quasigroup isotopes.

If U = V = W , then U is called an isomorphism, hence we write (L, ·) ∼= (G, ◦). A loop
(L, ·) is called a G-loop if and only if (L, ·) ∼= (G, ◦) for all loop isotopes (G, ◦) of (L, ·).

Now, if (L, ·) and (G, ◦) are S-groupoids with S-subsemigroups L′ and G′ respectively such
that (G′)A = L′, where A ∈ {U, V,W}, then the isotopism (U, V,W ) : (L, ·) → (G, ◦) is called
a Smarandache isotopism(S-isotopism). Consequently, if W = I the triple (U, V, I) is called a
Smarandache principal isotopism. But if in addition G is a S-quasigroup with S-subgroup H ′

such that for some f, g ∈ H, U = Rg and V = Lf , and (Rg, Lf , I) : (G, ·) → (G, ◦) is an
isotopism, then the triple is called a Smarandache f, g-principal isotopism while f and g are
called Smarandache elements(S-elements).

Thus, if U = V = W , then U is called a Smarandache isomorphism, hence we write (L, ·) %
(G, ◦). An S-loop (L, ·) is called a G-Smarandache loop(GS-loop) if and only if (L, ·) % (G, ◦)
for all loop isotopes(or particularly all S-loop isotopes) (G, ◦) of (L, ·).

Example 2.1. The systems (L, ·) and (L, ∗), L = {0, 1, 2, 3, 4} with the multiplication
tables below are S-quasigroups with S-subgroups (L′, ·) and (L′′, ∗) respectively, L′ = {0, 1}
and L′′ = {1, 2}. (L, ·) is taken from Example 2.2 of [10]. The triple (U, V,W ) such that

U =


 0 1 2 3 4

1 2 3 4 0


 , V =


 0 1 2 3 4

1 2 4 0 3


 and W =


 0 1 2 3 4

1 2 0 4 3




are permutations on L, is an S-isotopism of (L, ·) onto (L, ∗). Notice that A(L′) = L′′ for all
A ∈ {U, V,W} and U, V,W : L′ → L′′ are all bijcetions.
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· 0 1 2 3 4

0 0 1 3 4 2

1 1 0 2 3 4

2 3 4 1 2 0

3 4 2 0 1 3

4 2 3 4 0 1

∗ 0 1 2 3 4

0 1 0 4 2 3

1 3 1 2 0 4

2 4 2 1 3 0

3 0 4 3 1 2

4 2 3 0 4 1

Example 2.2. According to Example 4.2.2 of [15], the system (Z6,×6) i.e the set L = Z6

under multiplication modulo 6 is an S-semigroup with S-subgroups (L′,×6) and (L′′,×6), L′ =
{2, 4} and L′′ = {1, 5}. This can be deduced from its multiplication table, below. The triple
(U, V,W ) such that

U =


 0 1 2 3 4 5

4 3 5 1 2 0


 , V =


 0 1 2 3 4 5

1 3 2 4 5 0


 and W =


 0 1 2 3 4 5

1 0 5 4 2 3




are permutations on L, is an S-isotopism of (Z6,×6) unto an S-semigroup (Z6, ∗) with S-
subgroups (L′′′, ∗) and (L′′′′, ∗), L′′′ = {2, 5} and L′′′′ = {0, 3} as shown in the second table
below. Notice that A(L′) = L′′′ and A(L′′) = L′′′′ for all A ∈ {U, V,W} and U, V,W : L′ → L′′′

and U, V,W : L′′ → L′′′′ are all bijcetions.

×6 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

∗ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 4 1 1 4 4 1

2 5 1 5 2 1 2

3 3 1 5 0 4 2

4 1 1 1 1 1 1

5 2 1 2 5 1 5

Remark 2.1. Taking careful look at Definition 2.2 and comparing it with Definition
4.4.1[12], it will be observed that the author did not allow the component bijections U ,V and
W in (U, V,W ) to act on the whole S-loop L but only on the S-subloop(S-subgroup) L′. We
feel this is necessary to adjust here so that the set L− L′ is not out of the study. Apart from
this, our adjustment here will allow the study of Smarandache isotopy to be explorable. There-
fore, the S-isotopism and S-isomorphism here are clearly special types of relations(isotopism
and isomorphism) on the whole domain into the whole co-domain but those of Vasantha Kan-
dasamy [12] only take care of the structure of the elements in the S-subloop and not the S-loop.
Nevertheless, we do not fault her study for we think she defined them to apply them to some
life problems as an applied algebraist.
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§3. Smarandache Isotopy and Isomorphy classes

Theorem 3.1. Let G =
{(

Gω, ◦ω

)}
ω∈Ω

be a set of distinct S-groupoids with a corre-

sponding set of S-subsemigroups H =
{(

Hω, ◦ω

)}
ω∈Ω

. Define a relation ∼ on G such that for

all
(
Gωi

, ◦ωi

)
,
(
Gωj

, ◦ωj

) ∈ G, where ωi, ωj ∈ Ω,

(
Gωi

, ◦ωi

)
∼

(
Gωj

, ◦ωj

) ⇐⇒ (
Gωi

, ◦ωi

)
and

(
Gωj

, ◦ωj

)
are S-isotopic.

Then ∼ is an equivalence relation on G.
Proof. Let

(
Gωi , ◦ωi

)
,
(
Gωj , ◦ωj

)
,

(
Gωk

, ◦ωk

)
,∈ G, where ωi, ωj , ωk ∈ Ω.

Reflexivity If I : Gωi
→ Gωi

is the identity mapping, then

xI ◦ωi
yI = (x ◦ωi

y)I ∀ x, y ∈ Gωi
=⇒ the triple (I, I, I) :

(
Gωi

, ◦ωi

) → (
Gωi

, ◦ωi

)

is an S-isotopism since
(
Hωi

)
I = Hωi ∀ ωi ∈ Ω. In fact, it can be simply deduced that

every S-groupoid is S-isomorphic to itself.

Symmetry Let
(
Gωi

, ◦ωi

)
∼

(
Gωj

, ◦ωj

)
. Then there exist bijections

U, V,W :
(
Gωi

, ◦ωi

) −→ (
Gωj

, ◦ωj

)
such that

(
Hωi

)
A = Hωj

∀ A ∈ {U, V,W}

so that the triple
α = (U, V,W ) :

(
Gωi , ◦ωi

) −→ (
Gωj , ◦ωj

)

is an isotopism. Since each of U, V,W is bijective, then their inverses

U−1, V −1,W−1 :
(
Gωj

, ◦ωj

) −→ (
Gωi

, ◦ωi

)

are bijective. In fact,
(
Hωj

)
A−1 = Hωi

∀ A ∈ {U, V,W} since A is bijective so that the
triple

α−1 = (U−1, V −1,W−1) :
(
Gωj

, ◦ωj

) −→ (
Gωi

, ◦ωi

)

is an isotopism. Thus,
(
Gωj , ◦ωj

)
∼

(
Gωi , ◦ωi

)
.

Transitivity Let
(
Gωi , ◦ωi

)
∼

(
Gωj , ◦ωj

)
and

(
Gωj , ◦ωj

)
∼

(
Gωk

, ◦ωk

)
. Then there exist

bijections

U1, V1,W1 :
(
Gωi

, ◦ωi

) −→ (
Gωj

, ◦ωj

)
and U2, V2,W2 :

(
Gωj

, ◦ωj

) −→ (
Gωk

, ◦ωk

)

such that
(
Hωi

)
A = Hωj

∀ A ∈ {U1, V1,W1}
and

(
Hωj

)
B = Hωk

∀ B ∈ {U2, V2,W2} so that the triples

α1 = (U1, V1,W1) :
(
Gωi , ◦ωi

) −→ (
Gωj , ◦ωj

)
and

α2 = (U2, V2,W2) :
(
Gωj

, ◦ωj

) −→ (
Gωk

, ◦ωk

)

are isotopisms. Since each of Ui, Vi,Wi, i = 1, 2, is bijective, then

U3 = U1U2, V3 = V1V2,W3 = W1W2 :
(
Gωi

, ◦ωi

) −→ (
Gωk

, ◦ωk

)
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are bijections such that
(
Hωi

)
A3 =

(
Hωi

)
A1A2 =

(
Hωj

)
A2 = Hωk

so that the triple

α3 = α1α2 = (U3, V3,W3) :
(
Gωi , ◦ωi

) −→ (
Gωk

, ◦ωk

)

is an isotopism. Thus,
(
Gωi

, ◦ωi

)
∼

(
Gωk

, ◦ωk

)
.

Remark 3.1. As a follow up to Theorem 3.1, the elements of the set G/ ∼ will be referred
to as Smarandache isotopy classes(S-isotopy classes). Similarly, if ∼ meant ”S-isomorphism” in
Theorem 3.1, then the elements of G/ ∼ will be referred to as Smarandache isomorphy classes(S-
isomorphy classes). Just like isotopy has an advantage over isomorphy in the classification of
loops, so also S-isotopy will have advantage over S-isomorphy in the classification of S-loops.

Corollary 3.1. Let Ln, SLn and NSLn be the sets of; all finite loops of order n; all finite
S-loops of order n and all finite non S-loops of order n respectively.

1. If An
i and Bn

i represent the isomorphy class of Ln and the S-isomorphy class of SLn

respectively, then
(a) |SLn|+ |NSLn| = |Ln|;

(i) |SL5|+ |NSL5| = 56,
(ii) |SL6|+ |NSL6| = 9, 408
(iii) |SL7|+ |NSL7| = 16, 942, 080.

(b) |NSLn| =
∑

i=1

|An
i | −

∑

i=1

|Bn
i |;

(i) |NSL5| =
6∑

i=1

|A5
i | −

∑

i=1

|B5
i |,

(ii) |NSL6| =
109∑

i=1

|A6
i | −

∑

i=1

|B6
i |

(iii) |NSL7| =
23,746∑

i=1

|A7
i | −

∑

i=1

|B7
i |.

2. If An
i and Bn

i represent the isotopy class of Ln and the S-isotopy class of SLn respec-
tively, then

|NSLn| =
∑

i=1

|An
i | −

∑

i=1

|Bn
i |;

(i) |NSL5| =
2∑

i=1

|A5
i | −

∑

i=1

|B5
i |,

(ii) |NSL6| =
22∑

i=1

|A6
i | −

∑

i=1

|B6
i | and

(iii) |NSL7| =
564∑

i=1

|A7
i | −

∑

i=1

|B7
i |.

Proof. An S-loop is an S-groupoid. Thus by Theorem 3.1, we have S-isomorphy classes and
S-isotopy classes. Recall that |Ln| = |SLn|+ |NSLn| − |SLn

⋂NSLn| but SLn

⋂NSLn = ∅
so |Ln| = |SLn| + |NSLn|. As stated and shown in [11], [15], [2] and [9], the facts in Table 1
are true where n is the order of a finite loop. Hence the claims follow.

Question 3.1. How many S-loops are in the family Ln? That is, what is |SLn| or |NSLn|.
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Theorem 3.2. Let (G, ·) be a finite S-groupoid of order n with a finite S-subsemigroup
(H, ·) of order m. Also, let

ISOT (G, ·), SISOT (G, ·) and NSISOT (G, ·)

be the sets of all isotopisms, S-isotopisms and non S-isotopisms of (G, ·). Then,

ISOT (G, ·) is a group and SISOT (G, ·) ≤ ISOT (G, ·).

Furthermore:

1. |ISOT (G, ·)| = (n!)3;

2. |SISOT (G, ·)| = (m!)3;

3. |NSISOT (G, ·)| = (n!)3 − (m!)3.

Proof.

1. This has been shown to be true in [Theorem 4.1.1, [4]].

2. An S-isotopism is an isotopism. So, SISOT (G, ·) ⊂ ISOT (G, ·). Thus, we need to just
verify the axioms of a group to show that SISOT (G, ·) ≤ ISOT (G, ·). These can be
done using the proofs of reflexivity, symmetry and transitivity in Theorem 3.1 as guides.
For all triples

α ∈ SISOT (G, ·) such that α = (U, V,W ) : (G, ·) −→ (G, ◦),

where (G, ·) and (G, ◦) are S-groupoids with S-subgroups (H, ·) and (K, ◦) respectively,
we can set

U ′ := U |H , V ′ := V |H and W ′ := W |H since A(H) = K ∀ A ∈ {U, V,W},

so that SISOT (H, ·) = {(U ′, V ′,W ′)}. This is possible because of the following argu-
ments.

Let

X =
{

f ′ := f |H
∣∣∣ f : G −→ G, f : H −→ K is bijective and f(H) = K

}
.

Let
SY M(H, K) = {bijections from H unto K}.

n 5 6 7

|Ln| 56 9, 408 16, 942, 080

{An
i }k

i=1 k = 6 k = 109 k = 23, 746

{An
i }m

i=1 m = 2 m = 22 m = 564

Table 1: Enumeration of Isomorphy and Isotopy classes of finite loops of small order
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By definition, it is easy to see that X ⊆ SY M(H, K). Now, for all U ∈ SY M(H, K),
define U : Hc −→ Kc so that U : G −→ G is a bijection since |H| = |K| implies
|Hc| = |Kc|. Thus, SY M(H, K) ⊆ X so that SY M(H, K) = X.

Given that |H| = m, then it follows from (1) that

|ISOT (H, ·)| = (m!)3 so that |SISOT (G, ·)| = (m!)3 since SY M(H, K) = X.

3.
NSISOT (G, ·) =

(SISOT (G, ·))c
.

So, the identity isotopism

(I, I, I) 6∈ NSISOT (G, ·), hence NSISOT (G, ·) � ISOT (G, ·).

Furthermore,
|NSISOT (G, ·)| = (n!)3 − (m!)3.

Corollary 3.2. Let (G, ·) be a finite S-groupoid of order n with an S-subsemigroup (H, ·).
If ISOT (G, ·) is the group of all isotopisms of (G, ·) and Sn is the symmetric group of degree
n, then

ISOT (G, ·) % Sn × Sn × Sn.

Proof. As concluded in [Corollary 1, [4]], ISOT (G, ·) ∼= Sn × Sn × Sn. Let PISOT (G, ·)
be the set of all principal isotopisms on (G, ·). PISOT (G, ·) is an S-subgroup in ISOT (G, ·)
while Sn × Sn × {I} is an S-subgroup in Sn × Sn × Sn. If

Υ : ISOT (G, ·) −→ Sn × Sn × Sn is defined as

Υ
(
(A,B, I)

)
=< A, B, I > ∀ (A,B, I) ∈ ISOT (G, ·),

then
Υ

(
PISOT (G, ·)

)
= Sn × Sn × {I}. ∴ ISOT (G, ·) % Sn × Sn × Sn.

§4. Smarandache f, g-Isotopes of Smarandache loops

Theorem 4.1. Let (G, ·) and (H, ∗) be S-groupoids. If (G, ·) and (H, ∗) are S-isotopic,
then (H, ∗) is S-isomorphic to some Smarandache principal isotope (G, ◦) of (G, ·).

Proof. Since (G, ·) and (H, ∗) are S-isotopic S-groupoids with S-subsemigroups (G1, ·)
and (H1, ∗), then there exist bijections U, V,W : (G, ·) → (H, ∗) such that the triple α =
(U, V,W ) : (G, ·) → (H, ∗) is an isotopism and

(
G1

)
A = H1 ∀ A ∈ {U, V,W}. To prove

the claim of this theorem, it suffices to produce a closed binary operation ’∗’ on G, bijections
X, Y : G → G, and bijection Z : G → H so that

• the triple β = (X, Y, I) : (G, ·) → (G, ◦) is a Smarandache principal isotopism and

• Z : (G, ◦) → (H, ∗) is an S-isomorphism or the triple γ = (Z, Z, Z) : (G, ◦) → (H, ∗) is
an S-isotopism.
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Thus, we need (G, ◦) so that the commutative diagram below is true:

(G, ·)

principal isotopism

β

##GG
GG

GG
GG

G
α

isotopism
// (H, ∗)

(G, ◦)
isomorphismγ

OO

because following the proof of transitivity in Theorem 3.1, α = βγ which implies (U, V,W ) =
(XZ, Y Z, Z) and so we can make the choices; Z = W , Y = V W−1, and X = UW−1 and con-
sequently,

x · y = xUW−1 ◦ V W−1 ⇐⇒ x ◦ y = xWU−1 · yWV −1 ∀ x, y ∈ G.

Hence, (G, ◦) is a groupoid principal isotope of (G, ·) and (H, ∗) is an isomorph of (G, ◦). It
remains to show that these two relationships are Smarandache.

Note that
(
(H1)Z−1, ◦) = (G1, ◦) is a non-trivial subsemigroup in (G, ◦). Thus, (G, ◦) is

an S-groupoid. So (G, ◦) % (H, ∗). (G, ·) and (G, ◦) are Smarandache principal isotopes because
(G1)UW−1 = (H1)W−1 = (H1)Z−1 = G1 and (G1)V W−1 = (H1)W−1 = (H1)Z−1 = G1.

Corollary 4.1. Let (G, ·) be an S-groupoid with an arbitrary groupoid isotope (H, ∗).
Any such groupoid (H, ∗) is an S-groupoid if and only if all the principal isotopes of (G, ·) are
S-groupoids.

Proof. By classical result in principal isotopy [[11], III.1.4 Theorem], if (G, ·) and (H, ∗) are
isotopic groupoids, then (H, ∗) is isomorphic to some principal isotope (G, ◦) of (G, ·). Assuming
(H, ∗) is an S-groupoid then since (H, ∗) ∼= (G, ◦), (G, ◦) is an S-groupoid. Conversely, let us
assume all the principal isotopes of (G, ·) are S-groupoids. Since (H, ∗) ∼= (G, ◦), then (H, ∗) is
an S-groupoid.

Theorem 4.2. Let (G, ·) be an S-quasigroup. If (H, ∗) is an S-loop which is S-isotopic to
(G, ·), then there exist S-elements f and g so that (H, ∗) is S-isomorphic to a Smarandache f, g

principal isotope (G, ◦) of (G, ·).
Proof. An S-quasigroup and an S-loop are S-groupoids. So by Theorem 4.1, (H, ∗) is

S-isomorphic to a Smarandache principal isotope (G, ◦) of (G, ·). Let α = (U, V, I) be the
Smarandache principal isotopism of (G, ·) onto (G, ◦). Since (H, ∗) is a S-loop and (G, ◦) %
(H, ∗) implies that (G, ◦) ∼= (H, ∗), then (G, ◦) is necessarily an S-loop and consequently, (G, ◦)
has a two-sided identity element say e and an S-subgroup (G2, ◦). Let α = (U, V, I) be the
Smarandache principal isotopism of (G, ·) onto (G, ◦). Then,

xU ◦ yV = x · y ∀ x, y ∈ G ⇐⇒ x ◦ y = xU−1 · yV −1 ∀ x, y ∈ G.

So,

y = e◦y = eU−1·yV −1 = yV −1LeU−1 ∀ y ∈ G and x = x◦e = xU−1·eV −1 = xU−1ReV −1 ∀ x ∈ G.

Assign f = eU−1, g = eV −1 ∈ G2. This assignments are well defined and hence V = Lf and
U = Rg. So that α = (Rg, Lf , I) is a Smarandache f, g principal isotopism of (G, ◦) onto (G, ·).
This completes the proof.
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Corollary 4.2. Let (G, ·) be an S-quasigroup(S-loop) with an arbitrary groupoid isotope
(H, ∗). Any such groupoid (H, ∗) is an S-quasigroup(S-loop) if and only if all the principal
isotopes of (G, ·) are S-quasigroups(S-loops).

Proof. This follows immediately from Corollary 4.1, since an S-quasigroup and an S-loop
are S-groupoids.

Corollary 4.3. If (G, ·) and (H, ∗) are S-loops which are S-isotopic, then there exist S-
elements f and g so that (H, ∗) is S-isomorphic to a Smarandache f, g principal isotope (G, ◦)
of (G, ·).

Proof. An S-loop is an S-quasigroup. So the claim follows from Theorem 4.2.

§5. G-Smarandache loops

Lemma 5.1. Let (G, ·) and (H, ∗) be S-isotopic S-loops. If (G, ·) is a group, then (G, ·)
and (H, ∗) are S-isomorphic groups.

Proof. By Corollary 4.3, there exist S-elements f and g in (G, ·) so that (H, ∗) % (G, ◦)
such that (G, ◦) is a Smarandache f, g principal isotope of (G, ·).

Let us set the mapping ψ := Rf ·g = Rfg : G → G. This mapping is bijective. Now,
let us consider when ψ := Rfg : (G, ·) → (G, ◦). Since (G, ·) is associative and x ◦ y =
xR−1

g · yL−1
f ∀ x, y ∈ G, the following arguments are true.

xψ ◦ yψ = xψR−1
g · yψL−1

f = xRfgR
−1
g · yRfgL

−1
f = x · fg · g−1 · f−1 · y · fg = x · y · fg =

(x·y)Rfg = (x·y)ψ ∀ x, y ∈ G. So, (G, ·) ∼= (G, ◦). Thus, (G, ◦) is a group. If (G1, ·) and (G1, ◦)
are the S-subgroups in (G, ·) and (G, ◦), then

(
(G1, ·)

)
Rfg = (G1, ◦). Hence, (G, ·) % (G, ◦).

∴ (G, ·) % (H, ∗) and (H, ∗) is a group.
Corollary 5.1. Every group which is an S-loop is a GS-loop.
Proof. This follows immediately from Lemma 5.1 and the fact that a group is a G-loop.
Corollary 5.2. An S-loop is S-isomorphic to all its S-loop S-isotopes if and only if it is

S-isomorphic to all its Smarandache f, g principal isotopes.
Proof. Let (G, ·) be an S-loop with arbitrary S-isotope (H, ∗). Let us assume that

(G, ·) % (H, ∗). From Corollary 4.3, for any arbitrary S-isotope (H, ∗) of (G, ·), there exists a
Smarandache f, g principal isotope (G, ◦) of (G, ·) such that (H, ∗) % (G, ◦). So, (G, ·) % (G, ◦).

Conversely, let (G, ·) % (G, ◦), using the fact in Corollary 4.3 again, for any arbitrary S-
isotope (H, ∗) of (G, ·), there exists a Smarandache f, g principal isotope (G, ◦) of (G, ·) such
that (G, ◦) % (H, ∗). Therefore, (G, ·) % (H, ∗).

Corollary 5.3. A S-loop is a GS-loop if and only if it is S-isomorphic to all its Smarandache
f, g principal isotopes.

Proof. This follows by the definition of a GS-loop and Corollary 5.2.
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