# The sequence of prime numbers 

Sebastián Martín Ruiz

9 October 2000

This article lets out a law of recurrence in order to obtain the sequence of prime numbers $\left\{p_{k}\right\}_{k \geq 1}$ expressing $p_{k+1}$ as a function of $p_{1}, p_{2}, \cdots, p_{k}$.

Suppose we can find a function $G_{k}(n)$ with the following property:

$$
G_{k}(n)= \begin{cases}-1 & \text { if } n<p_{k+1} \\ 0 & \text { if } n=p_{k+1} \\ \text { something } & \text { if } n>p_{k+1}\end{cases}
$$

This is a variation of the Smarandache Prime Function [2].
Then we can write down a recurrence formula for $p_{k}$ as follows.
Consider the product:

$$
\prod_{s=p_{k+1}}^{m} G_{k}^{\prime}(s)
$$

If $p_{k}<m<p_{k+1}$ one has

$$
\prod_{s=p_{k}+1}^{m} G_{k}(s)=\prod_{s=p_{k}+1}^{m}(-1)=(-1)^{m-p_{k}}
$$

If $m \geq p_{k+1}$

$$
\prod_{s=p_{k}+1}^{m} G_{k}(s)=0
$$

since $G_{k}\left(p_{k+1}\right)=0$
Hence

$$
\begin{gathered}
\sum_{m=p_{k}+1}^{2 p_{k}}(-1)^{m-p_{k}} \prod_{s=p_{k}+1}^{m} G_{k}(s)= \\
=\sum_{m=p_{k}+1}^{p_{k+1}-1}(-1)^{m-p_{k}} \prod_{s=p_{k}+1}^{m} G_{k}(s)+\sum_{m=p_{k+1}}^{2 p_{k}}(-1)^{m-p_{k}} \prod_{s=p_{k}+1}^{m} G_{k}(s)
\end{gathered}
$$

(The second addition is zero since all the products we have the factor $G_{k}\left(p_{k+1}\right)=$ 0 )

$$
\begin{gathered}
=\sum_{m=p_{k}+1}^{p_{k+1}-1}(-1)^{m-p_{k}}(-1)^{m-p_{k}} \\
=p_{k+1}-1-\left(p_{k}+1\right)+1=p_{k+1}-p_{k}-1
\end{gathered}
$$

so

$$
p_{k+1}=p_{k}+1+\sum_{m=p_{k}+1}^{2 p_{k}}(-1)^{m-p_{k}} \prod_{s=p_{k}+1}^{m} G_{k}(s)
$$

which is a recurrence relation for $p_{k}$.
We now show how to find such a function $G_{k}(n)$ whose definition depends only on the first $k$ primes and not on an explicit knowledge of $p_{k+1}$.

And to do so we define ${ }^{1}$ :

$$
\left.T_{k}(\pi)=\sum_{i_{1}=0}^{\log _{p_{1}} n \sum_{i_{2}=0}^{\log _{r_{2}} n} \cdots \sum_{i_{k}=0}^{\log _{r_{k}} n}\left(\prod_{s=1}^{k} p_{s}^{i_{s}}\right), ~(),}\right)
$$

Let's see the value which $T_{k}(n)$ takes for all $n \geq 2$ integer. We distinguish two cases:

Case 1: $n<p_{k+1}$
The expression $p_{1}^{i_{1}} p_{2}^{i_{3}} \cdots p_{k}^{i_{k}}$ with $i_{1}=0,1,2 \cdots \log _{p_{1}} n i_{2}=0,1,2 \cdots \log _{p_{2}} n$ $\ldots i_{k}=0,1,2 \cdots \log _{p_{k}} n$ all the values occur $1,2,3, \cdots, n$ each one of them only once and moreover some more values, strictly greater than $n$.

We can look at is. If $1 \leq m \leq n$ one obtains that $m<p_{k+1}$ for which $1 \leq m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{3}} \cdots p_{n}^{\alpha_{n}} \leq n$. From where one deduces that $1 \leq p_{s}^{\alpha_{s}} \leq n$ and for it $0 \leq \alpha_{s} \leq \log _{p,} n$ for all $s=1, \cdots, k$

Therefore, for $i_{s}=\alpha_{s} \quad s=1,2, \cdots, k$ we have the value $m$. This value only appears once, the prime number descomposition of $m$ is unique.

In fact the sums of $T_{k}(n)$ can be achieved up to the highest power of $p_{k}$ contained in $n$ instead of $\log _{p_{k}} n$.

Therefore one has that

$$
T_{k}(n)=\sum_{i_{1}=0}^{\log _{p_{1}} n} \sum_{i_{3}=0}^{\log _{r_{2}} n} \cdots \sum_{i_{k}=0}^{\log _{p_{k}} n}\left(\prod_{s=1}^{k} p_{s}^{i_{s}}\right)=\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}-1
$$

[^0]since, in the case $p_{1}^{i_{1}} p_{2}^{i_{2}} \cdots p_{k}^{i_{k}}$ would be greater than $n$ one has that:
$$
\binom{n}{\prod_{s=1}^{k} p_{s}^{i,}}=0
$$

Case 2: $n=p_{k+1}$
The expression $\eta_{1}^{i_{1}} \eta_{2}^{i_{2}} \cdots p_{k}^{i_{k}}$ with $i_{1}=0,1,2 \cdots \log _{p_{1}} n i_{2}=0,1,2 \cdots \log _{p_{2}} n$ $\ldots i_{k}=0,1,2 \cdots \log _{p_{k}} n$ the values occur $1,2,3, \cdots, p_{k+1}-1$ each one of them only once and moreover some more values, strictly greater than $p_{k+1}$. One demonstrates in a form similar to case 1 . It doesn't take the value $p_{k+1}$ since it is coprime with $p_{1}, p_{2}, \cdots, p_{k}$.

Therefore,

$$
T_{k}(n)=\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}=2^{n}-2
$$

In case $3: n>p_{t+1}$ it is not, necessary to consider it.
Therefore, one has:

$$
T_{k}(n)=\left\{\begin{array}{lll}
2^{n}-1 & \text { if } & n<p_{k+1} \\
2^{n}-2 & \text { if } & n=p_{k+1} \\
\text { something } & \text { if } & n>p_{k+1}
\end{array}\right.
$$

and as a result:

$$
G_{k}(n)=2^{n}-2-T_{k}(n)
$$

This is the summarized relation of recurrence:
Let's take $p_{1}=2$ and for $k \geq 1$ we define:

$$
\begin{gathered}
T_{k}(n)=\sum_{i_{1}=0}^{\log _{r_{1}} n} \sum_{i_{2}=0}^{\log _{p_{3}} n} \cdots \sum_{i_{k}=0}^{\log _{p_{k}} n}\left(\prod_{s=1}^{k} p_{s}^{i_{j}}\right) \\
G_{k}(n)=2^{n}-2-T_{k}(n) \\
p_{k+1}=p_{k}+1+\sum_{m=p_{k}+1}^{2 p_{k}}(-1)^{m-p_{k}} \prod_{s=p_{k}+1}^{m} G_{k}(s)
\end{gathered}
$$

## References:

(1) The Smarandache Notions Journal. Volune 11. Number 1-2-3. Page 59.
(2) E. Burton, "Smarandache Prime and Coprime Functions", ht.tp://www.gallup.unm.edu/~smaraurdache/primfnct.txt
SEBASTIAN MARTIN RUIZ. Avda, de Regli 43. CHIPIONA 11550 SPAIN.


[^0]:    ${ }^{1}$ Given that $i, s=1,2, \cdots, k$ only takes integer values one appreciates that the sums of $T_{k}(n)$ are until $E\left(\log _{p,}, n\right)$ where $E(x)$ is the greatest integer less than or equal to $x$.

