Smarandache Seminormal Subgroupoids

H.J.Siamwalla
(Abeda Inamdar Senior College, Azam Campus, Pune, India)

A.S.Muktibodh
(Shri M. Mohota College of Science, Umred Road, Nagpur, India)
E-mail: siamwalla.maths@gmail.com, amukti2000@yahoo.com

Abstract

In this paper, we define Smarandache seminormal subgroupoids. We have proved some results for finding the Smarandache seminormal subgroupoids in $Z(n)$ when n is even and n is odd.

Key Words: Groupoids, Smarandache groupoids, Smarandache seminormal subgroupoids
AMS(2010): 08A05

§1. Introduction

In [5] and [6], W.B.Kandasamy defined new classes of Smarandache groupoids using Z_{n}. In this paper we define and prove some theorems for construction of Smarandache seminormal subgroupoids according as n is even or odd.

Definition 1.1 A non-empty set of elements G is said to form a groupoid if in G is defined a binary operation called the product, denoted by $*$ such that $a * b \in G \forall a, b \in G$. We denote groupoids by $(G, *)$.

Definition 1.2 Let $(G, *)$ be a groupoid. A proper subset $H \subset G$ is a subgroupoid if $(H, *)$ is itself a groupoid.

Definition 1.3 Let S be a non-empty set. S is said to be a semigroup if on S is defined a binary operation $*$ such that
(1) for all $a, b \in S$ we have $a * b \in S$;
(2) for all $a, b, c \in S$ we have $a *(b * c)=(a * b) * c$.
$(S, *)$ is a semi-group.
Definition 1.4 A Smarandache groupoid G is a groupoid which has a proper subset S such that S under the operation of G is a semigroup.

Definition 1.5 Let $(G, *)$ be a Smarandache groupoid. A non-empty subgroupoid H of G is said

[^0]to be a Smarandache subgroupoid if H contains a proper subset K such that K is a semigroup under the operation $*$.

Definition 1.6 Let G be a Smarandache groupoid. V be a Smarandache subgroupoid of G. We say V is a Smarandache seminormal subgroupoid if $a V=V$ for all $a \in G$ or $V a=V$ for all $a \in$ G.

For example, let $(G, *)$ be groupoid given by the following table:

$*$	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
a_{0}	a_{0}	a_{3}	a_{0}	a_{3}	a_{0}	a_{3}
a_{1}	a_{2}	a_{5}	a_{2}	a_{5}	a_{2}	a_{5}
a_{2}	a_{4}	a_{1}	a_{4}	a_{1}	a_{4}	a_{1}
a_{3}	a_{0}	a_{3}	a_{0}	a_{3}	a_{0}	a_{3}
a_{4}	a_{2}	a_{5}	a_{2}	a_{5}	a_{2}	a_{5}
a_{5}	a_{4}	a_{1}	a_{4}	a_{1}	a_{4}	a_{1}

It is a Smarandache groupoid as $\left\{a_{3}\right\}$ is a semigroup. $V=\left\{a_{1}, a_{3}, a_{5}\right\}$ is a Smarandache subgroupoid, also $a V=V$. Therefore V is Smarandache seminormal subgroupoid in G.

Definition 1.7 Let $Z_{n}=\{0,1, \cdots, n-1\}, n \geqslant 3$ and $a, b \in Z_{n} \backslash\{0\}$. Define a binary operation * on Z_{n} as follows:
$a * b=t a+u b(\bmod n)$, where t, u are two distinct elements in $Z_{n} \backslash\{0\}$ and $(t, u)=1$. Here ${ }^{\prime}+{ }^{\prime}$ is the usual addition of two integers and 'ta' means the product of the two integers t and a.

Elements of Z_{n} form a groupoid with respect to the binary operation $*$. We denote these groupoid by $\left\{Z_{n}(t, u), *\right\}$ or $Z_{n}(t, u)$ for fixed integer n and varying $t, u \in Z_{n} \backslash\{0\}$ such that $(t, u)=1$. Thus we define a collection of groupoids $Z(n)$ as follows $Z(n)=\left\{\left\{Z_{n}(t, u), *\right\} \mid\right.$ for integers $t, u \in Z_{n} \backslash\{0\}$ such that $\left.(t, u)=1\right\}$.

§2. Smarandache Seminormal Subgroupoids When $n \equiv 0(\bmod 2)$

When n is even we are interested in finding Smarandache seminormal subgroupoid in $Z_{n}(t, t+1)$.
Theorem 2.1 Let $Z_{n}(t, t+1) \in Z(n)$, n is even, $n>3$ and $t=1, \cdots, n-2$. Then $Z_{n}(t, t+1)$ is Smarandache groupoid.

Proof Let $x=\frac{n}{2}$. Then

$$
\begin{aligned}
x * x & =x t+x(t+1)=2 x t+x \\
& =(2 t+1) x \equiv x \bmod n
\end{aligned}
$$

Consequently, $\{x\}$ is a semigroup in $Z_{n}(t, t+1)$. Thus $Z_{n}(t, t+1)$ is a Smarandache groupoid when n is even.

Remark In the above theorem we can also show that beside $\{n / 2\}$ the other semigroup is $\{0, n / 2\}$ in $Z_{n}(t, t+1) \in Z(n)$.

Proof If t is even, $0 * t+\frac{n}{2} *(t+1) \equiv \frac{n}{2} \bmod n, \frac{n}{2} * t+0 *(t+1) \equiv 0 \bmod n, \frac{n}{2} * t+\frac{n}{2} *(t+1) \equiv$ $\frac{n}{2} \bmod n$ and $0 * t+0 *(t+1) \equiv 0 \bmod n$. So $\left\{0, \frac{n}{2}\right\}$ is semigroup in $Z_{n}(t, t+1)$. If t is odd, $0 * t+\frac{n}{2} *(t+1) \equiv 0 \bmod n, \frac{n}{2} * t+0 *(t+1) \equiv \frac{n^{2}}{2} \bmod n, \frac{n}{2} * t+\frac{n}{2} *(t+1) \equiv \frac{n}{2} \bmod n$ and $0 * t+0 *(t+1) \equiv 0 \bmod n$. So $\left\{0, \frac{n}{2}\right\}$ is a semigroup in $Z_{n}(t, t+1)$.

Theorem 2.2 Let $n>3$ be even and $t=1, \cdots, n-2$,
(1) If $\frac{n}{2}$ is even then $A_{0}=\{0,2, \cdots, n-2\} \subseteq Z_{n}$ is Smarandache subgroupoid in $Z_{n}(t, t+$ 1) $\in Z(n)$.
(2) If $\frac{n}{2}$ is odd then $A_{1}=\{1,3, \cdots, n-1\} \subseteq Z_{n}$ is Smarandache subgroupoid in $Z_{n}(t, t+1) \in$ $Z(n)$.

Proof (1) Let $\frac{n}{2}$ is even. $\Rightarrow \frac{n}{2} \in A_{0}$. We will show that A_{0} is subgroupoid.
Let $x_{i}, x_{j} \in A_{0}$ and $x_{i} \neq x_{j}$. Then

$$
\begin{aligned}
x_{i} * x_{j} & =x_{i} t+x_{j}(t+1) \\
& =\left(x_{i}+x_{j}\right) t+x_{j} \equiv x_{k} \bmod n
\end{aligned}
$$

for some $x_{k} \in A_{0}$ as $\left(x_{i}+x_{j}\right) t+x_{j}$ is even. So $x_{i} * x_{j} \in A_{0}$. Thus A_{0} is subgroupoid in $Z_{n}(t, t+1)$.

Let $x=\frac{n}{2}$. Then

$$
\begin{aligned}
x * x & =x t+x(t+1) \\
& =(2 t+1) x \equiv x \bmod n
\end{aligned}
$$

Therefore, $\{x\}$ is a semigroup in A_{0}. Thus A_{0} is a subgroupoid in $Z_{n}(t, t+1)$.
(2) Let $\frac{n}{2}$ is odd. $\Rightarrow \frac{n}{2} \in A_{1}$. We show that A_{1} is subgroupoid.

Let $x_{i}, x_{j} \in A_{1}$ and $x_{i} \neq x_{j}$. Then

$$
\begin{aligned}
x_{i} * x_{j} & =x_{i} t+x_{j}(t+1) \\
& =\left(x_{i}+x_{j}\right) t+x_{j} \equiv x_{k} \bmod n
\end{aligned}
$$

for some $x_{k} \in A_{1}$ as $\left(x_{i}+x_{j}\right) t+x_{j}$ is odd. Therefore, $x_{i} * x_{j} \in A_{1}$. Thus A_{1} is subgroupoid in $Z_{n}(t, t+1)$.

Let $x=\frac{n}{2}$. Then

$$
\begin{aligned}
x * x & =x t+x(t+1) \\
& =(2 t+1) x \equiv x \bmod n .
\end{aligned}
$$

So $\{x\}$ is a semigroup in A_{1}. Thus A_{1} is a Smarandache subgroupoid in $Z_{n}(t, t+1)$.

Theorem 2.3 Let $n>3$ be even and $t=1, \cdots, n-2$,
(1) If $\frac{n}{2}$ is even then $A_{0}=\{0,2, \cdots, n-2\} \subseteq Z_{n}$ is Smarandache seminormal subgroupoid of $Z_{n}(t, t+1) \in Z(n)$.
(2) If $\frac{n}{2}$ is odd then $A_{1}=\{1,3, \cdots, n-1\} \subseteq Z_{n}$ is Smarandache seminormal subgroupoid of $Z_{n}(t, t+1) \in Z(n)$.

Proof By Theorem 2.1, $Z_{n}(t, t+1)$ is a Smarandache groupoid.
(1) Let $\frac{n}{2}$ is even. Then by Theorem $2.2, A_{0}=\{0,2, \cdots, n-2\}$ is Smarandache subgroupoid of $Z_{n}(t, t+1)$. Now we show that either $a A_{0}=A_{0}$ or $A_{0} a=A_{0} \forall a \in Z_{n}=\{0,1,2, \cdots, n-1\}$.

Case $1 t$ is even.
Let $a_{i} \in A_{0}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$. Then

$$
\begin{aligned}
a * a_{i} & =a t+a_{i}(t+1) \\
& \equiv a_{j} \bmod n
\end{aligned}
$$

for some $a_{j} \in A_{0}$ as $a t+a_{i}(t+1)$ is even. Therefore, $a * a_{i} \in A_{0} \forall a_{i} \in A_{0}, a A_{0}=A_{0}$. Thus, A_{0} is a Smarandache seminormal subgroupoid in $Z_{n}(t, t+1)$.

Case $2 t$ is odd.
Let $a_{i} \in A_{0}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$. Then

$$
\begin{aligned}
a_{i} * a & =a_{i} t+a(t+1) \\
& \equiv a_{j} \bmod \mathrm{n}
\end{aligned}
$$

for some $a_{j} \in A_{0}$ as $a_{i} t+a(t+1)$ is even. Therefore, $a_{i} * a \in A_{0} \forall a_{i} \in A_{0}, A_{0} a=A_{0}$. Thus A_{0} is a Smarandache seminormal subgroupoid in $Z_{n}(t, t+1)$.
(2) Let $\frac{n}{2}$ is odd. Then by Theorem $2.2, A_{1}=\{1,3,5, \cdots, n-1\}$ is Smarandache subgroupoid of $Z_{n}(t, t+1)$. Now we show that either $a A_{1}=A_{1}$ or $A_{1} a=A_{1} \forall a \in Z_{n}=$ $\{0,1,2, \cdots, n-1\}$.

Case $1 t$ is even.
Let $a_{i} \in A_{1}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$. Then

$$
\begin{aligned}
a * a_{i} & =a t+a_{i}(t+1) \\
& =\left(a+a_{i}\right) t+a_{i} \\
& \equiv a_{j} \bmod n
\end{aligned}
$$

for some $a_{j} \in A_{1}$ as $\left(a+a_{i}\right) t+a_{i}$ is odd. Therefore, $a * a_{i} \in A_{1} \forall a_{i} \in A_{1}, \therefore a A_{1}=A_{1}$. Thus A_{1} is Smarandache seminormal subgroupoid in $Z_{n}(t, t+1)$.

Case $2 t$ is odd.
Let $a_{i} \in A_{1}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$. Then

$$
\begin{aligned}
a_{i} * a & =a_{i} t+a(t+1) \\
& \equiv a_{j} \bmod \mathrm{n}
\end{aligned}
$$

for some $a_{j} \in A_{1}$ as $a_{i} t+a(t+1)$ is odd. Therefore, $a_{i} * a \in A_{1} \forall a_{i} \in A_{1}, A_{1} a=A_{1}$.
Thus A_{1} is Smarandache seminormal subgroupoid in $Z_{n}(t, t+1)$.
By the above theorem we can determine the Smarandache seminormal subgroupoid in $Z_{n}(t, t+1)$ of $Z(n)$ when n is even and $n>3$.

n	$n / 2$	t	$Z_{n}(t, t+1)$	Smarandache seminormal subgroupoid in $Z_{n}(t, t+1)$
4	2	1	$Z_{4}(1,2)$	$\{0,2\}$
		2	$Z_{4}(2,3)$	
6	3	1	$Z_{6}(1,2)$	$\{1,3,5\}$
		2	$Z_{6}(2,3)$	
		3	$Z_{6}(3,4)$	
		4	$Z_{6}(4,5)$	
8	4	1	$Z_{8}(1,2)$	$\{0,2,4,6\}$
		2	$Z_{8}(2,3)$	
		3	$Z_{8}(3,4)$	
		4	$Z_{8}(4,5)$	
		5	$Z_{8}(5,6)$	
		6	$Z_{8}(6,7)$	
10	5	1	$Z_{10}(1,2)$	$\{1,3,5,7,9\}$
		2	$Z_{10}(2,3)$	
		3	$Z_{10}(3,4)$	
		4	$Z_{10}(4,5)$	
		5	$Z_{10}(5,6)$	
		6	$Z_{10}(6,7)$	
		7	$Z_{10}(7,8)$	
		8	$Z_{10}(8,9)$	
12	6	1	$Z_{12}(1,2)$	$\{0,2,4,6,8\}$
		2	$Z_{12}(2,3)$	
		3	$Z_{12}(3,4)$	
		4	$Z_{12}(4,5)$	
		5	$Z_{12}(5,6)$	
		6	$Z_{12}(6,7)$	
		7	$Z_{12}(7,8)$	
		8	$Z_{12}(8,9)$	
		9	$Z_{12}(9,10)$	
		10	$Z_{12}(10,11)$	

§3. Smarandache Seminormal Subgroupoids Depend on t, u when $n \equiv 0(\bmod 2)$

When n is even we are interested in finding Smarandache seminormal subgroupoid in $Z_{n}(t, u) \in$ $Z(n)$ when t is even and u is odd or when t is odd and u is even.

Theorem 3.1 Let $Z_{n}(t, u) \in Z(n)$, if n is even, $n>3$ and for each $t, u \in Z_{n}$, if one is even and other is odd then $Z_{n}(t, u)$ is Smarandache groupoid.

Proof Let $x=\frac{n}{2}$. Then

$$
\begin{aligned}
x * x & =x t+x u \\
& =(t+u) x \equiv x \bmod n
\end{aligned}
$$

So $\{x\}$ is a semigroup in $Z_{n}(t, u)$. Thus $Z_{n}(t, u)$ is a Smarandache groupoid when n is even.
Remark In the above theorem we can also show that beside $\{n / 2\}$ the other semigroup is $\{0, n / 2\}$ in $Z_{n}(t, u) \in Z(n)$.

Proof If t is even and u is odd, $0 * t+\frac{n}{2} * u \equiv \frac{n}{2} \bmod n, \frac{n}{2} * t+0 * u \equiv 0 \bmod n$, $\frac{n}{2} * t+\frac{n}{2} * u \equiv \frac{n}{2} \bmod n$ and $0 * t+0 * u \equiv 0 \bmod n$. So $\left\{0, \frac{n}{2}\right\}$ is semigroup in $Z_{n}(t, u)$. If t is odd and u is even, $0 * t+\frac{n}{2} * u \equiv 0 \bmod n, \frac{n}{2} * t+0 * u \equiv \frac{n}{2} \bmod n, \frac{n}{2} * t+\frac{n}{2} * u \equiv \frac{n}{2} \bmod n$ and $0 * t+0 * u \equiv 0 \bmod n$. So $\left\{0, \frac{n}{2}\right\}$ is semigroup in $Z_{n}(t, u)$.

Theorem 3.2 Let $n>3$ be even and $t, u \in Z_{n}$.
(1) If $\frac{n}{2}$ is even then $A_{0}=\{0,2, \cdots, n-2\} \subseteq Z_{n}$ is Smarandache subgroupoid of $Z_{n}(t, u) \in$ $Z(n)$ when one of t and u is odd and other is even.
(2) If $\frac{n}{2}$ is odd then $A_{1}=\{1,3, \cdots, n-1\} \subseteq Z_{n}$ is Smarandache subgroupoid of $Z_{n}(t, u) \in$ $Z(n)$ when one of t and u is odd and other is even.

Proof (1) Let $\frac{n}{2}$ be even. $\Rightarrow \frac{n}{2} \in A_{0}$. We show that A_{0} is subgroupoid.
Let $x_{i}, x_{j} \in A_{0}$ and $x_{i} \neq x_{j}$. Then

$$
x_{i} * x_{j}=x_{i} t+x_{j} u \equiv x_{k} \bmod n
$$

for some $x_{k} \in A_{0}$ as $x_{i} t+x_{j} u$ is even. So $x_{i} * x_{j} \in A_{0}$. Thus A_{0} is a subgroupoid in $Z_{n}(t, u)$.
Let $x=\frac{n}{2}$. Then

$$
\begin{aligned}
x * x & =x t+x u \\
& =x(t+u) \equiv x \bmod n
\end{aligned}
$$

Whence, $\{x\}$ is a semigroup in A_{0}. Thus, A_{0} is a Smarandache subgroupoid in $Z_{n}(t, u)$.
(2) Let $\frac{n}{2}$ be odd. $\Rightarrow \frac{n}{2} \in A_{1}$. We show that A_{1} is subgroupoid.

Let $x_{i}, x_{j} \in A_{1}$ and $x_{i} \neq x_{j}$. Then

$$
x_{i} * x_{j}=x_{i} t+x_{j} u \equiv x_{k} \bmod n
$$

for some $x_{k} \in A_{1}$ as $x_{i}+x_{j} u$ is odd. So $x_{i} * x_{j} \in A_{1}$. Consequently, A_{1} is subgroupoid in $Z_{n}(t, u)$.

Let $x=\frac{n}{2}$. Then

$$
\begin{aligned}
x * x & =x t+x u \\
& =x(t+u) \equiv x \bmod n
\end{aligned}
$$

So $\{x\}$ is a semigroup in A_{1}. Thus A_{1} is a Smarandache subgroupoid in $Z_{n}(t, u)$.
Theorem 3.3 Let $n>3$ be even and $t=1, \cdots, n-2$.
(1) If $\frac{n}{2}$ is even then $A_{0}=\{0,2, \cdots, n-2\} \subseteq Z_{n}$ is Smarandache seminormal subgroupoid of $Z_{n}(t, u) \in Z(n)$ when one of t and u is odd and other is even;
(2) If $\frac{n}{2}$ is odd then $A_{1}=\{1,3, \cdots, n-1\} \subseteq Z_{n}$ is Smarandache seminormal subgroupoid of $Z_{n}(t, u) \in Z(n)$ when one of t and u is odd and other is even.

Proof By Theorem 3.1, $Z_{n}(t, u)$ is a Smarandache groupoid.
(1) Let $\frac{n}{2}$ is even. Then by Theorem 3.2, $A_{0}=\{0,2, \cdots, n-2\}$ is Smarandache subgroupoid of $Z_{n}(t, u)$. Now we show that either $a A_{0}=A_{0}$ or $A_{0} a=A_{0} \forall a \in Z_{n}=$ $\{0,1,2, \cdots, n-1\}$.

Case $1 t$ is even and u is odd.
Let $a_{i} \in A_{0}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$. Then

$$
\begin{aligned}
a * a_{i} & =a t+a_{i} u \\
& \equiv a_{j} \bmod n
\end{aligned}
$$

for some $a_{j} \in A_{0}$ as $a t+a_{i} u$ is even. Whence, $a * a_{i} \in A_{0} \forall a_{i} \in A_{0}, a A_{0}=A_{0}$. Thus, A_{0} is a Smarandache seminormal subgroupoid in $Z_{n}(t, u)$.

Case $2 t$ is odd and u is even.
Let $a_{i} \in A_{0}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$. Then

$$
\begin{aligned}
a_{i} * a & =a_{i} t+a u \\
& \equiv a_{j} \bmod \mathrm{n}
\end{aligned}
$$

for some $a_{j} \in A_{0}$ as $a_{i} t+a u$ is even. Therefore, $a_{i} * a \in A_{0} \forall a_{i} \in A_{0}, A_{0} a=A_{0}$. Thus, A_{0} is Smarandache seminormal subgroupoid in $Z_{n}(t, u)$.
(2) Let $\frac{n}{2}$ is odd then by Theorem 3.2 is $A_{1}=\{1,3,5, \cdots, n-1\}$ is Smarandache subgroupoid of $Z_{n}^{2}(t, u)$. We show that either $a A_{1}=A_{1}$ or $A_{1} a=A_{1} \forall a \in Z_{n}=\{0,1,2, \cdots, n-1\}$.

Case $1 t$ is even and u is odd.
Let $a_{i} \in A_{1}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$. Then

$$
\begin{aligned}
a * a_{i} & =a t+a_{i} u \\
& \equiv a_{j} \bmod n
\end{aligned}
$$

for some $a_{j} \in A_{1}$ as $a t+a_{i} u$ is odd. So, $a * a_{i} \in A_{1} \forall a_{i} \in A_{1}, \therefore a A_{1}=A_{1}$. Thus, A_{1} is a Smarandache seminormal subgroupoid in $Z_{n}(t, u)$.

Case $2 t$ is odd and u is even.
Let $a_{i} \in A_{1}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$.

$$
\begin{aligned}
a_{i} * a & =a_{i} t+a u \\
& \equiv a_{j} \bmod \mathrm{n}
\end{aligned}
$$

for some $a_{j} \in A_{1}$ as $a_{i} t+a u$ is odd. Therefore, $a_{i} * a \in A_{1} \forall a_{i} \in A_{1}, A_{1} a=A_{1}$. Thus, A_{1} is a Smarandache seminormal subgroupoid in $Z_{n}(t, u)$.

By the above theorem we can determine Smarandache seminormal subgroupoid in $Z_{n}(t, u) \in$ $Z(n)$ for $n>3$, when n is even and when one of t and u is odd and other is even.

n	$n / 2$	t	$Z_{n}(t, u)$	Smarandache seminormal subgroupoid
4	2	1	$Z_{4}(1,2)$	$\{0,2\}$
		2	$Z_{4}(2,3)$	
6	3	1	$Z_{6}(1,2), Z_{6}(1,4)$	$\{1,3,5\}$
		2	$Z_{6}(2,1), Z_{6}(2,3), Z_{6}(2,5)$	
		3	$Z_{6}(3,2), Z_{6}(3,4)$	
		4	$Z_{6}(4,1), Z_{6}(4,3), Z_{6}(4,5)$	
		5	$Z_{6}(5,2), Z_{6}(5,4)$	
8	4	1	$Z_{8}(1,2), Z_{8}(1,4), Z_{8}(1,6)$	$\{0,2,4,6\}$
		2	$\begin{gathered} Z_{8}(2,1), Z_{8}(2,3), Z_{8}(2,5), \\ Z_{8}(2,7) \end{gathered}$	
		3	$Z_{8}(3,2), Z_{8}(3,4)$	
		4	$\begin{gathered} Z_{8}(4,1), Z_{8}(4,3), Z_{8}(4,5), \\ Z_{8}(4,7) \end{gathered}$	
		5	$Z_{8}(5,2), Z_{8}(5,4), Z_{8}(5,6)$	
		6	$Z_{8}(6,1), Z_{8}(6,5), Z_{8}(6,7)$,	
		7	$Z_{8}(7,2), Z_{8}(7,4), Z_{8}(7,6)$,	

n	$n / 2$	t	$Z_{n}(t, u)$	Smarandache seminormal subgroupoid
10	5	1	$\begin{gathered} \hline Z_{10}(1,2), Z_{10}(1,4), Z_{10}(1,6), \\ Z_{10}(1,8) \end{gathered}$	\{1, 3, 5, 7, 9\}
		2	$\begin{gathered} \hline Z_{10}(2,1), Z_{10}(2,3), Z_{10}(2,5), \\ Z_{10}(2,7), Z_{10}(2,9) \end{gathered}$	
		3	$Z_{10}(3,2), Z_{10}(3,4), Z_{10}(3,8)$,	
		4	$\begin{gathered} \hline Z_{10}(4,1), Z_{10}(4,3), Z_{10}(4,5), \\ Z_{10}(4,7), Z_{10}(4,9) \end{gathered}$	
		5	$\begin{gathered} \hline Z_{10}(5,2), Z_{10}(5,4), Z_{10}(5,6), \\ Z_{10}(5,8) \end{gathered}$	
		6	$Z_{10}(6,1), Z_{10}(6,5), Z_{10}(6,7)$,	
		7	$\begin{gathered} \hline Z_{10}(7,2), Z_{10}(7,4), Z_{10}(7,6), \\ Z_{10}(7,8) \end{gathered}$	
		8	$\begin{gathered} Z_{10}(8,1), Z_{10}(8,3), Z_{10}(8,5), \\ Z_{10}(8,7), Z_{10}(8,9) \end{gathered}$	
		9	$Z_{10}(9,2), Z_{10}(9,4), Z_{10}(9,8)$	
12	6	1	$\begin{gathered} \hline Z_{12}(1,2), Z_{12}(1,4), Z_{12}(1,6), \\ Z_{12}(1,8), Z_{12}(1,10) \\ \hline \end{gathered}$	$\{0,2,4,6,8,10\}$
		2	$\begin{aligned} & Z_{12}(2,1), Z_{12}(2,3), Z_{12}(2,5), \\ & Z_{12}(2,7), Z_{12}(2,9), Z_{12}(2,11) \end{aligned}$	
		3	$\begin{gathered} Z_{12}(3,2), Z_{12}(3,4), Z_{12}(3,8), \\ Z_{12}(3,10) \end{gathered}$	
		4	$\begin{aligned} & Z_{12}(4,1), Z_{12}(4,3), Z_{12}(4,5), \\ & Z_{12}(4,7), Z_{12}(4,9), Z_{12}(4,11) \\ & \hline \end{aligned}$	
		5	$\begin{gathered} Z_{12}(5,2), Z_{12}(5,4), Z_{12}(5,6), \\ Z_{12}(5,8) \end{gathered}$	
		6	$\begin{gathered} \hline Z_{12}(6,1), Z_{12}(6,3), Z_{12}(6,5), \\ Z_{12}(6,7), Z_{12}(6,11) \end{gathered}$	
		7	$\begin{gathered} \hline Z_{12}(7,2), Z_{12}(7,4), Z_{12}(7,6), \\ Z_{12}(7,8), Z_{12}(7,10) \\ \hline \end{gathered}$	
		8	$\begin{aligned} & Z_{12}(8,1), Z_{12}(8,3), Z_{12}(8,5), \\ & Z_{12}(8,7), Z_{12}(8,9), Z_{12}(8,11) \end{aligned}$	
		9	$\begin{gathered} Z_{12}(9,2), Z_{12}(9,4), Z_{12}(9,8), \\ Z_{12}(9,10) \end{gathered}$	
		10	$\begin{gathered} \hline Z_{12}(10,1), Z_{12}(10,3), Z_{12}(10,7), \\ Z_{12}(10,9), Z_{12}(10,11) \end{gathered}$	
		11	$\begin{gathered} Z_{12}(11,2), Z_{12}(11,4), Z_{12}(11,6), \\ Z_{12}(11,8), Z_{12}(11,10) \end{gathered}$	

§4. Smarandache Seminormal Subgroupoids When $n \equiv 1(\bmod 2)$

When n is odd we are interested in finding Smarandache seminormal subgroupoid in $Z_{n}(t, u) \in$ $Z(n)$. We have proved the similiar result in [4].

Theorem 4.1 Let $Z_{n}(t, u) \in Z(n)$. If n is odd, $n>4$ and for each $t=2, \cdots, \frac{n-1}{2}$ and $u=n-(t-1)(t, u)=1$, then $Z_{n}(t, u)$ is a Smarandache groupoid.

Proof Let $x \in\{0, \cdots, n-1\}$. Then

$$
x * x=x t+x u=(n+1) x \equiv x \bmod n .
$$

So $\{x\}$ is semigroup in Z_{n}. Thus $Z_{n}(t, u)$ is a Smarandache groupoid in $Z(n)$.
Remark We note that all $\{x\}$ where $x \in\{1, \cdots, n-1\}$ are proper subsets which are semigroups in $Z_{n}(t, u)$.

Theorem 4.2 Let $n>4$ be odd and $t=2, \cdots, \frac{n-1}{2}$ and $u=n-(t-1)$ such that $(t, u)=1$ if $s=(n, t)$ or $s=(n, u)$ then $A_{k}=\{k, k+s, \cdots, k+(r-1) s\}$ for $k=0,1, \cdots, s-1$ where $r=\frac{n}{s}$ is a Smarandache subgroupoid in $Z_{n}(t, u) \in Z(n)$.

Proof Let $x_{p}, x_{q} \in A_{k}$. Then

$$
\left.x_{p} \neq x_{q} \Rightarrow \begin{array}{l}
x_{p}=k+p s \\
x_{q}=k+q s
\end{array}\right\} p, q \in\{0,1, \cdots, r-1\}
$$

Also,

$$
\begin{aligned}
x_{p} * x_{q} & =x_{p} t+x_{q} u \\
& =(k+p s) t+(k+q s)(n-(t-1)) \\
& =k(n+1)+((p-q) t+q(n+1)) s \\
& \equiv(k+l s) \bmod n \\
& \equiv x_{l} \bmod n
\end{aligned}
$$

$x_{l} \in A_{k}$ as $x_{l}=k+l s$ for some $l \in\{0,1, \cdots, r-1\}$. Whence, $x_{p} * x_{q} \in A_{k}$. Consequently, A_{k} is a subgroupoid in $Z_{n}(t, u)$. By the above remark all singleton sets are semigroup. Thus, A_{k} is a Smarandache subgroupoid.

Theorem 4.3 Let $n>4$ be odd and $t=2, \cdots, \frac{n-1}{2}$ and $u=n-(t-1)$ such that $(t, u)=1$ if $s=(n, t)$ or $s=(n, u)$ then $A_{k}=\{k, k+s, \cdots, k+(r-1) s\}$ for $k=0,1, \cdots, s-1$ where $r=\frac{n}{s}$ is a Smarandache seminormal subgroupoid in $Z_{n}(t, u) \in Z(n)$.

Proof By Theorem 4.1, $Z_{n}(t, u)$ is a Smarandache groupoid. Also by Theorem 4.2, $A_{k}=$ $\{k, k+s, \cdots, k+(r-1) s\}$ for $k=0,1, \cdots, s-1$ is Smarandache subgroupoid of $Z_{n}(t, u)$.

If $s=(n, t)$, let $x_{p} \in A_{k}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$. Then

$$
\begin{aligned}
a * x_{p} & =a t+x_{p} u \\
& =a t+(k+p s)(n-t+1) \\
& =k(n+1)+\left[(a-k) v_{1}+(p n-p t+p)\right] s \text { where } t=v_{1} s \\
& \equiv k+l s \bmod n
\end{aligned}
$$

$x_{l} \in A_{k}$ as $x_{l}=k+l s$ for some $l \in\{0,1, \cdots, r-1\}$. So, $a * x_{p} \in A_{k}, a * A_{k}=A_{k}$. Thus, A_{k} is a Smarandache seminormal subgroupoid in $Z_{n}(t, u)$.

If $s=(n, u)$, let $x_{p} \in A_{k}$ and $a \in Z_{n}=\{0,1,2, \cdots, n-1\}$. Then

$$
\begin{aligned}
x_{p} * a & =x_{p} t+a u \\
& =(k+p s)(n-u+1)+a u \\
& =k(n+1)+\left[(a-k) v_{2}+(p n-p u+p)\right] s \text { where } t=v_{2} s \\
& \equiv(k+l s) \bmod n
\end{aligned}
$$

$x_{l} \in A_{k}$ as $x_{l}=k+l s$ for some $l \in\{0,1, \cdots, r-1\}$. Therefore, $a * x_{p} \in A_{k}, a * A_{k}=A_{k}$. Thus A_{k} is a Smarandache seminormal subgroupoid in $Z_{n}(t, u)$.

By the above theorem we can determine Smarandache seminormal subgroupoid in $Z_{n}(t, u)$ when n is odd and $n>4$.

n	t	u	$Z_{n}(t, u)$	$\begin{gathered} s=(n, u) \\ \text { or } s=(n, t) \end{gathered}$	$r=n / s$	Smarandache seminormal subgroupoid in $Z_{n}(t, u)$
9	3	7	$Z_{9}(3,7)$	$3=(9,3)$	3	$A_{0}=\{0,3,6\}$
						$A_{1}=\{1,4,7\}$
						$A_{2}=\{2,5,8\}$
15	3	13	$Z_{15}(3,13)$	$3=(15,3)$	5	$A_{0}=\{0,3,6,9,12\}$
						$A_{1}=\{1,4,7,10,13\}$
						$A_{2}=\{2,5,8,11,14\}$
	5	11	$Z_{15}(5,11)$	$5=(15,5)$	3	$A_{0}=\{0,5,10\}$
						$A_{1}=\{1,6,11\}$
						$A_{2}=\{2,7,12\}$
						$A_{3}=\{3,8,13\}$
						$A_{4}=\{4,9,14\}$
	7	9	$Z_{15}(7,9)$	$3=(15,9)$	5	$A_{0}=\{0,3,6,9,12\}$
						$A_{1}=\{1,4,7,10,13\}$
						$A_{2}=\{2,5,8,11,14\}$

n	t	u	$Z_{n}(t, u)$	$\begin{gathered} s=(n, u) \\ \text { or } s=(n, t) \end{gathered}$	$r=n / s$	Smarandache seminormal subgroupoid in $Z_{n}(t, u)$
21	3	19	$Z_{21}(3,19)$	$3=(21,3)$	7	$A_{0}=\{0,3,6,9,12,15,18\}$
						$A_{1}=\{1,4,7,10,13,16,19\}$
						$A_{2}=\{2,5,8,11,14,17,20\}$
	7	15	$Z_{21}(7,15)$	$7=(21,7)$	3	$A_{0}=\{0,7,14\}$
						$A_{1}=\{1,8,15\}$
						$A_{2}=\{2,9,16\}$
						$A_{3}=\{3,10,17\}$
						$A_{4}=\{4,11,18\}$
						$A_{5}=\{5,12,19\}$
						$A_{6}=\{6,13,14\}$
				$3=(21,15)$	7	$A_{0}=\{0,3,6,9,12,15,18\}$
						$A_{1}=\{1,4,7,10,13,16,19\}$
						$A_{2}=\{2,5,8,11,14,17,20\}$
	9	13	$Z_{21}(9,13)$	$3=(21,9)$	7	$A_{0}=\{0,3,6,9,12,15,18\}$
						$A_{1}=\{1,4,7,10,13,16,19\}$
						$A_{2}=\{2,5,8,11,14,17,20\}$

References

[1] G.Birkhoff and S.S.Maclane, A Brief Survey of Modern Algebra, New York, U.S.A. The Macmillan and Co., 1965.
[2] R.H.Bruck, A Survey of Binary Systems, Springer Verlag, 1958.
[3] Ivan Nivan and H.S.Zukerman, Introduction to Number theory, Wiley Eastern Limited, 1989.
[4] H.J.Siamwalla and A.S.Muktibodh, Some results on Smarandache groupoids, Scientia Magna ,Vol.8, 2(2012), 111-117.
[5] W.B.Vasantha Kandasamy, New Classes of Finite Groupoids using Z_{n}, Varamihir Journal of Mathematical Science, Vol.1(2001), 135-143.
[6] W.B.Vasantha Kandasamy, Smarandache Groupoids, http: //www/gallup.unm.edu~/smar -andache/Groupoids.pdf.

[^0]: ${ }^{1}$ Received April 3, 2013, Accepted June 18, 2013.

