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Abstract A lucky science as defined by Smarandache is whereby the correct result to a
mathematical equation is achieved by erroneous methods ([1]). For example,
if asked 10+10, we might say 20, which happens to be correct in all positive
integer bases except for base 2, in which case the answer should have been 100.
As we probably did the sum in base 10, we have been lucky (however we would
have been unlucky in base 2). This paper questions under which circumstances
we may be lucky or unlucky.

§1. Introduction
A few more examples of lucky science in action.
In Smarandache Notions Journal 14 ([2]), an example is given of a lucky

differentiation. If g(x) = xx, then g′(x) = nxn−1, so g′(x) = nn. Then
f(x) = ex is of this form, so f ′(e) = ee, which happens to be correct, but
the method used is only valid for this example with x=e, i.e. given the vast
majority of functions, this method fails to produce the correct example.

Another example given in [2] is 16/64 = 1/4 - simply cancel the 6’s.
But this does not work for 26/76, or practically anything else.
Let a numerator is given by n1 · · ·na, and a denominator by d1 · · · db, and

A = {1, · · · , a} and B = {1, · · · , b}, and A6 is a subset of A such that ai is 6,
and similarly for B6.

Then when does the cancelling of the sixes work? More generally when
does cancelling of any given integer/integer set work? And even more gener-
ally, when does any erroneous method work?

§2. Smarandache Function
The Smarandache function S(k) is defined as the lowest value such that k

divides S(k)! ([3]).
If we glibly say S(k) = k for all k, this is our lucky method. We might

even have a ’proof’ of it! And we check that S(1) = 1, S(2) = 2, S(3) =
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3, S(4) = 4 and S(5) = 5. So we can assume our method is good, and declare
it to a bewildered professor who says ’but S(6) = 3’.

What went wrong? Our lucky method failed to be a truthful interpretation
of the question, and hence it failed. However if in testing our hypothesis we
considered only primes (every integer is a unique factorization of the primes
after all), we would be correct.

So we can define a few terms;
Let E be a mathematical problem.
Let L be a lucky method on E, and let C be a correct method on E
Let L(x) be the set of x such that L(x) equals C(x), i.e. the set of x for

which the lucky method produces the correct result, and L′(x) to be the set of
x such that L(x) does not equal C(x), i.e. the set of x for which the lucky
method fails. In the example in this section, E is the Smarandache numbers,
and L(x) = {1, 4, primes}.
Examples revisited

§3. Differentiation
The derivation given in the introduction hardly ever works. If we consider

g′(x) = nxn−1, then we have differentiated with respect to x. x here is a real
variable, and due to the normal criteria of continuity, g′ is an accepted result.

f(x) = ex is a different function to g(x), and this is the first step we make
in determining L. x is still a real variable, but now it is an exponent, and so has
been transformed, and hence behaves differently. Also, e is not just a number,
it is a function;

ex =
∞∑

k=0

xk

k!

From here we see that d/dx{xk/k!} = kxk−1/k! = (k − 1)xk−1, and so
f ′(x) = f(x) = ee.

Now f(e) = ee, and g(e) = ee, and f ′(e) = g′(e) = ee.
So L contains {e}.
But look at the region around e, i.e. between e−d and e+d for some (small)

d.

g′(e + d) = (e + d)(e + d)e+d−1 = (e + d)e+d

.
However;

f ′(e + d) = ee+d

which is greater than g′(e + d).
Similarly f ′(e− d) is always greater than g′(e− d).
So when is f ′(x) equal to g′(x)?
Answer : When ex = nxn−1, i.e. x = {e}.
So if E is determine the differential of ex, C is f , L is g, and L(x) = {e}.
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§4. Bases
The question raised in the abstract of this paper is interesting - in which

bases does a simple addition sum remain valid.
20 + 20 = 40 is true in base 5 and above, 27 + 31 = 60 is valid is base 8

only.
Let us define E as to determine whether a sum S = S1 + S2 = z is valid in

a base. C is then the usual definition of addition. L(S = z) is the set of bases
such that the sum S = z is valid.

Given any sum, base k addition is always valid - the 27 above in base 7 is
another way of writing 307 (but in base 7 the correct answer is 61).

We construct a table of 27 + 31 in the bases 2 to 10:

Base Answer

2 1110

3 212

4 130

5 113

6 102

7 61

8 60

9 59

10 59

11 59

So L(27 + 31 = 59) = {9, 10, 11, 12, · · ·}
And L(27 + 31 = z) for z greater than 59 is defined according to the table

above (e.g. L(27 + 31 = 60) = {8}).
We can easily say that if S is valid in base k and base k + 1, then it is

valid for all further bases, as in this case all the problematic carries have been
absorbed by the base.

If we let K be the lowest base that S = z is true and has no carries, we can
define L(S = z) as {K, K + 1,K + 2, · · ·}.

Let Z = z in this case, and so furthermore, for each z greater than z, L(s =
z) is either empty or a single point.

§5. Fractions
This is the hardest problem yet to analyze.
Let E be the problem of reducing a fraction to it’s simplest form. Then

C is the problem of factoring the numerator and denominator, and removing
common prime factors.

LD is defined as cancelling a set of digits D from both the numerator and
denominator, and LD(r) is the set such that the rational r is produced both by
C and by LD.

Let’s see if we can construct such a number. Let’s start with the obvious
1/2.
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We require the numerator to be twice that of the denominator. Trivially, let
D = {3, 6}, then 1[3]/2[6] cancels to 1/2, e.g. 13/26, 1333/2666 or 331/662.

But for the case of D a single integer this is impossible.
Proof. Let n be the numerator of any such fraction. Then we may gener-

alize n as;

n =
N∑

i=0
i/∈J

d10i +
∑

j∈J

10j

for some J− this holds the position of the 1’s.

m =
M∑

i=0
i/∈K

d10i + 2
∑

k∈K

10k

for some K− this holds the position of the 2’s.
We now require n/m = 1/2, or 2n = m.
Note that d must equal 6, but 6 + 6 produces a carry, and as the next com-

ponent in the sum is either 1 + 1 or 6 + 6, we end up with a 3.
Hence LD(1/2) is the empty set for |D| = 1.
So why does 16/64 work?
Potential fractions for 1/4 can be expanded as above, but we find a solution

quickly.
If (10 + d)/10d + 4 = 1/4, then 6d = 36, so d = 6.
Hence L6(1/4) contains 16/64.
General solutions to these equations is beyond the scope of this paper.

§6. Summary
Any erroneous method may produce correct answers for specific numbers.

The science of lucky sciences develops this hit-and-miss scene into a mathe-
matical system.
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