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Abstract: An interesting symmetry on multiplication of numbers found by

Prof.Smarandache recently. By considering integers or elements in groups on graphs, we

extend this symmetry on graphs and find geometrical symmetries. For extending further,

Smarandache’s or combinatorial systems are also discussed in this paper, particularly, the

CC conjecture presented by myself six years ago, which enables one to construct more sym-

metrical systems in mathematical sciences.
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§1. Sequences

Let Z+ be the set of non-negative integers and Γ a group. We consider sequences {i(n)|n ∈ Z+}
and {gn ∈ Γ|n ∈ Z+} in this paper. There are many interesting sequences appeared in literature.

For example, the sequences presented by Prof.Smarandache in references [2], [13] and [15]

following:

(1) Consecutive sequence

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, · · · ;

(2) Digital sequence

1, 11, 111, 1111, 11111, 11111, 1111111, 11111111, · · ·

(3) Circular sequence

1, 12, 21, 123, 231, 312, 1234, 2341, 3412, 4123, · · · ;

(4) Symmetric sequence

1, 11, 121, 1221, 12321, 123321, 1234321, 12344321, 123454321, 1234554321, · · · ;

(5) Divisor product sequence
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1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, · · · ;

(6) Cube-free sieve

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, · · · .

He also found three nice symmetries for these integer sequences recently.

First Symmetry

1 × 8 + 1 = 9

12 × 8 + 2 = 98

123 × 8 + 3 = 987

1234 × 8 + 4 = 9876

12345× 8 + 5 = 98765

123456× 8 + 6 = 987654

1234567× 8 + 7 = 9876543

12345678× 8 + 8 = 98765432

123456789× 8 + 9 = 987654321

Second Symmetry

1 × 9 + 2 = 11

12 × 9 + 3 = 111

123 × 9 + 4 = 1111

1234 × 9 + 5 = 11111

12345× 9 + 6 = 111111

123456× 9 + 7 = 1111111

1234567× 9 + 8 = 11111111

12345678× 9 + 9 = 111111111

123456789× 9 + 10 = 1111111111

Third Symmetry

1 × 1 = 1

11 × 11 = 121

111 × 111 = 12321

1111× 1111 = 1234321

11111× 11111 = 12345431
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111111× 111111 = 12345654321

1111111× 1111111 = 1234567654321

11111111× 11111111 = 13456787654321

111111111× 111111111 = 12345678987654321

Notice that a Smarandache sequence is not closed under operation, but a group is, which

enables one to get symmetric figure in geometry. Whence, we also consider labelings on graphs

G by that elements of groups in this paper.

§2. Graphs with Labelings

A graph G is an ordered 3-tuple (V (G), E(G); I(G)), where V (G), E(G) are finite sets, called

vertex and edge set respectively, V (G) 6= ∅ and I(G) : E(G) → V (G) × V (G). Usually, the

cardinality |V (G)| is called the order and |E(G)| the size of a graph G.

A graph H = (V1, E1; I1) is a subgraph of a graph G = (V, E; I) if V1 ⊆ V , E1 ⊆ E and

I1 : E1 → V1 × V1, denoted by H ⊂ G.

Example 2.1 A graph G is shown in Fig.2.1, where, V (G) = {v1, v2, v3, v4}, E(G) =

{e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} and I(ei) = (vi, vi), 1 ≤ i ≤ 4; I(e5) = (v1, v2) = (v2, v1), I(e8)

= (v3, v4) = (v4, v3), I(e6) = I(e7) = (v2, v3) = (v3, v2), I(e8) = I(e9) = (v4, v1) = (v1, v4).

v1 v2

v3v4

e1 e2

e3e4

e5

e6e7

e8

e9 e10

Fig. 2.1

An automorphism of a graph G is a 1 − 1 mapping θ : V (G) → V (G) such that

θ(u, v) = (θ(u), θ(v)) ∈ E(G)

holds for ∀(u, v) ∈ E(G). All such automorphisms of G form a group under composition

operation, denoted by AutG. A graph G is vertex-transitive if AutG is transitive on V (G).

A graph family FP is the set of graphs whose each element possesses a graph property P .

Some well-known graph families are listed following.
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Walk. A walk of a graph G is an alternating sequence of vertices and edges u1, e1, u2, e2,

· · · , en, un1
with ei = (ui, ui+1) for 1 ≤ i ≤ n.

Path and Circuit. A walk such that all the vertices are distinct and a circuit or a cycle is

such a walk u1, e1, u2, e2, · · · , en, un1
with u1 = un and distinct vertices. A graph G = (V, E; I)

is connected if there is a path connecting any two vertices in this graph.

Tree. A tree is a connected graph without cycles.

n-Partite Graph. A graph G is n-partite for an integer n ≥ 1, if it is possible to partition

V (G) into n subsets V1, V2, · · · , Vn such that every edge joints a vertex of Vito a vertex of

Vj , j 6= i, 1 ≤ i, j ≤ n. A complete n-partite graph G is such an n-partite graph with edges

uv ∈ E(G) for ∀u ∈ Vi and v ∈ Vj for 1 ≤ i, j ≤ n, denoted by K(p1, p2, · · · , pn) if |Vi| = pi for

integers 1 ≤ i ≤ n. Particularly, if |Vi| = 1 for integers 1 ≤ i ≤ n, such a complete n-partite

graph is called complete graph and denoted by Kn.

K(4, 4) K6

Fig.2.2

Two operations of graphs used in this paper are defined as follows:

Cartesian Product. A Cartesian product G1 × G2 of graphs G1 with G2 is defined by

V (G1 ×G2) = V (G1)× V (G2) and two vertices (u1, u2) and (v1, v2) of G1 ×G2 are adjacent if

and only if either u1 = v1 and (u2, v2) ∈ E(G2) or u2 = v2 and (u1, v1) ∈ E(G1).

The graph K2 × P6 is shown in Fig.2.3 following.

u

v

1 2 3 4 5
K2

6

P6

K2 × P6

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

Fig.2.3
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Union. The union G∪H of graphs G and H is a graph (V (G∪H), E(G∪H), I(G∪H)) with

V (G ∪ H) = V (G) ∪ V (H), E(G ∪ H) = E(G) ∪ E(H) and I(G ∪ H) = I(G) ∪ I(H).

Labeling. Now let G be a graph and N ⊂ Z+. A labeling of G is a mapping lG : V (G) ∪
E(G) → N with each labeling on an edge (u, v) is induced by a ruler r(lG(u), lG(v)) with

additional conditions.

Classical Labeling Rulers. The following rulers are usually found in literature.

Ruler R1. r(lG(u), lG(v)) = |lG(u) − lG(v)|.

5 4 3 2 1

5 0 4 1 3 2 01

2

3

1

4

3

2

4

Fig.2.4

Such a labeling lG is called to be a graceful labeling of G if lG(V (G)) ⊂ {0, 1, 2, · · · , |V (G)|}
and lG(E(G)) = {1, 2, · · · , |E(G)|}. For example, the graceful labelings of P6 and S1.4 are shown

in Fig.2.4.

Graceful Tree Conjecture (A.Rose, 1966) Any tree is graceful.

There are hundreds papers on this conjecture. But it is opened until today.

Ruler R2. r(lG(u), lG(v)) = lG(u) + lG(v).

Such a labeling lG on a graph G with q edges is called to be harmonious on G if lG(V (G)) ⊂
Z(modq) such that the resulting edge labels lG(E(G)) = {1, 2, · · · , |E(G)|} by the induced

labeling lG(u, v) = lG(u) + lG(v) (modq) for ∀(u, v) ∈ E(G). For example, ta harmonious

labeling of P6 are shown in Fig.2.5 following.

2 1 0 5 4 3

3 1 5 4 2

Fig.2.5

Update results on classical labeling on graphs can be found in a survey paper [4] of Gallian.

Smarandachely Labeling Rulers. There are many new labelings on graphs appeared in

International J.Math.Combin. in recent years. Such as those shown in the following.

Ruler R3. A Smarandachely k-constrained labeling of a graph G(V, E) is a bijective mapping

f : V ∪E → {1, 2, .., |V |+ |E|} with the additional conditions that |f(u)− f(v)| ≥ k whenever
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uv ∈ E, |f(u) − f(uv)| ≥ k and |f(uv) − f(vw)| ≥ k whenever u 6= w, for an integer k ≥ 2.

A graph G which admits a such labeling is called a Smarandachely k-constrained total graph,

abbreviated as k − CTG. An example for k = 5 on P7 is shown in Fig.2.6.

11 1 7 13 3 9 15 56 12 2 8 14 4 10

Fig.2.6

The minimum positive integer n such that the graph G ∪ Kn is a k − CTG is called k-

constrained number of the graph G and denoted by tk(G), the corresponding labeling is called

a minimum k-constrained total labeling of G. Update results for tk(G) in [3] and [12] are as

follows:

(1) t2(Pn)=






2 if n = 2,

1 if n = 3,

0 else.

(2) t2(Cn) = 0 if n ≥ 4 and t2(C3) = 2.

(3) t2(Kn) = 0 if n ≥ 4.

(4) t2(K(m, n))=






2 if n = 1 and m = 1,

1 if n = 1 and m ≥ 2,

0 else.

(5) tk(Pn)=





0 if k ≤ k0,

2(k − k0) − 1 if k > k0 and 2n ≡ 0(mod 3),

2(k − k0) if k > k0 and 2n ≡ 1 or 2(mod 3).

(6) tk(Cn) =






0 if k ≤ k0,

2(k − k0) if k > k0 and 2n ≡ 0 (mod 3),

3(k − k0) if k > k0 and 2n ≡ 1 or 2(mod 3),

where k0 = ⌊ 2n−1
3 ⌋. More results on tk(G) cam be found in references.

Ruler R4. Let G be a graph and f : V (G) → {1, 2, 3, · · · , |V | + |E(G)|} be an injection.

For each edge e = uv and an integer m ≥ 2, the induced Smarandachely edge m-labeling f∗
S is

defined by

f∗
S(e) =

⌈
f(u) + f(v)

m

⌉
.

Then f is called a Smarandachely super m-mean labeling if f(V (G)) ∪ {f∗(e) : e ∈ E(G)} =

{1, 2, 3, · · · , |V | + |E(G)|}. A graph that admits a Smarandachely super mean m-labeling is

called Smarandachely super m-mean graph. Particularly, if m = 2, we know that

f∗(e) =






f(u) + f(v)

2
if f(u) + f(v) is even;

f(u) + f(v) + 1

2
if f(u) + f(v) is odd.
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A Smarandache super 2-mean labeling on P 2
6 is shown in Fig.2.7.

1 2 3 5 7 8 9 11 13 14 15

4 6 10 12

Fig.2.7

Now we have know graphs Pn, Cn, Kn,K(2,n), (n ≥ 4), K(1, n) for 1 ≤ n ≤ 4, Cm × Pn

for n ≥ 1, m = 3, 5 have Smarandachely super 2-mean labeling. More results on Smarandachely

super m-mean labeling of graphs can be found in references in [1], [11], [17] and [18].

§3. Smarandache Sequences on Symmetric Graphs

Let lSG : V (G) → {1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111} be a vertex la-

beling of a graph G with edge labeling lSG(u, v) induced by lSG(u)lSG(v) for (u, v) ∈ E(G) such that

lSG(E(G)) = {1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321,

12345678987654321}, i.e., lSG(V (G)∪E(G)) contains all numbers appeared in the Smarandachely

third symmetry. Denote all graphs with lSG labeling by L S . Then it is easily find a graph with

a labeling lSG in Fig.3.1 following.

1 1
11 11

111 111
1111 1111

11111 11111
111111 111111

1111111 1111111
11111111 11111111

111111111 111111111

1
121

12321
1234321

123454321
12345654321

1234567654321
123456787654321

12345678987654321

Fig.3.1

Generally, we know the following result.

Theorem 3.1 Let G ∈ L S. Then G =
n⋃

i=1

Hi for an integer n ≥ 9, where each Hi is a

connected graph. Furthermore, if G is vertex-transitive graph, then G = nH for an integer

n ≥ 9, where H is a vertex-transitive graph.

Proof Let C(i) be the connected component with a label i for a vertex u, where i ∈
{1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111}. Then all vertices v in C(i) must

be with label lSG(v) = i. Otherwise, if there is a vertex v with lSG(v) = j ∈ {1, 11, 111, 1111, 11111,

111111, 1111111, 11111111, 111111111}\ {i}, let P (u, v) be a path connecting vertices u and v.
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Then there must be an edge (x, y) on P (u, v) such that lSG(x) = i, lSG(y) = j. By definition,

i × j 6∈ lSG(E(G)), a contradiction. So there are at least 9 components in G.

Now if G is vertex-transitive, we are easily know that each connected component C(i) must

be vertex-transitive and all components are isomorphic. �

The smallest graph in L S
v is the graph 9K2 shown in Fig.3.1. It should be noted that each

graph in L S
v is not connected. For finding a connected one, we construct a graph Q̂k following

on the digital sequence

1, 11, 111, 1111, 11111, · · · , 11 · · ·1︸ ︷︷ ︸
k

.

by

V (Q̃k) = {1, 11, · · · , 11 · · ·1︸ ︷︷ ︸
k

}
⋃

{1′, 11′, · · · , 11 · · · 1′︸ ︷︷ ︸
k

},

E(Q̃k) = {(1, 11 · · ·1︸ ︷︷ ︸
k

), (x, x′), (x, y)|x, y ∈ V (Q̃) differ in precisely one 1}.

Now label x ∈ V (Q̃) by lG(x) = lG(x′) = x and (u, v) ∈ E(Q̃) by lG(u)lG(v). Then we have

the following result for the graph Q̃k.

Theorem 3.2 For any integer m ≥ 3, the graph Q̃m is a connected vertex-transitive graph of

order 2m with edge labels

lG(E(Q̃)) = {1, 11, 121, 1221, 12321, 123321, 1234321, 12344321, 12345431, · · ·},

i.e., the Smarandache symmetric sequence.

Proof Clearly, Q̃m is connected. We prove it is a vertex-transitive graph. For simplicity,

denote 11 · · · 1︸ ︷︷ ︸
i

, 11 · · · 1′︸ ︷︷ ︸
i

by i and i
′
, respectively. Then V (Q̃m) = {1, 2, · · · , m}. We define an

operation + on V (Q̃k) by

k + l = 11 · · · 1︸ ︷︷ ︸
k+l(modk)

and k
′
+ l

′
= k + l

′
, k

′′
= k

for integers 1 ≤ k, l ≤ m. Then an element i naturally induces a mapping

i∗ : x → x + i, for x ∈ V (Q̃m).

It should be noted that i∗ is an automorphism of Q̃m because tuples x and y differ in precisely

one 1 if and only if x + i and y + i differ in precisely one 1 by definition. On the other hand,

the mapping τ : x → x′ for ∀x ∈ is clearly an automorphism of Q̃m. Whence,

G = 〈 τ, i∗ | 1 ≤ i ≤ m〉 � AutQ̃m,

which acts transitively on V (Q̃) because (y − x)∗(x) = y for x, y ∈ V (Q̃m) and τ : x → x′.

Calculation shows easily that

lG(E(Q̃m)) = {1, 11, 121, 1221, 12321, 123321, 1234321, 12344321, 12345431, · · ·},
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i.e., the Smarandache symmetric sequence. This completes the proof. �

By the definition of graph Q̃m, w consequently get the following result by Theorem 3.2.

Corollary 3.3 For any integer m ≥ 3, Q̃m ≃ Cm × P2.

The smallest graph containing the third symmetry is Q̃9 shown in Fig.3.2 following,

c1 c111 11

111 111

1111 1111

11111 11111

111111 111111

1111111 1111111

11111111 11111111

111111111 111111111

1

121

12321

1234321

123454321

12345654321

1234567654321

123456787654321

12345678987654321

c2

11

c2

c3 c3

c4 c4

c5 c5

c6 c6

c7 c7

c8 c8

c9 c9

Fig.3.2

where c1 = 11, c2 = 1221, c3 = 123321, c4 = 12344321, c5 = 12344321, c5 = 1234554321,

c6 = 123456654321, c7 = 12345677654321, c8 = 1234567887654321, c9 = 123456789987654321.

§4. Groups on Symmetric Graphs

In fact, the Smarandache digital or symmetric sequences are subsequences of Z, a special infinite

Abelian group. We consider generalized labelings on vertex-transitive graphs following.

Problem 4.1 Let (Γ; ◦) be an Abelian group generated by x1, · · · , xn. Thus Γ = 〈x1, x2,

· · · , xn|W1, · · · 〉. Find connected vertex-transitive graphs G with a labeling lG : V (G) →
{1Γ, x1, x2, · · · , xn} and induced edge labeling lG(u, v) = lG(u) ◦ lG(v) for (u, v) ∈ E(G) such

that

lG(E(G)) = {1Γ, x2
1, x1 ◦ x2, x

2
2, x2 ◦ x3, · · · , xn−1 ◦ xn, x2

n}.

Similar to that of Theorem 3.2, we know the following result.

Theorem 4.2 Let (Γ; ◦) be an Abelian group generated by x1, x2, · · · , xn for an integer n ≥ 1.

Then there are vertex-transitive graphs G with a labeling lG : V (G) → {1Γ, x1, x2, · · · , xn} such

that the induced edge labeling by lG(u, v) = lG(u) ◦ lG(v) with

lG(E(G)) = {1Γ, x2
1, x1 ◦ x2, x

2
2, x2 ◦ x3, · · · , xn−1 ◦ xn, x2

n}.

Proof For any integer m ≥ 1, define a graph Q̂m,n,k by

V (Q̂m,n,k) =

(
m−1⋃

i=0

U (i)[x]

)
⋃
(

m−1⋃

i=0

W (i)[y]

)
⋃

· · ·
⋃
(

m−1⋃

i=0

U (i)[z]

)
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where |{U (i)[x], v(i)[y], · · · , W (i)[z]}| = k and

U (i)[x] = {x(i)
0 , x

(i)
1 , x

(i)
2 , · · · , x(i)

n },
V (i)[y] = {(y0)

(i), y
(i)
1 , y

(i)
2 , · · · , y(i)

n },
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

W (i)[z] = {(z0)
(i), z

(i)
1 , z

(i)
2 , · · · , z(i)

n }

for integers 0 ≤ i ≤ m − 1, and

E(Q̂m,n) = E1

⋃
E2

⋃
E3,

where E1 = { (x
(i)
l , y

(i)
l ), · · · , (z

(i)
l , x

(i)
l ) | 0 ≤ l ≤ n − 1, 0 ≤ i ≤ m − 1}, E2 = { (x

(i)
l , x

(i)
l+1),

(y
(i)
l , y

(i)
l+1), · · · , (z

(i)
l , z

(i)
l+1) | 0 ≤ l ≤ n − 1, 0 ≤ i ≤ m − 1, where l + 1 ≡ (modn)} and

E3 = {(x(i)
l , x

(i+1)
l ), (y

(i)
l , y

(i+1)
l ), · · · , (z

(i)
l , z

(i+1)
l )|0 ≤ l ≤ n− 1, 0 ≤ i ≤ m− 1, where i + 1 ≡

(modm)}. Then is clear that Q̂m,n,k is connected. We prove this graph is vertex-transitive. In

fact, by defining three mappings

θ : x
(i)
l → x

(i)
l+1, y

(i)
l → y

(i)
l+1, · · · , z

(i)
l → z

(i)
l+1,

τ : x
(i)
l → y

(i)
l , · · · , z

(i)
l → x

(i)
l ,

σ : x
(i)
l → x

(i+1)
l , y

(i)
l → y

(i+1)
l , · · · , z

(i)
l → z

(i+1)
l ,

where 1 ≤ l ≤ n, 1 ≤ i ≤ m, i + 1(modm), l + 1(modn). Then it is easily to check that θ, τ

and σ are automorphisms of the graph Q̂m,n,k and the subgroup 〈θ, τ, σ〉 acts transitively on

V (Q̂m,n,k).

Now we define a labeling lQ̂ on vertices of Q̂m,n,k by

lQ̂(x
(i)
0 ) = lQ̂(y

(i)
0 ) = · · · = lQ̂(z

(i)
0 ) = 1Γ,

lQ̂(x
(i)
l ) = lQ̂(y

(i)
l ) = · · · = lQ̂(z

(i)
l ) = xl, 1 ≤ i ≤ m, 1 ≤ l ≤ n.

Then we know that lG(E(G)) = {1Γ, x1, x2, · · · , xn} and

lG(E(G)) = {1Γ, x2
1, x1 ◦ x2, x

2
2, x2 ◦ x3, · · · , xn−1 ◦ xn, x2

n}. �

Particularly, let Γ be a subgroup of (Z111111111,×) generated by

{1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111}

and m = 1. We get the symmetric sequence on a symmetric graph shown in Fig.3.2 again.

Let m = 5, n = 3 and k = 2, i.e., the graph Q̂5,3,2 with a labeling lG : V (Q̂5,3,2) →
{1Γ, x1, x2, x3, x4} is shown in Fig.4.1 following.

Denote by NG[x] all vertices in a graph G labeled by an element x ∈ Γ. Then we know

the following result by Theorem 4.2. The following results are immediately conclusions by the

proof of Theorem 4.3.

Corollary 4.3 For integers m, n ≥ 1, Q̂m,n,k ≃ Cm × Cn × Ck.
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Corollary 4.4 |NQ̂m,n,k
[x]| = mk for ∀x ∈ {1Γ, x1, · · · , xn} and integers m, n, k ≥ 1.

1Γ

1Γ

1Γ

1Γ

1Γ

1Γ

x1

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

x2

x3

x3

x3

x3

x3

x3

x4

x4

x4

x4

x4

x4

Fig.4.1

§5. Speculation

It should be noted that the essence we have done is a combinatorial notion, i.e., combining math-

ematical systems on that of graphs. Recently, Sridevi et al. consider the Fibonacci sequence

on graphs in [16]. Let G be a graph and {F0, F1, F2, · · · , Fq, · · · } be the Fibonacci sequence,

where Fq is the qth Fibonacci number. An injective labeling lG : V (G) → {F0, F1, F2, · · · , Fq}
is called to be super Fibonacci graceful if the induced edge labeling by lG(u, v) = |lG(u)− lG(v)|
is a bijection onto the set {F1, F2, · · · , Fq} with initial values F0 = F1 = 1. They proved a

few graphs, such as those of Cn ⊕ Pm, Cn ⊕ K1,m have super Fibonacci labelings in [18]. For

example, a super Fibonacci labeling of C6 ⊕ P6 is shown in Fig.5.1.

F0

F7F9

F11

F10 F12

F6 F4 F5 F3 F1 F2

F1F2F4F3F5F6

F7

F8

F10

F9

F11

F12

Fig.5.1

All of these are not just one mathematical system. In fact, they are applications of Smaran-

dache multi-space and CC conjecture for developing modern mathematics, which appeals one

to find combinatorial structures for classical mathematical systems, i.e., the following problem.

Problem 5.1 Construct classical mathematical systems combinatorially and characterize them.
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For example, classical algebraic systems, such as those of groups, rings and fields by combina-

torial principle.

Generally, a Smarandache multi-space is defined by the following.

Definition 5.2([6],[14]) For an integer m ≥ 2, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m

mathematical systems different two by two. A Smarandache multi-space is a pair (Σ̃; R̃) with

Σ̃ =

m⋃

i=1

Σi, and R̃ =

m⋃

i=1

Ri.

Definition 5.3([10]) A combinatorial system CG is a union of mathematical systems (Σ1;R1),

(Σ2;R2), · · · , (Σm;Rm) for an integer m, i.e.,

CG = (

m⋃

i=1

Σi;

m⋃

i=1

Ri)

with an underlying connected graph structure G, where

V (G) = {Σ1, Σ2, · · · , Σm}, E(G) = { (Σi, Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}.

We have known a few Smarandache multi-spaces in classical mathematics. For examples,

these rings and fields are group multi-space, and topological groups, topological rings and

topological fields are typical multi-space are both groups, rings, or fields and topological spaces.

Usually, if m ≥ 3, a Smarandache multi-space must be underlying a combinatorial structure G.

Whence, it becomes a combinatorial space in that case. I have presented the CC conjecture

for developing modern mathematical science in 2005 [5], then formally reported it at The 2th

Conference on Graph Theory and Combinatorics of China (2006, Tianjing, China)([7]-[10]).

CC Conjecture(Mao, 2005) Any mathematical system (Σ;R) is a combinatorial system

CG(lij , 1 ≤ i, j ≤ m).

This conjecture is not just an open problem, but more likes a deeply thought, which opens

a entirely way for advancing the modern mathematical sciences. In fact, it indeed means a

combinatorial notion on mathematical objects following for researchers.

(1) There is a combinatorial structure and finite rules for a classical mathematical system,

which means one can make combinatorialization for all classical mathematical subjects.

(2) One can generalizes a classical mathematical system by this combinatorial notion such

that it is a particular case in this generalization.

(3) One can make one combination of different branches in mathematics and find new

results after then.

(4) One can understand our WORLD by this combinatorial notion, establish combinatorial

models for it and then find its behavior, for example,

what is true colors of the Universe, for instance its dimension?

and · · · . For its application to geometry and physics, the reader is refereed to references [5]-[10],

particularly, the book [10] of mine.
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