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Abstract For any fixed positive integer k ≥ 2, the power k sieve is defined as following:

Starting to count on the natural numbers set at any step from 1: - delete every 2k-th numbers;

- delete, from the remaining ones, every 3k-th numbers · · · , and so on: delete, from the

remaining ones, every nk-th numbers, n = 2, 3, 4, · · · . In this paper, we study the following

two problems:

(A) Are there an infinity of primes that belong to this sequence?

(B) Are there an infinity of numbers of this sequence which are not prime?

Then we using the elementary methods to study these problems, and prove that the problem

(B) is true.
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§1. Introduction and result

For any fixed positive integer n ≥ 2, the famous F.Smarandache n-ary power sieve is
defined as following:

Starting to count on the natural numbers set at any step from 1.

-delete every n-th numbers,

-delete, from the remaining ones, every n2-th numbers, · · · , and so on: delete, from the
remaining ones, every nk-th numbers, k = 1, 2, 3, · · · . For example, if n = 2, then we call this
sieve as Binary Sieve:
1, 3, 5, 9, 11, 13, 17, 21, 25, 27, 29, 33, 35, 37, 43, 49, 51, 53, 57, 59, 65, 67, 69, 73, 75, 77,
81, 85, 89, · · · .

Simultaneously, if n = 3, then call the sieve as Trinary Sieve:
1, 2, 4, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22, 23, 25, 28, 29, 31, 32, 34, 35, 37, 38, 41, 43, 46,
47, 49, 50, · · · .

In reference [1] and [2], Professor F.Smarandache asked us to study the properties of the
n-ary power sieve sequence. At the same time, he also proposed the following two conjectures:

(a) There are an infinity of primes that belong to this sequence.

(b) There are an infinity of numbers of this sequence which are not prime.

About these two conjectures, Yi Yuan [3] had studied them, and proved that the conjecture
(b) is correct.
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In this paper, we define another sequence related the Smarandache n-ary power sieve (we
called it as the power k sieve) as follows:

Starting to count on the natural numbers set at any step from 1: - delete every 2k-th
numbers; - delete, from the remaining ones, every 3k-th numbers · · · , and so on: delete, from
the remaining ones, every nk-th numbers, n = 2, 3, 4, · · · . Then, two similar problems here
can be proposed naturally when we studying the properties of this sequence:

(A) Are there an infinity of primes that belong to the power k sieve sequence?
(B) Are there an infinity of numbers of the power k sieve sequence which are not prime?
In this paper, we use the elementary method to study these two problems, and obtain an

interesting asymptotic formula. As a corollary of our result, we solved the problem (B). That
is, we shall prove the following:

Theorem. Let k ≥ 2 be a fixed positive integer, A denotes the set of all power k sieve
sequence. Then for any real x > 1, we have the asymptotic formula

∑

n≤x
n∈A

1 = c(k) · x + O
(
x

1
k

)
,

where c(k) =
∞∏

n=2

(
1− 1

nk

)
is a positive constant, and c(2) =

1
2
.

For any real number x > 1, from the Prime Number Theorem (see reference [6]) we know
that there are at most O

( x

lnx

)
primes in the interval [1, x], so from our Theorem we know that

there are an infinity of numbers of the power k sieve sequence which are not prime. Therefore,
the problem (B) is true.

§2. Proof of the theorem

In this section, we shall complete the proof of our Theorem directly. Let k ≥ 2 be a fixed
positive integer. For any positive integer x > 1, let Uh(x) denotes the number of all remaining
ones when delete ik-th numbers (i = 2, 3, · · · , h) in the interval [1, x]. Then we have

x− x

2k
≤ U1(x) = x−

[ x

2k

]
≤ x− x

2k
+

2k − 1
2k

or

U1(x) =
(

1− 1
2k

)
· x + R1(x) with |R1(x)| ≤ 1.

U1(x)− U1(x)
3k

≤ U2(x) = U1(x)−
[
U1(x)

3k

]
≤ U1(x)− U1(x)

3k
+

3k − 1
3k

or

U2(x) =
(

1− 1
2k

)(
1− 1

3k

)
· x + R2(x) with |R2(x)| ≤ |R1(x)|+ 1 ≤ 2.

Generally, for any positive integer h ≥ 2, we have

Uh(x) =
(

1− 1
2k

)(
1− 1

3k

)
· · ·

(
1− 1

hk

)
· x + Rh(x) with |Rh(x)| ≤ h.
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Taking m =
[
x

1
k

]
, if h > m, then hk > x. So we have

∑

n≤x
n∈A

1 = Um(x) = x ·
m∏

h=1

(
1− 1

hk

)
+ Rm(x). (1)

Note that |Rm(x)| ≤ m ≤ x
1
k and

m∏

h=1

(
1− 1

hk

)
=

∞∏

h=1

(
1− 1

hk

)
+ O

(
m−(k−1)

)
=

∞∏

h=2

(
1− 1

hk

)
+ O

(
x−

k−1
k

)
.

From (1) we may immediately get the asymptotic formula

∑

n≤x
n∈A

1 = c · x + O
(
x

1
k

)
,

where c = c(k) =
∞∏

n=2

(
1− 1

nk

)
is a positive constant, and

c(2) =
∞∏

n=2

(
1− 1

n2

)
=

22 − 1
22

· 32 − 1
32

· 42 − 1
42

· · · · · · n
2 − 1
n2

· · · · · · = 1
2
.

This completes the proof of Theorem.
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