Smarandache representation and its applications

W.B.Vasantha Kandasamy ${ }^{1}$, M. Khoshnevisan ${ }^{2}$ and K.Ilanthenral ${ }^{3}$
1. Department of Mathematics, Indian Institute of Technology
Chennai-600 036, Tamil Nadu, India
2. School of Accounting, Griffith University, GBS, Gold Coast campus
Cod 9726, Australia
3. Department of Mathematics, IDE, University of Madras
Chennai, Tamil Nadu, India

Here we for the first time define Smarandache representation of finite S-bisemigroup. We know every S-bisemigroup, $S=S_{1} \cup S_{2}$ contains a bigroup $G=G_{1} \cup G_{2}$. The Smarandache representation S-bisemigroups depends on the S-bigroup G which we choose. Thus this method widens the Smarandache representations. We first define the notion of Smarandache pseudo neutrosophic bisemigroup.

Definition 1. Let $S=S_{1} \cup S_{2}$ be a neutrosophic bisemigroup. If S has only bigroup which is not a neutrosophic bigroup, then we all S a Smarandache pseudo neutrosophic bisemigroup (S-pseudo neutrosophic bisemigroup).

Example 1. Let $S=S_{1} \cup S_{2}$ where $S_{1}=Q(I) \times Q(I)$ and $S_{2}=\{2 \times 2$ matrices with entries from $Q(I)\}$ both S_{1} and S_{2} under multiplication is a semigroup. Thus S is a neutrosophic bisemigroup. Take $G=G_{1} \cup G_{2}$ where $G_{1}=\{Q \backslash(0) \times Q \backslash(0)\}$ and $G_{2}=$ \{set of all 2×2 matrices A with entries from Q such that $|A| \neq 0\} . G_{1}$ and G_{2} are groups under multiplication. So S is a pseudo Smarandache Neutrosophic bisemigroup.

Now we give the Smarandache representation of finite pseudo Smarandache neutrosophic bisemigroups.

Definition 2. Let $G=G_{1} \cup G_{2}$ be a Smarandache neutrosophic bisemigroup and $V=V_{1} \cup V_{2}$ be a bivector space. A Smarandache birepresentation of G on V is a mapping $S_{\rho}=S_{\rho}^{1} \cup S_{\rho}^{2}$ from $H_{1} \cup H_{2}\left(H_{1} \cup H_{2}\right.$ is a subbigroup of G which is not a neutrosophic bigroup) to invertible linear bitransformation on $V=V_{1} \cup V_{2}$ such that

$$
S_{\rho_{x y}}=S_{\rho_{x_{1} y_{1}}}^{1} \cup S_{\rho_{x_{2} y_{2}}}^{2}=\left(S_{\rho_{x_{1}}}^{1} \circ S_{\rho_{y_{1}}}^{1}\right) \cup\left(S_{\rho_{x_{2}}}^{2} \circ S_{\rho_{y_{2}}}^{2}\right)
$$

for all $x_{1}, y_{1} \in H_{1}$ and for all $x_{2}, y_{2} \in H_{2}, H_{1} \cup H_{2} \subset G_{1} \cup G_{2}$. Here $\mathrm{S}_{\rho_{x}}=S_{\rho_{x_{1}}}^{1} \cup S_{\rho_{x_{2}}}^{2}$ to denote the invertible linear bitransformation on $V=V_{1} \cup V_{2}$ associated to $x=x_{1} \cup x_{2}$ on $H=H_{1} \cup H_{2}$, so that we may write

$$
S_{\rho_{x}}(\nu)=S_{\rho_{x}}\left(\nu_{1} \cup \nu_{2}\right)=S_{\rho_{x_{1}}}^{1}\left(\nu_{1}\right) \cup S_{\rho_{x_{2}}}^{2}\left(\nu_{2}\right)
$$

for the image of the vector $\nu=\nu_{1} \cup \nu_{2}$ in $V=V_{1} \cup V_{2}$ under $\mathrm{S}_{\rho_{x}}=S_{\rho_{x_{1}}}^{1} \cup S_{\rho_{x_{2}}}^{2}$. As a result, we have that $\mathrm{S}_{\rho_{e}}=S_{\rho_{e_{1}}}^{1} \cup S_{\rho_{z_{2}}}^{2}=I^{1} \cup I^{2}$ denotes the identity bitransformation on $V=V_{1} \cup V_{2}$ and $\mathrm{S}_{\rho_{x}}^{-1}=S_{\rho_{x_{1}-1}}^{1} \cup S_{\rho_{x_{2}-1}}^{2}=\left(S_{\rho_{x_{1}}}^{1}\right)^{-1} \cup\left(S_{\rho_{x_{2}}}^{2}\right)^{-1}$ for all $x=x_{1} \cup x_{2} \in H_{1} \cup H_{2} \subset G_{1} \cup G_{2}=G$.

In other words a birepresentation of $H=H_{1} \cup H_{2}$ on $V=V_{1} \cup V_{2}$ is a bihomomorphism from H into $G L(V)$ i.e. (H_{1} into $\left.G L\left(V_{1}\right)\right) \cup\left(H_{2}\right.$ into $G L\left(V_{2}\right)$). The bidimension of $V=V_{1} \cup V_{2}$ is called the bidegree of the representation.

Thus depending on the number of subbigroup of the S-neutrosophic bisemigroup we have several S-birepresentations of the finite S-neutrosophic bisemigroup.

Basic example of birepresentation would be Smarandache left regular birepresentation and Smarandache right regular birepresentation over a field K defined as follows.

We take $V_{H}=V_{H_{1}} \cup V_{H_{2}}$ to be a bivector space of bifunctions on $H_{1} \cup H_{2}$ with values in K (where $H=H_{1} \cup H_{2}$ is a subbigroup of the S-neutrosophic bisemigroup where H is not a neutrosophic bigroup). For Smarandache left regular birepresentation (S-left regular biregular representative) relative to $H=H_{1} \cup H_{2}$ we define

$$
S L_{x}=S^{1} L_{x_{1}}^{1} \cup S^{2} L_{x_{2}}^{2}=\left(S^{1} \cup S^{2}\right)\left(L^{1} \cup L_{2}\right)_{x_{1} \cup x_{2}}
$$

from $V_{H_{1}} \cup V_{H_{2}} \rightarrow V_{H_{1}} \cup V_{H_{2}}$ for each $x_{1} \cup x_{2} \in H=H_{1} \cup H_{2}$ by for each $x=x_{1} \cup x_{2}$ in $H=H_{1} \cup H_{2}$ by $S L_{x}(f)(z)=f\left(x^{-1} z\right)$ for each function $f(z)$ in $V_{H}=V_{H_{1}} \cup V_{H_{2}}$ i.e. $S^{1} L_{x_{1}}^{1} f_{1}\left(z_{1}\right) \cup S^{2} L_{x_{2}}^{2} f_{2}\left(z_{2}\right)=f_{1}\left(x_{1}^{-1} z_{1}\right) \cup f_{2}\left(x_{2}^{-1} z_{2}\right)$.

For the Smarandache right regular birepresentation (S-right regular birepresentation) we define $S R_{x}=S R_{x_{1} \cup x_{2}}: V_{H_{1}} \cup V_{H_{2}} \rightarrow V_{H_{1}} \cup V_{H_{2}} ; H_{1} \cup H_{2}=H$ for each $x=x_{1} \cup x_{2} \in H_{1} \cup H_{2}$ by $S R_{x}(f)(z)=f(z x)$.

$$
S^{1} R_{x_{1}}^{1} f_{1}\left(z_{1}\right) \cup S^{2} R_{x_{2}}^{2}\left(f_{2}\left(z_{2}\right)\right)=f_{1}\left(z_{1} x_{1}\right) \cup f_{2}\left(z_{2} x_{2}\right)
$$

for each function $f_{1}\left(z_{1}\right) \cup f_{2}\left(z_{2}\right)=f(z)$ in $V_{H}=V_{H_{1}} \cup V_{H_{2}}$.
Thus if $x=x_{1} \cup x_{2}$ and $y=y_{1} \cup y_{2}$ are elements $H_{1} \cup H_{2} \subset G_{1} \cup G_{2}$.
Then

$$
\begin{aligned}
\left(S L_{x} \circ S L_{y}\right)(f(z)) & =S L_{x}\left(S L_{y}\right)(f)(z) \\
& =\left(S L_{y}(f)\right) x^{-1} z \\
& =f\left(y^{-1} x^{-1} z\right) \\
& =f_{1} \quad\left(y_{1}^{-1} x_{1}^{-1} z_{1}\right) \cup f_{2}\left(y_{2}^{-1} x_{2}^{-1} z_{2}\right) \\
& =f_{1}\left(\left(x_{1} y_{1}\right)^{-1} z_{1}\right) \cup f_{2}\left(\left(x_{2} y_{2}\right)^{-1} z_{2}\right) \\
& =S^{1} L_{x_{1} y_{1}}^{1}\left(f_{1}\right)\left(z_{1}\right) \cup S^{2} L_{x_{2} y_{2}}^{2} f_{2}\left(z_{2}\right) \\
& =\left[\left(S^{1} L_{x_{1}}^{1} \cup S^{2} L_{x_{2}}^{2}\right)\left(S^{1} L_{y_{1}}^{1} \cup S^{2} L_{y_{2}}^{2}\right)\right] f\left(z_{1} \cup z_{2}\right) \\
& =\left[\left(S^{1} L_{x_{1}}^{1} \cup S^{2} L_{x_{2}}^{2}\right) \circ\left(S^{1} L_{y_{1}}^{1} \cup S^{2} L_{y_{2}}^{2}\right)\right]\left(f_{1}\left(z_{1}\right) \cup f_{2}\left(z_{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(S R_{x} \circ S R_{y}\right)(f)(z) & =\left(S^{1} R_{x_{1}}^{1} \cup S^{2} R_{x_{2}}^{2}\right) \circ\left(S^{1} R_{y_{1}}^{1} \cup S^{2} R_{y_{2}}^{2}\right)(f)(z) \\
& =S R_{x}\left(S R_{y}(f)\right)(z) \\
& =\left(S^{1} R_{x_{1}}^{1} \cup S^{2} R_{x_{2}}^{2}\right) \circ\left(S^{1} R_{y_{1}}^{1} \cup S^{2} R_{y_{2}}^{2}\right)(f)(z) \\
& =\left(S^{1} R_{y_{1}}^{1}\left(f_{1}\right) \cup S^{2} R_{y_{2}}^{2}\left(f_{2}\right)\right)\left(z_{1} x_{1} \cup z_{2} x_{2}\right) \\
& =f_{1}\left(z_{1} x_{1} y_{1}\right) \cup f_{2}\left(z_{2} x_{2} y_{2}\right) \\
& =S^{1} R_{x_{1} y_{1}}^{1} f_{1}\left(z_{1}\right) \cup S^{2} R_{x_{2} y_{2}}^{2} f_{2}\left(z_{2}\right) \\
& =S R_{x y}(f)(z) .
\end{aligned}
$$

Thus for a given S-neutrosophic bisemigroup we will have several V 's associated with them i.e. bivector space functions on each $H_{1} \cup H_{2} \subset G_{1} \cup G_{2}, H$ a subbigroup of the S-neutrosophic bisemigroup with values from K. This study in this direction is innovative.

We have yet another Smarandache birepresentation which can be convenient is the following. For each $w=w_{1} \cup w_{2}$ in $H=H_{1} \cup H_{2}, H$ bisubgroups of the S-neutrosophic bisemigroup $G=G_{1} \cup G_{2}$.

Define a bifunction

$$
\phi_{w}(z)=\phi_{w_{1}}^{1}\left(z_{1}\right) \cup \phi_{w_{2}}^{2}\left(z_{2}\right)
$$

on $H_{1} \cup H_{2}=H$ by $\phi_{w_{1}}^{1}\left(z_{1}\right) \cup \phi_{w_{2}}^{2}\left(z_{2}\right)=1 \cup 1$, where $w=w_{1} \cup w_{2}=z=z_{1} \cup z_{2}$, $\phi_{w_{1}}^{1}\left(z_{1}\right) \cup \phi_{w_{2}}^{2}\left(z_{2}\right)=0 \cup 0$ when $z \neq w$.

Thus the functions $\phi_{w}=\phi_{w_{1}}^{1} \cup \phi_{w_{2}}^{2}$ for $w=w_{1} \cup w_{2}$ in $H=H_{1} \cup H_{2}(H \subset G)$ form a basis for the space of bifunctions on each $H=H_{1} \cup H_{2}$ contained in $G=G_{1} \cup G_{2}$.

One can check that

$$
\begin{gathered}
S L_{x}\left(\phi_{w}\right)=\left(\phi_{x w}\right) \text { i.e. } S^{1} L_{x_{1}}^{1}\left(\phi_{w_{1}}\right) \cup S^{2} L_{x_{2}}^{2}\left(\phi_{w_{2}}\right)=\phi_{x_{1} w_{1}}^{1} \cup \phi_{x_{12} w_{2}}^{2}, \\
\operatorname{SR}_{x}\left(\phi_{w}\right)=\phi_{x w} \text { i.e. } S^{1} R_{x_{1}}^{1}\left(\phi_{w_{1}}^{1}\right) \cup S^{2} R_{x_{2}}^{2}\left(\phi_{w_{2}}^{2}\right)=\phi_{x_{1} w_{1}}^{1} \cup \phi_{x_{2} w_{2}}^{2},
\end{gathered}
$$

for all $x \in H_{1} \cup H_{2} \subset G$.
Observe that

$$
\begin{aligned}
S L_{x} \circ S R_{y}= & S R_{y} \circ S L_{x} \text { i.e. }\left(S^{1} L_{x_{1}}^{1} \cup S^{2} L_{x_{2}}^{2}\right) \circ\left(S^{1} L_{y_{1}}^{1} \cup S^{2} L_{y_{2}}^{2}\right) \\
& \left(S^{1} L_{y_{1}}^{1} \cup S^{2} L_{y_{2}}^{2}\right) \circ\left(S^{1} L_{x_{1}}^{1} \cup S^{2} L_{x_{2}}^{2}\right)
\end{aligned}
$$

for all $x=x_{1} \cup x_{2}$ and $y=y_{1} \cup y_{2}$ in $G=G_{1} \cup G_{2}$.
More generally suppose we have a bihomomorphism from the bigroups $H=H_{1} \cup H_{2} \subset$ $G=G_{1} \cup G_{2}$ (G a S-neutrosophic bisemigroup) to the bigroup of permutations on a non empty finite biset. $E^{1} \cup E^{2}$. That is suppose for each x_{1} in $H_{1} \subset G_{1}$ and x_{2} in $H_{2}, H_{2} \subset G_{2}, x$ in $H_{1} \cup H_{2} \subset G_{1} \cup G_{2}$ we have a bipermutation $\pi_{x_{1}}^{1} \cup \pi_{x_{2}}^{1}$ on $E_{1} \cup E_{2}$ i.e. one to one mapping of E_{1} on to E_{1} and E_{2} onto E_{2} such that

$$
\pi_{x} \circ \pi_{y}=\pi_{x_{1}}^{1} \circ \pi_{y_{1}}^{1} \cup \pi_{x_{2}}^{2} \circ \pi_{y_{2}}^{2}, \pi e=\pi_{e_{1}}^{1} \cup \pi_{e_{2}}^{2}
$$

is the biidentity bimapping of $E_{1} \cup E_{2}$ and $\pi_{x^{-1}}=\pi_{x_{1}^{-1}}^{1} \cup \pi_{x_{2}^{-1}}^{1}$ is the inverse mapping of $\pi_{x}=\pi_{x_{1}}^{1} \cup \pi_{x_{2}}^{2}$ on $E_{1} \cup E_{2}$. Let $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ be the bivector space of K-valued bifunctions on $E_{1} \cup E_{2}$.

Then we get the Smarandache birepresentation of $H_{1} \cup H_{2}$ on $V_{H_{1}} \cup V_{H_{2}}$ by associating to each $x=x_{1} \cup x_{2}$ in $H_{1} \cup H_{2}$ the linear bimapping

$$
\pi_{x}=\pi_{x_{1}}^{1} \cup \pi_{x_{2}}^{2}: V_{H_{1}} \cup V_{H_{2}} \rightarrow V_{H_{1}} \cup V_{H_{2}}
$$

defined by
$\pi_{x}(\mathrm{f})(\mathrm{a})=\mathrm{f}\left(\pi_{x}(\mathrm{a})\right)$ i.e. $\left(\pi_{x_{1}} \cup \pi_{x_{2}}\right)\left(f^{1} \cup f^{2}\right)\left(a_{1} \cup a_{2}\right)=\mathrm{f}^{1}\left(\pi_{x_{1}}\left(a_{1}\right)\right) \cup f^{2}\left(\pi_{x_{2}}\left(a_{2}\right)\right)$ for every $f^{1}\left(a_{1}\right) \cup f^{2}\left(a_{2}\right)=f(a)$ in $V_{H_{1}} \cup V_{H_{2}}$.

This is called the Smarandache bipermutation birepresentation corresponding to the bihomomorphism $x \mapsto \pi x$ i.e. $x_{1} \mapsto \pi_{x_{1}} \cup x_{2} \mapsto \pi_{x_{2}}$ from $H=H_{1} \cup H_{2}$ to permutations on $E=E_{1} \cup E_{2}$.

It is indeed a Smarandache birepresentation for we have several E's and $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}{ }^{\prime} s$ depending on the number of proper subsets $H=H_{1} \cup H_{2}$ in $G_{1} \cup G_{2}$ (G the S-bisemigroup) which are bigroups under the operations of $G=G_{1} \cup G_{2}$ because for each $x=x_{1} \cup x_{2}$ and $y=y_{1} \cup y_{2}$ in $H=H_{1} \cup H_{2}$ and each function $f(a)=f_{1}\left(a_{1}\right) \cup f_{2}\left(a_{2}\right)$ in $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ we have

$$
\begin{aligned}
\left(\pi_{x} \circ \pi_{y}\right)(f)(a) & =\left(\pi_{x_{1}}^{1} \cup \pi_{x_{2}}^{2}\right) \circ\left(\pi_{y_{1}}^{1} \cup \pi_{y_{2}}^{2}\right)\left(f_{1} \cup f_{2}\right)\left(a_{1} \cup a_{2}\right) \\
& =\left(\pi_{x_{1}}^{1} \circ \pi_{y_{1}}^{1}\right)\left(f_{1}\right)\left(a_{1}\right) \cup\left(\pi_{x_{2}}^{2} \circ \pi_{y_{2}}^{2}\right)\left(f_{2}\right)\left(a_{2}\right) \\
& =\pi_{x_{1}}^{1}\left(\pi_{y_{1}}^{1}\left(f_{1}\right)\left(a_{1}\right)\right) \cup \pi_{x_{2}}^{2}\left(\pi_{y_{2}}^{2}\left(f_{2}\right)\left(a_{2}\right)\right) \\
& =\pi_{y_{1}}^{1}\left(f_{1}\right)\left(\pi _ { x _ { 1 } } ^ { 1 } (I ^ { 1 } (a _ { 1 })) \cup \pi _ { y _ { 2 } } ^ { 2 } (f _ { 2 }) \left(\pi_{x_{2}}^{2}\left(I^{2}\left(a_{2}\right)\right)\right.\right. \\
& =f_{1}\left(\pi _ { y _ { 1 } } ^ { 1 } 1 \left(\pi _ { x _ { 1 } } ^ { 1 } (1 (a _ { 1 })) \cup f _ { 2 } \left(\pi _ { y _ { 2 } } ^ { 2 } 1 \left(\pi_{x_{2}}^{2}\left(1\left(a_{2}\right)\right)\right.\right.\right.\right. \\
& =f_{1}\left(\pi_{\left(x_{1} y_{1}\right)}^{1} 1\left(a_{1}\right)\right) \cup f_{2}\left(\pi_{\left(x_{2} y_{2}\right)}^{2} 1\left(a_{2}\right)\right) .
\end{aligned}
$$

Alternatively for each $b=b_{1} \cup b_{2} \in E_{1} \cup E_{2}$ defined by

$$
\psi_{b}(a)=\psi_{b_{1}}^{1}\left(a_{1}\right) \cup \psi_{b_{2}}^{2}\left(a_{2}\right)
$$

be the function on $E_{1} \cup E_{2}$ defined by $\psi_{b}(a)=1$ i.e.,

$$
\psi_{b_{1}}^{1}\left(a_{1}\right) \cup \psi_{b_{2}}^{2}\left(a_{2}\right)=1 \cup 1 .
$$

When $a=b$ i.e. $a_{1} \cup b_{1}=a_{2} \cup b_{2}, \psi_{b}(a)=0$ when $a \neq b$, i.e. $\psi_{b_{1}}^{1}\left(a_{1}\right) \cup \psi_{b_{2}}^{2}\left(a_{2}\right)=0 \cup 0$ when $a_{1} \cup b_{1} \neq a_{2} \cup b_{2}$.

Then the collection of functions ψ_{b} for $b \in E_{1} \cup E_{2}$ is a basis for $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ and $\pi_{x}(\psi)=\psi_{\pi_{x}(b)} \forall x$ in H and b in E i.e.

$$
\pi_{x_{1}}\left(\psi^{1}\right) \cup \pi_{x_{2}}\left(\psi^{2}\right)=\psi_{\pi_{x_{1}\left(b_{1}\right)}}^{1} \cup \psi_{\pi_{x_{2}\left(b_{2}\right)}}^{2}
$$

for $x=x_{1} \cup x_{2}$ in $H=H_{1} \cup H_{2}$ and $b_{1} \cup b_{2}$ in $E_{1} \cup E_{2}$. This is true for each proper subset $H=H_{1} \cup H_{2}$ in the S-neutrosophic semigroup $G=G_{1} \cup G_{2}$ and the bigroup $H=H_{1} \cup H_{2}$ associated with the bipermutations of the non empty finite set $E=E_{1} \cup E_{2}$.

Next we shall discuss about Smarandache isomorphic bigroup representation. To this end we consider two bivector spaces $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ defined over the same field K and that T is a linear biisomorphism from V on to W.

Assume $\rho H=\rho^{1} H_{1} \cup \rho^{2} H_{2}$ and $\rho_{H}^{\prime}=\rho^{\prime 1} H_{1} \cup \rho^{\prime 2} H_{2}$ are Smarandache birepresentations of the subbigroup $H=H_{1} \cup H_{2}$ in $G=G_{1} \cup G_{2}$ (G a pseudo S-neutrosophic bisemigroup) on V and W respectively. To

$$
(\rho H)_{x}=\left(\rho^{\prime} H\right)_{x} \circ T \text { for all } x=x_{1} \cup x_{2} \in H=H_{1} \cup H_{2},
$$

i.e.

$$
\begin{aligned}
\left(T_{1} \cup T_{2}\right) \circ\left(\rho^{1} H_{1} \cup \rho^{2} H_{2}\right)_{x_{1} \cup x_{2}} & =T_{1}\left(\rho^{1} H_{1}\right)_{x_{1}} \cup T_{2}\left(\rho^{2} H_{2}\right)_{x_{2}} \\
& =\left(\rho^{\prime} H_{1}\right)_{x_{1}}^{1} \circ T_{1} \cup\left(\rho^{\prime} H_{2}\right)_{x_{2}}^{2} \circ T_{2},
\end{aligned}
$$

then we say $T=T_{1} \cup T_{2}$ determines a Smarandache bi-isomorphism between the birepresentation ρH and $\rho^{\prime} H$. We may also say that ρH and $\rho^{\prime} H$ are Smarandache biisomorphic S-bisemgroup birepresentations.

However it can be verified that Smarandache biisomorphic birepresentation have equal degree but the converse is not true in general.

Suppose $V=W$ be the bivector space of K-valued functions on $H=H_{1} \cup H_{2} \subset G_{1} \cup G_{2}$ and define T on $V=W$ by
$T(f)(a)=f\left(a^{-1}\right)$ i.e. $T_{1}\left(f_{1}\right)\left(a_{1}\right) \cup T_{2}\left(f_{2}\right)\left(a_{2}\right)=f_{1}\left(a_{1}^{-1}\right) \cup f_{2}\left(a_{2}^{-1}\right)$.
This is one to one linear bimapping from the space of K-valued bifunctions H_{1} on to itself and

$$
T \circ S R_{x}=S L_{x} \circ T
$$

i.e.

$$
\left(T_{1} \circ S^{1} R_{x_{1}}^{1}\right) \cup\left(T_{2} \circ S^{2} R_{x_{2}}^{2}\right)=\left(S^{1} L_{x_{1}}^{1} \circ T_{1}\right) \cup\left(S^{2} L_{x_{2}}^{2} \circ T_{2}\right),
$$

for all $x=x_{1} \cup x_{2}$ in $H=H_{1} \cup H_{2}$.
For if $f(a)$ is a bifunction on $G=G_{1} \cup G_{2}$ then

$$
\begin{aligned}
\left(T \circ S R_{x}\right)(f)(a) & =T\left(S R_{x}(f)\right)(a) \\
& =S R_{x}(f)\left(a^{-1}\right) \\
& =f\left(a^{-1} x\right) \\
& =T(f)\left(x^{-1} a\right) \\
& =S L_{x}(T(f))(a) \\
& =\left(S L_{x} \circ T\right)(f)(a) .
\end{aligned}
$$

Therefore we see that S-left and S-right birepresentations of $H=H_{1} \cup H_{2}$ are biisomorphic to each other.

Suppose now that $H=H_{1} \cup H_{2}$ is a subbigroup of the S-bisemigroup G and $\rho H=$ $\rho^{1} H_{1} \cup \rho^{2} H_{2}$ is a birepresentation of $H=H_{1} \cup H_{2}$ on the bivector space $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ over the field K and let ν_{1}, \ldots, ν_{n} be a basis of $\mathrm{V}_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$. For each $x=x_{1} \cup x_{2}$ in $H=H_{1} \cup H_{2}$
we can associate to $(\rho H)_{x}=\left(\rho^{1} H_{1}\right)_{x_{1}} \cup\left(\rho^{2} H_{2}\right)_{x_{2}}$ an invertible $n \times n$ bimatrix with entries in K using this basis we denote this bimatrix by $\left(M^{1} H_{1}\right)_{x_{1}} \cup\left(M^{2} H_{2}\right)_{x_{2}}=(M H)_{x}$ where $M=M_{1} \cup M_{2}$.

The composition rule can be rewritten as

$$
\begin{gathered}
(M H)_{x y}=(M H)_{x}(M H)_{y} \\
\left(M^{1} H_{1}\right)_{x_{1} y_{1}} \cup\left(M^{2} H_{2}\right)_{x_{2} y_{2}} \\
{\left[\left(M^{1} H_{1}\right)_{x_{1}} \cup\left(M^{2} H_{2}\right)_{x_{2}}\right]\left[\left(M^{1} H_{1}\right)_{y_{1}} \cup\left(M^{2} H_{2}\right)_{y_{2}}\right]} \\
\left(M^{1} H_{1}\right)_{x_{1}}\left(M^{1} H_{1}\right)_{y_{1}} \cup\left(M^{2} H_{2}\right)_{x_{2}}\left(M^{2} H_{2}\right)_{y_{2}},
\end{gathered}
$$

where the bimatrix product is used on the right side of the equation. We see depending on each $H=H_{1} \cup H_{2}$ we can have different bimatrices $M H=M^{1} H_{1} \cup M_{2} H_{2}$, and it need not in general be always a $n \times n$ bimatrices it can also be a $m \times m$ bimatrix $m \neq n$. A different choice of basis for $V=V_{1} \cup V_{2}$ will lead to a different mapping $x \mapsto N x$ i.e. $x_{1} \cup x_{2} \mapsto N_{x_{1}}^{1} \cup N_{x_{2}}^{2}$ from H to invertible $n \times n$ bimatrices.

However the two mappings

$$
\begin{aligned}
x & \mapsto M_{x}=M_{x_{1}}^{1} \cup M_{x_{2}}^{2} \\
x & \mapsto N_{x}=N_{x_{1}}^{1} \cup N_{x_{2}}^{2},
\end{aligned}
$$

will be called as Smarandache similar relative to the subbigroup $H=H_{1} \cup H_{2} \subset G=G_{1} \cup G_{2}$ in the sense that there is an invertible $n \times n$ bimatrix $S=S^{1} \cup S^{2}$ with entries in K such that $N_{x}=S M_{x} S^{-1}$ i.e. $N_{x_{1}}^{1} \cup N_{x_{2}}^{2}=S^{1} M_{x_{1}}^{1}\left(S^{1}\right)^{-1} \cup S^{2} M_{x_{2}}^{2}\left(S^{2}\right)^{-1}$ for all $x=x_{1} \cup x_{2} \subset$ $G=G_{1} \cup G_{2}$. It is pertinent to mention that when a different H^{\prime} is taken $H \neq H^{\prime}$ i.e. $H^{1} \cup H^{2} \neq\left(H^{\prime}\right)^{1} \cup\left(H^{\prime}\right)^{2}$ then we may have a different $m \times m$ bimatrix. Thus using a single S neutrosophic bisemigroup we have very many such bimappings depending on each $H \subset G$. On the other hand one can begin with a bimapping $x \mapsto M_{x}$ from H into invertible $n \times n$ matrices with entries in K i.e. $x_{1} \mapsto M_{x_{1}}^{1} \cup x_{2} \mapsto M_{x_{2}}^{2}$ from $H=H_{1} \cup H_{2}$ into invertible $n \times n$ matrices. Thus now one can reformulate the condition for two Smarandache birepresentations to be biisomorphic.

If one has two birepresentation of a fixed subbigroup $H=H_{1} \cup H_{2}, H$ a subbigroup of the S-neutrosophic bisemigroup G on two bivector spaces V and $W\left(V=V^{1} \cup V^{2}\right.$ and $W=W^{1} \cup W^{2}$) with the same scalar field K then these two Smarandache birepresentations are Smarandache biisomorphic if and only if the associated bimappings from $H=H_{1} \cup H_{2}$ to invertible bimatrices as above, for any choice of basis on $V=V^{1} \cup V^{2}$ and $W=W^{1} \cup W^{2}$ are bisimilar with the bisimilarity bimatrix S having entries in K.

Now we proceed on to give a brief description of Smarandache biirreducible birepresentation, Smarandache biirreducible birepresentation and Smarandache bistable representation and so on. Now we proceed on to define Smarandache bireducibility of finite S-neutrosophic bisemigroups.

Let G be a finite neutrosophic S-bisemigroup when we say G is a S-finite bisemigroup or finite S-bisemigroup we only mean all proper subset in G which are subbigroups in $G=G_{1} \cup G_{2}$ are of finite order V_{H} be a bivector space over a field K and ρH a birepresentation of H on V_{H}.

Suppose that there is a bivector space W_{H} of V_{H} such that $(\rho H)_{x} W_{H} \subseteq W_{H}$ here $W_{H}=$ $W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$ where $H=H_{1} \cup H_{2}$ and $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}, H=H_{1} \cup H_{2}, \rho H=\rho^{1} H_{1} \cup \rho^{2} H_{2}$ and $x=x_{1} \cup x_{2} \in H$ i.e. $x_{1} \in H_{1}$ and $x_{2} \in H_{2}$.

This is equivalent to saying that

$$
(\rho H)_{x}\left(W_{H}\right)=W_{H}
$$

i.e.

$$
\left[\left(\rho^{1} H_{1}\right)_{x_{1}} \cup\left(\rho^{2} H_{2}\right)_{x_{2}}\right]\left[W_{H_{1}}^{1} \cup W_{H_{2}}^{2}\right]=W_{H_{1}}^{1} \cup W_{H_{2}}^{2}
$$

for all $x=x_{1} \cup x_{2} \in H_{1} \cup H_{2}$ as $(\rho H)_{x^{-1}}=\left[(\rho H)_{x}\right]^{-1}$, i.e.

$$
\begin{gathered}
\left(\rho^{1} H_{1} \cup \rho^{2} H_{2}\right)_{\left(x_{1} \cup x_{2}\right)^{-1}}=\left[\left(\rho^{1} H_{1} \cup \rho^{2} H_{2}\right)_{\left(x_{1} \cup x_{2}\right)}\right]^{-1} \\
\left(\rho^{1} H_{1}\right)_{x_{1}^{-1}} \cup\left(\rho^{2} H_{2}\right)_{x_{2}^{-1}}=\left[\left(\rho^{1} H_{1}\right)_{x_{1}}\right]^{-1} \cup\left[\left(\rho^{2} H_{2}\right)_{x_{2}}\right]^{-1}
\end{gathered}
$$

We say $W_{H}=W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$ is Smarandache biinvariant or Smarandache bistable under the birepresentation $\rho H=\rho^{1} H_{1} \cup \rho^{2} H_{2}$.

We say the bisubspace $Z_{H}=Z_{H_{1}}^{1} \cup Z_{H_{2}}^{2}$ of $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ to be a Smarandache bicomplement of a subbispace

$$
W_{H}=W_{H_{1}}^{1} \cup W_{H_{2}}^{2} \text { if } W_{H} \cap Z_{H}=\{0\}
$$

and

$$
W_{H}+Z_{H}=V_{H} \text { i.e. }\left(W_{H_{1}}^{1} \cap Z_{H_{1}}^{1}\right) \cup\left(W_{H_{2}}^{2} \cap Z_{H_{2}}^{2}\right)=\{0\} \cup\{0\}
$$

and

$$
\left(W_{H_{1}}^{1}+Z_{H_{1}}^{1}\right) \cup\left(W_{H_{2}}^{2}+Z_{H_{2}}^{2}\right)=V_{H_{1}}^{1}+V_{H_{2}}^{2}
$$

here $W_{H_{i}}^{i}+Z_{H_{i}}^{i}(i=1,2)$ denotes the bispan of W_{H} and Z_{H} which is a subbispace of V_{H} consisting of bivectors of the form $w+z=\left(w_{1}+z_{1}\right) \cup\left(w_{2}+z_{2}\right)$ where $w \in W_{H}$ and $z \in Z_{H}$. These conditions are equivalent to saying that every bivector $\nu=\nu_{1} \cup \nu_{2} \in V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ can be written in an unique way as $w+z=\left(w_{1}+z_{1}\right) \cup\left(w_{2}+z_{2}\right), w_{i} \in W_{H_{i}}^{i}$ and $z_{i} \in Z_{H_{i}}^{i}(i=1,2)$.

Complementary bispaces always exists because of basis for a bivector subspace of a bivector space can be enlarged to a basis of a whole bivector space. If $Z_{H}=Z_{H_{1}}^{1} \cup Z_{H_{2}}^{2}$ and $W_{H}=W_{H_{1}}^{1} \cup$ $W_{H_{2}}^{2}$ are complementary subbispaces (bisubspaces) of a bivector space $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ then we get a linear bimapping $P_{H}=P_{H_{1}}^{1} \cup P_{H_{2}}^{2}$ on $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ on to $W_{H}=W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$ along $Z_{H}=Z_{H_{1}}^{1} \cup Z_{H_{2}}^{2}$ and is defined by $P_{H}(w+z) w$ for all $w \in W_{H}$ and $z \in Z_{H}$. Thus $I_{H}--P_{H}$ is the biprojection of V_{H} on to Z_{H} along W_{H} where I_{H} denotes the identity bitransformation on $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$.

Note. $\left(P_{H}\right)^{2}=\left(P_{H_{1}}^{1} \cup P_{H_{2}}^{2}\right)^{2}=\left(P_{H_{1}}^{1}\right)^{2} \cup\left(P_{H_{2}}^{2}\right)^{2}=P_{H_{1}}^{1} \cup P_{H_{2}}^{2}$, when P_{H} is a biprojection.

Conversely, if P_{H} is a linear bioperator on V_{H} such that $\left(P_{H}\right)^{2}=P_{H}$ then P_{H} is the biprojection of V_{H} on to the bisubspace of V_{H} which is the biimage of $P_{H}=P_{H_{1}}^{1} \cup P_{H_{2}}^{2}$ along the subspace of V_{H} which is the bikernel of $\rho H=\rho^{1} H_{1} \cup \rho^{2} H_{2}$.

It is important to mention here unlike usual complements using a finite bigroup we see when we used pseudo S-neutrosophic bisemigroups. The situation is very varied. For each proper subset H of $G\left(H_{1} \cup H_{2} \subset G_{1} \cup G_{2}\right)$ where H is a subbigroup of G we get several important S-bicomplements and several S-biinvariant or S-bistable or S-birepresentative of $\rho H=\rho^{1} H_{1} \cup \rho^{2} H_{2}$.

Now we proceed on to define Smarandache biirreducible birepresentation. Let G be a S finite neutrosophic bisemigroup, $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ be a bivector space over a field $K, \rho H=$ $\rho^{1} H_{1} \cup \rho^{2} H_{2}$ be a birepresentation of H on V_{H} and W_{H} is a subbispace of $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ which is invariant under $\rho H=\rho^{1} H_{1} \cup \rho^{2} H_{2}$. Here we make an assumption that the field K has characteristic 0 or K has positive characteristic and the number of elements in each $H=H^{1} \cup H^{2}$ is not divisible by the characteristic $K, H_{1} \cup H_{2} \subset G_{1} \cup G_{2}$ is a S-bisemigroup.

Let us show that there is a bisubspace $Z_{H}=Z_{H_{1}}^{1} \cup Z_{H_{2}}^{2}$ of $V_{H_{1}}^{1} \cup V_{H_{2}}^{2}=V_{H}$ such that Z_{H} is a bicomplement of $W_{H}=W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$ and Z_{H} is also biinvariant under the birepresentation ρH of H i.e. $\rho^{1} H_{1} \cup \rho^{2} H_{2}$ of $H_{1} \cup H_{2}$ on $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$. To do this we start with any bicomplements $\left(Z_{H}\right)_{o}=\left(Z_{H_{1}}^{1}\right)_{o} \cup\left(Z_{H_{2}}^{2}\right)_{o}$ of $W_{H}=W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$ of $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ and let $\left(P_{H}\right)_{o}=\left(P_{H_{1}}^{1} \cup P_{H_{2}}^{2}\right)_{o}: V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2} \rightarrow V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ be the biprojection of $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ on to $W_{H_{1}}^{1} \cup W_{H_{2}}^{2}=W_{H}$ along $\left(Z_{H}\right)_{o}$. Thus $\left(P_{H}\right)_{o}=\left(P_{H_{1}}^{1} \cup P_{H_{2}}^{2}\right)_{o}$ maps V to W and $\left(P_{H}\right)_{o} w=w$ for all $w \in W$.

Let $m=m_{1} \cup m_{2}$ denotes the number of elements in $H=H_{1} \cup H_{2} \subset G_{1} \cup G_{2}$ i.e. $\left|H_{i}\right|=m_{i}(i=1,2)$. Define a linear bimapping

$$
P_{H}: V_{H} \quad \rightarrow V_{H}
$$

i.e.

$$
P_{H_{1}}^{1} \cup P_{H_{2}}^{2}: V_{H_{1}}^{1} \cup V_{H_{2}}^{2} \rightarrow \quad V_{H_{1}}^{1} \cup V_{H_{2}}^{2}
$$

by

$$
\begin{aligned}
P_{H} & =P_{H_{1}}^{1} \cup P_{H_{2}}^{2} \\
& =\frac{1}{m_{1}} \sum_{x_{1} \in H_{1}}\left(\rho^{1} H_{1}\right)_{x_{1}} \circ\left(P_{H_{1}}^{1}\right) \circ\left(\rho^{1} H_{1}\right)_{x_{1}}^{-1} \cup \frac{1}{m_{2}} \sum_{x_{2} \in H_{2}}\left(\rho^{2} H_{2}\right)_{x_{2}} \circ\left(P_{H_{2}}^{2}\right) \circ\left(\rho^{2} H_{2}\right)_{x_{2}}^{-1},
\end{aligned}
$$

assumption on K implies that $\frac{1}{m_{i}}(i=1,2)$ makes sense as an element of K i.e. as the multiplicative inverse of a sum of m 1's in K where 1 refers to the multiplicative identity element of K. This expression defines a linear bimapping on $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ because $(\rho H)_{x}^{\prime} s$ and $\left(P_{H}\right)_{o}$ are linear bimapping.

We actually have that $P_{H}=P_{H_{1}}^{1} \cup P_{H_{2}}^{2}$ bimaps V_{H} to W_{H} i.e. $V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ to $W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$ and because the $\left(P_{H}\right)_{o}=\left(P_{H_{1}}^{1} \cup P_{H_{2}}^{2}\right)_{o}$ maps $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ to $W_{H}=W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$, and because the $\left(\rho_{H}\right)_{x}^{\prime} s\left(=\left(\rho_{H_{1}}^{1}\right)_{x_{1}} \cup\left(\rho_{H_{2}}^{2}\right)_{x_{2}}\right)$ maps $W_{H}=W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$ to $W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$. If $w \in W_{H}$ then

$$
\begin{aligned}
{\left[(\rho H)_{x}\right]^{-1} w } & =\left[\left(\rho^{1} H_{1}\right)_{x_{1}} \cup\left(\rho^{2} H_{2}\right)_{x_{2}}\right]^{-1}\left(w_{1} \cup w_{2}\right) \\
& =\left(\rho^{1} H_{1}\right)_{x_{1}}^{-1}\left(w_{1}\right) \cup\left(\rho^{2} H_{2}\right)_{x_{2}}\left(w_{2}\right) \in W_{H_{1}}^{1} \cup W_{H_{2}}^{2},
\end{aligned}
$$

for all $x=x_{1} \cup x_{2}$ in $H=H_{1} \cup H_{2} \subset G=G_{1} \cup G_{2}$ and then

$$
\begin{aligned}
\left(P_{H}\right)_{o}\left((\rho H)_{x}\right)^{-1} \omega & =\left(P_{H}\right)_{o}\left(\left(\rho^{1} H_{1}\right)_{x_{1}}\right)^{-1}\left(w_{1}\right) \cup\left(P_{H_{2}}^{2}\right)_{o}\left(\left(\rho^{2} H_{2}\right)_{x_{2}}\right)^{-1}\left(w_{2}\right) \\
& =\left(\left(\rho^{1} H_{1}\right)_{x_{1}}\right)^{-1}\left(w_{1}\right) \cup\left(\left(\rho^{2} H_{2}\right)_{x_{2}}\right)^{-1}\left(w_{2}\right)
\end{aligned}
$$

Thus we conclude that

$$
\left(P_{H}\right)(w)=w \text { i.e. }\left(P_{H_{1}}^{1}\right)\left(w_{1}\right)=w_{1}
$$

and

$$
\left(P_{H_{2}}^{2}\right)\left(w_{2}\right)=w_{2} \text { i.e. } P_{H}=P_{H_{1}}^{1} \cup P_{H_{2}}^{2},
$$

for all $w=\left(w_{1} \cup w_{2}\right)$ in $W_{H}=W_{H_{1}}^{1} \cup W_{H_{2}}^{2}$ by the very definition of P_{H}.
The definition of P_{H} also implies that

$$
(\rho H)_{y} \circ P_{H} \circ\left[(\rho H)_{y}\right]^{-1}=\mathrm{P}_{H}
$$

i.e.

$$
\left(\rho^{1} H_{1}\right)_{y_{1}} \circ P_{H_{1}}^{1} \circ\left(\left(\rho^{1} H_{1}\right)_{y_{1}}\right)^{-1} \cup\left(\rho^{2} H_{2}\right)_{y_{2}} \circ P_{H_{2}}^{1} \circ\left(\left(\rho^{2} H_{2}\right)_{y_{2}}\right)^{-1}=P_{H_{1}}^{1} \cup P_{H_{2}}^{2}
$$

for all $y \in H=H_{1} \cup H_{2}$.
The only case this does not occur is when $W_{H}=\{0\}$ i.e. $W_{H_{1}}^{1} \cup W_{H_{2}}^{2}=\{0\} \cup\{0\}$. Because $P_{H}\left(V_{H}\right) \subset W_{H}$ and $P_{H}(w)=w$ for all $w \in W_{H}=W_{H_{1}}^{1} \cup W_{H_{2}}^{2} . P_{H}=P_{H_{1}}^{1} \cup P_{H_{2}}^{2}$ is a biprojection of V_{H} onto W_{H} i.e. $P_{H_{i}}^{i}$ is a projection of $V_{H_{i}}^{i}$ onto $W_{H_{i}}^{i}, i=1,2$ along some bisubspace $Z_{H}=Z_{H_{1}}^{1} \cup Z_{H_{2}}^{2}$ of $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$. Specifically one should take $Z_{H}=$ $Z_{H_{1}}^{1} \cup Z_{H_{2}}^{2}$ to be the bikernel of $P_{H}=P_{H_{1}}^{1} \cup P_{H_{2}}^{2}$. It is easy to see that $W_{H} \cap Z_{H}=\{0\}$ i.e. $W_{H_{1}}^{1} \cap Z_{H_{1}}^{1}=\{0\}$ and $W_{H_{2}}^{2} \cap Z_{H_{2}}^{2}=\{0\}$ since $P_{H_{i}}^{i}\left(w_{i}\right)=w_{i}$ for all $w_{i} \in W_{H_{i}}^{i}, i=1,2$.

On the other hand if $\nu=\nu_{1} \cup \nu_{2}$ is any element of $V_{H}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ then we can write $\nu=\nu_{1} \cup \nu_{2}$ as $P_{H}(\nu)=P_{H_{1}}^{1}\left(\nu_{1}\right) \cup P_{H_{2}}^{2}\left(\nu_{2}\right)$ so $P_{H}(\nu)+\left(V--P_{H}(\nu)\right)$.

Thus $\nu--P_{H}(\nu)$ lies in Z_{H}, the bikernel of P_{H}. This shows that W_{H} and Z_{H} satisfies the essential bicomplement of W_{H} in V_{H}. The biinvariance of Z_{H} under the birepresentation ρH is evident.

Thus the Smarandache birepresentation ρH of H on V_{H} is biisomorphic to the direct sum of H on W_{H} and Z_{H}, that are the birestrictions of ρH to W_{H} and Z_{H}.

There can be smaller biinvariant bisubspaces within these biinvariant subbispaces so that one can repeat the process for each $H, H \subset G$. We say that the subbispaces

$$
\left(W_{H}\right)_{1},\left(W_{H}\right)_{2}, \cdots,\left(W_{H}\right)_{t}
$$

of V_{H}, i.e.

$$
\left(W_{H_{1}}^{1} \cup W_{H_{2}}^{2}\right)_{1},\left(W_{H_{1}}^{1} \cup W_{H_{2}}^{2}\right)_{2}, \cdots,\left(W_{H_{1}}^{1} \cup W_{H_{2}}^{2}\right)_{t},
$$

of $V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ form an Smarandache biindependent system related to each subbigroup $H=$ $H_{1} \cup H_{2} \subset G=G_{1} \cup G_{2}$. If $\left(W_{H}\right)_{j} \neq(0)$ for each j and if $w_{j} \in\left(W_{H}\right)_{j}, 1 \leq j \leq t$ and

$$
\sum_{j=1}^{t} w_{j}=\sum_{j=1}^{t} w_{j}^{1} \cup \sum_{j=1}^{t} w_{j}^{2}=0 \cup 0
$$

where $w_{j}=w_{j}^{1} \cup w_{j}^{2}, w_{j}^{1} \in W_{H_{1}}^{1}$ and $w_{j}^{2} \in W_{H_{2}}^{2}$ imply $w_{j}^{i}=0(i=1,2 ; j=1,2, \cdots, t)$. If in addition it spans $\left(W_{H}\right)_{1},\left(W_{H}\right)_{2}, \ldots,\left(W_{H}\right)_{t}=V_{H_{1}}^{1} \cup V_{H_{2}}^{2}=V_{H}$, then every bivector $\nu=\nu^{1} \cup \nu^{2}$ on $V_{H_{1}}^{1} \cup V_{H_{2}}^{2}$ can be written in a unique way as $\sum_{j=1}^{t} u_{j}$ with $u_{j}=u_{j}^{1} \cup u_{j}^{2} \in$ $\left(W_{H_{1}}^{1} \cup W_{H_{2}}^{2}\right)$ for each j.

Next we proceed on to give two applications to Smarandache Markov bichains and Smarandache Leontief economic bimodels.

Suppose a physical or a mathematical system is such that at any movement it can occupy one of a finite number of states when we view them as stochastic bioprocess or Markov bichains we make an assumption that the system moves with time from one state to another so that a schedule of observation times keep the states of the system at these times. But when we tackle real world problems say even for simplicity the emotions of a person it need not fall under the category of sad, cold, happy, angry, affectionate, disinterested, disgusting, many times the emotions of a person may be very unpredictable depending largely on the situation, and the mood of the person and its relation with another, so such study cannot fall under Markov chains, for at a time more than one emotion may be in a person and also such states cannot be included and given as next pair of observation, these changes and several feelings at least two at a time will largely affect the very transition bimatrix

$$
P=P_{1} \cup P_{2}=\left[p_{i j}^{1}\right] \cup\left[p_{i j}^{2}\right],
$$

with non negative entries for which each of the column sums are one and all of whose entries are positive. This has relevance as even the policy makers are humans and their view is ultimate and this rules the situation. Here it is still pertinent to note that all decisions are not always possible at times certain of the views may be indeterminate at that period of time and may change after a period of time but all our present theory have no place for the indeterminacy only the neutrosophy gives the place for the concept of indeterminacy, based on which we have built neutrosophic vector spaces, neutrosophic bivector spaces, then now the notion of Smarandache -neutrosophic bivector spaces and so on.

So to overcome the problem we have indecisive situations we give negative values and indeterminate situations we give negative values so that our transition neutrosophic bimatrices individual columns sums do not add to one and all entries may not be positive.

Thus we call the new transition neutrosophic bimatrix which is a square bimatrix which can have negative entries and I the indeterminate also falling in the set $[-1,1] \cup\{I\}$ and whose column sums can also be less than 1 and I as the Smarandache neutrosophic transition bimatrix.

Further the Smarandache neutrosophic probability bivector will be a bicolumn vector which can take entries from $[-1,1] \cup[-I, I]$ whose sum can lie in the biinterval $[-1,1] \cup[-I, I]$. The Smarandache neutrosophic probability bivectors $x^{(n)}$ for $n=0,1,2, \cdots$ are said to be the Smarandache state neutrosophic bivectors of a Smarandache neutrosophic Markov bioprocess. Clearly if P is a S-transition bimatrix of a Smarandache Markov bioprocess and $x^{(n)}=x_{1}^{\left(n_{1}\right)} \cup$ $x_{2}^{\left(n_{2}\right)}$ is the Smarandache state neutrosophic bivectors at the $n^{t h}$ pair of observation then

$$
\begin{gathered}
x^{(n+1)} \neq p x^{(n)} \\
\text { i.e. } x_{1}^{(n+1)} \cup x_{2}^{\left(n_{2}+1\right)} \neq p_{1} x_{1}^{\left(n_{1}\right)} \cup p_{2} x_{2}^{\left(n_{2}\right)}
\end{gathered}
$$

Further research in this direction is innovative and interesting.
Matrix theory has been very successful in describing the inter relation between prices outputs and demands in an economic model. Here we just discuss some simple bimodels based on the ideals of the Nobel laureate Massily Leontief. We have used not only bimodel structure based on bimatrices also we have used the factor indeterminacy. So our matrices would be only Neutrosophic bimatrices. Two types of models which we wish to discuss are the closed or input-output model and the open or production model each of which assumes some economics parameter which describe the inter relations between the industries in the economy under considerations. Using neutrosophic bimatrix theory we can combine and study the effect of price bivector. Before the basic equations of the input-output model are built we just recall the definition of fuzzy neutrosophic bimatrix. For we need this type of matrix in our bimodel.

Definition 3. Let $M_{n x m}=\left\{\left(a_{i j}\right) / a_{i j} \in K(I)\right\}$, where $K(I)$, is a neutrosophic field. We call $M_{n x m}$ to be the neutrosophic rectangular matrix.

Example 1. Let $Q(I)=\langle Q \cup I\rangle$ be the neutrosophic field.

$$
M_{4 \times 3}=\left(\begin{array}{lll}
0 & 1 & I \\
-2 & 4 I & 0 \\
1 & -I & 2 \\
3 I & 1 & 0
\end{array}\right)
$$

is the neutrosophic matrix, with entries from rationals and the indeterminacy I.
We define product of two neutrosophic matrices and the product is defined as follows: let

$$
\begin{aligned}
A= & \left(\begin{array}{lll}
-1 & 2 & -I \\
3 & I & 0
\end{array}\right)_{2 \times 3} \text { and } B=\left(\begin{array}{llll}
I & 1 & 2 & 4 \\
1 & I & 0 & 2 \\
5 & -2 & 3 I & -I
\end{array}\right)_{3 \times 4} \\
& A B=\left(\begin{array}{lllll}
-6 I+2 & -1+4 I & -2-3 I & I \\
-4 I & 3+I & 6 & 12+2 I
\end{array}\right)_{2 \times 4}
\end{aligned}
$$

(we use the fact $I^{2}=I$).
Let $M_{n \times n}=\left\{\left(a_{i j}\right) \mid\left(a_{i j}\right) \in Q(I)\right\}, M_{n \times n}$ is a neutrosophic vector space over Q and a strong neutrosophic vector space over $Q(I)$.

Now we proceed onto define the notion of fuzzy integral neutrosophic matrices and operations on them, for more about these refer [43].

Definition 4. Let $N=[0,1] \cup I$, where I is the indeterminacy. The $m \times n$ matrices $M_{m \times n}=\left\{\left(a_{i j}\right) / a_{i j} \in[0,1] \cup I\right\}$ is called the fuzzy integral neutrosophic matrices. Clearly the class of $m \times n$ matrices is contained in the class of fuzzy integral neutrosophic matrices.

Example 2. Let

$$
A=\left(\begin{array}{lll}
I & 0.1 & 0 \\
0.9 & 1 & I
\end{array}\right)
$$

A is a 2×3 integral fuzzy neutrosophic matrix.
We define operation on these matrices. An integral fuzzy neutrosophic row vector is $1 \times n$ integral fuzzy neutrosophic matrix. Similarly an integral fuzzy neutrosophic column vector is a $m \times 1$ integral fuzzy neutrosophic matrix.

Example 3. $A=(0.1,0.3,1,0,0,0.7, I, 0.002,0.01, I, 0.12)$ is a integral row vector or a 1×11, integral fuzzy neutrosophic matrix.

Example 4. $\quad B=(1,0.2,0.111, I, 0.32,0.001, I, 0,1)^{T}$ is an integral neutrosophic column vector or B is a 9×1 integral fuzzy neutrosophic matrix.

We would be using the concept of fuzzy neutrosophic column or row vector in our study.
Definition 5. Let $P=\left(p_{i j}\right)$ be a $m \times n$ integral fuzzy neutrosophic matrix and $Q=\left(q_{i j}\right)$ be a $n \times p$ integral fuzzy neutrosophic matrix. The composition map $P \bullet Q$ is defined by $R=\left(r_{i j}\right)$ which is a $m \times p$ matrix where $r_{i j}=\max _{k} \min \left(p_{i k} q_{k j}\right)$ with the assumption $\max \left(p_{i j}, I\right)=I$ and $\min \left(p_{i j}, I\right)=I$ where $p_{i j} \in[0,1] . \min (0, I)=0$ and $\max (1, I)=1$.

Example 5. Let

$$
P=\left[\begin{array}{lll}
0.3 & I & 1 \\
0 & 0.9 & 0.2 \\
0.7 & 0 & 0.4
\end{array}\right], \mathrm{Q}=(0.1, I, 0)^{T}
$$

be two integral fuzzy neutrosophic matrices.

$$
P \bullet Q=\left[\begin{array}{lll}
0.3 & I & 1 \\
0 & 0.9 & 0.2 \\
0.7 & 0 & 0.4
\end{array}\right] \bullet\left[\begin{array}{l}
0.1 \\
I \\
0
\end{array}\right]=(I, I, 0.1)
$$

Example 6. Let

$$
P=\left[\begin{array}{ll}
0 & I \\
0.3 & 1 \\
0.8 & 0.4
\end{array}\right] \text { and } Q=\left[\begin{array}{lllll}
0.1 & 0.2 & 1 & 0 & I \\
0 & 0.9 & 0.2 & 1 & 0
\end{array}\right]
$$

One can define the max-min operation for any pair of integral fuzzy neutrosophic matrices with compatible operation.

Now we proceed onto define the notion of fuzzy neutrosophic matrices.
Let $\left.N_{s}=[0,1] \cup n I / n \in(0,1]\right\}$, we call the set N_{s} to be the fuzzy neutrosophic set.
Definition 6. Let N_{s} be the fuzzy neutrosophic set. $M_{n \times m}=\left\{\left(a_{i j}\right) / a_{i j} \in N_{s}\right\}$, we call the matrices with entries from N_{s} to be the fuzzy neutrosophic matrices.

Example 7. Let $N_{s}=[0,1] \cup\{n I / n \in(0,1]\}$ be the set

$$
P=\left[\begin{array}{llll}
0 & 0.2 I & 0.31 & I \\
I & 0.01 & 0.7 I & 0 \\
0.31 I & 0.53 I & 1 & 0.1
\end{array}\right]
$$

P is a 3×4 fuzzy neutrosophic matrix.
Example 8. Let $N_{s}=[0,1] \cup\{n I / n \in(0,1]\}$ be the fuzzy neutrosophic matrix. $A=[0,0.12 I, I, 1,0.31]$ is the fuzzy neutrosophic row vector:

$$
B=\left[\begin{array}{l}
0.5 I \\
0.11 \\
I \\
0 \\
-1
\end{array}\right]
$$

is the fuzzy neutrosophic column vector.
Now we proceed on to define operations on these fuzzy neutrosophic matrices.
Let $M=\left(m_{i j}\right)$ and $N=\left(n_{i j}\right)$ be two $m \times n$ and $n \times p$ fuzzy neutrosophic matrices.

$$
M \bullet N=R=\left(r_{i j}\right)
$$

where the entries in the fuzzy neutrosophic matrices are fuzzy indeterminates i.e. the indeterminates have degrees from 0 to 1 i.e. even if some factor is an indeterminate we try to give it a degree to which it is indeterminate for instance $0.9 I$ denotes the indeterminacy rate; it is high where as 0.01 Idenotes the low indeterminacy rate. Thus neutrosophic matrices have only the notion of degrees of indeterminacy. Any other type of operations can be defined on the neutrosophic matrices and fuzzy neutrosophic matrices. The notion of these matrices have been used to define neutrosophic relational equations and fuzzy neutrosophic relational equations.

Here we give define the notion of neutrosophic bimatrix and illustrate them with examples. Also we define fuzzy neutrosophic matrices.

Definition 7. Let $A=A_{1} \cup A_{2}$, where A_{1} and A_{2} are two distinct neutrosophic matrices with entries from a neutrosophic field. Then $A=A_{1} \cup A_{2}$ is called the neutrosophic bimatrix.

It is important to note the following:
(1) If both A_{1} and A_{2} are neutrosophic matrices we call A a neutrosophic bimatrix.
(2) If only one of A_{1} or A_{2} is a neutrosophic matrix and other is not a neutrosophic matrix then we all $A=A_{1} \cup A_{2}$ as the semi neutrosophic bimatrix. (It is clear all neutrosophic bimatrices are trivially semi neutrosophic bimatrices).

It both A_{1} and A_{2} are $m \times n$ neutrosophic matrices then we call $A=A_{1} \cup A_{2}$ a $m \times n$ neutrosophic bimatrix or a rectangular neutrosophic bimatrix.

If $A=A_{1} \cup A_{2}$ be such that A_{1} and A_{2} are both $n \times n$ neutrosophic matrices then we call $A=A_{1} \cup A_{2}$ a square or a $n \times n$ neutrosophic bimatrix. If in the neutrosophic bimatrix $A=A_{1} \cup A_{2}$ both A_{1} and A_{2} are square matrices but of different order say A_{1} is a $n \times n$ matrix and A_{2} a $s \times s$ matrix then we call $A=A_{1} \cup A_{2}$ a mixed neutrosophic square bimatrix. (Similarly one can define mixed square semi neutrosophic bimatrix).

Likewise in $A=A_{1} \cup A_{2}$, if both A_{1} and A_{2} are rectangular matrices say A_{1} is a $m \times n$ matrix and A_{2} is a $p \times q$ matrix then we call $A=A_{1} \cup A_{2}$ a mixed neutrosophic rectangular bimatrix. (If $A=A_{1} \cup A_{2}$ is a semi neutrosophic bimatrix then we call A the mixed rectangular semi neutrosophic bimatrix).

Just for the sake of clarity we give some illustration.
Notation. We denote a neutrosophic bimatrix by $A_{N}=A_{1} \cup A_{2}$.
Example 9. Let

$$
A_{N}=\left[\begin{array}{lll}
0 & I & 0 \\
1 & 2 & -1 \\
3 & 2 & I
\end{array}\right] \cup\left[\begin{array}{lll}
2 & I & 1 \\
I & 0 & I \\
1 & 1 & 2
\end{array}\right]
$$

A_{N} is the 3×3 square neutrosophic bimatrix.
At times one may be interested to study the problem at hand (i.e. the present situation) and a situation at the $r^{t h}$ time period the predicted model.

All notion and concept at all times is not determinable. For at time a situation may exist for a industry that it cannot say the monetary value of the output of the $i^{t h}$ industry needed to satisfy the outside demand at one time, this notion may become an indeterminate (For instance with the advent of globalization the electronic goods manufacturing industries are facing a problem for in the Indian serenio when an exported goods is sold at a cheaper rate than manufactured Indian goods will not be sold for every one will prefer only an exported good, so in situation like this the industry faces only a indeterminacy for it cannot fully say anything about the movements of the manufactured goods in turn this will affect the $\sigma_{i j} . \sigma_{i j}$ may also tend to become an indeterminate. So to study such situation simultaneously the neutrosophic bimatrix would be ideal we may have the newly redefined production vector which we choose to call as Smarandache neutrosophic production bivector which will have its values taken from + ve value or -ve value or an indeterminacy.

So Smarandache neutrosophic Leontief open model is got by permitting.

$$
\begin{aligned}
& x \geq 0, d \geq 0, c \geq 0 \\
& x \leq 0, d \leq 0, c \leq 0
\end{aligned}
$$

and x can be I, d can take any value and c can be a neutrosophic bimatrix. We can say ($1-$ $c)^{-1} \geq 0$ productive $(1-c)^{-1}<0$ non productive or not up to satisfaction and $\left(1-c^{-1}\right)=n I$, I the indeterminacy i.e. the productivity cannot be determined i.e. one cannot say productive or non productive but cannot be determined. $c=c_{1} \cup c_{2}$ is the consumption neutrosophic bimatrix.
c_{1} at time of study and c_{2} after a stipulated time period. x, d, c can be greater than or equal to zero less than zero or can be an indeterminate.

$$
x=\left[\begin{array}{l}
x_{1}^{1} \\
\vdots \\
x_{k}^{1}
\end{array}\right] \cup\left[\begin{array}{l}
x_{1}^{2} \\
\vdots \\
x_{k}^{2}
\end{array}\right],
$$

production neutrosophic bivector at the times t_{1} and t_{2} the demand neutrosophic bivector $d=d^{1} \cup d^{2}$

$$
d=\left[\begin{array}{l}
d_{1}^{1} \\
\vdots \\
d_{k}^{1}
\end{array}\right] \cup\left[\begin{array}{l}
d_{1}^{2} \\
\vdots \\
d_{k}^{2}
\end{array}\right]
$$

at time t_{1} and t_{2} respectively. Consumption neutrosophic bimatrix $c=c_{1} \cup c_{2}$

$$
c_{1}=\left[\begin{array}{lll}
\sigma_{11}^{1} & \cdots & \sigma_{1 k}^{1} \\
\sigma_{21}^{1} & \cdots & \sigma_{2 k}^{1} \\
\vdots & & \\
\sigma_{k 1}^{1} & \cdots & \sigma_{k k}^{1}
\end{array}\right], \mathrm{c}_{2}=\left[\begin{array}{lll}
\sigma_{11}^{2} & \cdots & \sigma_{1 k}^{2} \\
\sigma_{21}^{2} & \cdots & \sigma_{2 k}^{2} \\
\vdots & & \\
\sigma_{k 1}^{2} & \cdots & \sigma_{k k}^{2}
\end{array}\right]
$$

at times t_{1} and t_{2} respectively.

$$
\begin{aligned}
& \sigma_{i 1} x_{1}+\sigma_{12} x_{2}+\ldots+\sigma_{i k} x_{k} \\
= & \left(\sigma_{i 1}^{1} x_{1}^{1}+\sigma_{i 2}^{1} x_{2}^{1}+\ldots+\sigma_{i k}^{1} x_{k}^{1}\right) \cup\left(\sigma_{i 1}^{2} x_{1}^{2}+\sigma_{i 2}^{2} x_{2}^{2}+\ldots+\sigma_{i k}^{2} x_{k}^{2}\right)
\end{aligned}
$$

is the value of the output of the $i^{t h}$ industry needed by all k industries at the time periods t_{1} and t_{2} to produce a total output specified by the production neutrosophic bivector $x=x^{1} \cup x^{2}$. Consumption neutrosophic bimatrix c is such that; production if $(1-c)^{-1}$ exists and $(1-c)^{-1} \geq$ 0, i.e. $c=c_{1} \cup c_{2}$ and $\left(1-c_{1}\right)^{-1} \cup\left(1-c_{2}\right)^{-1}$ exists and each of $\left(1-c_{1}\right)^{-1}$ and $\left(1-c_{2}\right)^{-1}$ is greater than or equal to zero. A consumption neutrosophic bimatrix c is productive if and only if there is some production bivector $x \geq 0$ such that

$$
x>c x \text { i.e. } x^{1} \cup x^{2}>c^{1} x^{1} \cup c^{2} x^{2}
$$

A consumption bimatrix c is productive if each of its birow sum is less than one. A consumption bimatrix c is productive if each of its bicolumn sums is less the one. Non productive if bivector $x<0$ such that $x<c x$.

Now quasi productive if one of $x^{1} \geq 0$ and $x^{1}>c^{1} x^{1}$ or $x^{2} \geq 0$ and $x^{1}>c^{1} x^{1}$.
Now production is indeterminate if x is indeterminate x and $c x$ are indeterminates or x is indeterminate and $c x$ is determinate. Production is quasi indeterminate if at t_{1} or $t_{2}, x^{i} \geq 0$ and $x^{i}>c^{i} x^{i}$ are indeterminates quasi non productive and indeterminate if one of $x^{i}<0$, $c^{i} x^{i}<0$ and one of x^{i} and $I^{i} x^{i}$ are indeterminate. Quasi production if one of $c^{i} x^{i}>0$ and $x^{i}>0$ and $x^{i}<0$ and $I^{i} x^{i}<0$. Thus 6 possibilities can occur at anytime of study say at times t_{1} and t_{2} for it is but very natural as in any industrial problem the occurrences of any factor like demand or production is very much dependent on the people and the government policy and other external factors.

References

[1] Herstein, I.N., Abstract Algebra, John Wiley, 1990.
[2] Jacobson, N., Lectures in Abstract Algebra, D Van Nostrand Co, Princeton, 1953.
[3] Vasantha Kandasamy, W.B., Bialgebraic structures and Smarandache bialgebraic structures, American Research Press, Rehoboth, 2003.
[4] Vasantha Kandasamy, W.B., Linear Algebra and Smarandache Linear Algebra, Bookman Publishing, 2003.
[5] Vasantha Kandasamy, W.B., F. Smarandache and Ilanthenral, K., Introduction to Linear Bialgebra, Hexis, Arizona, 2005.

