On the mean value of the F.Smarandache simple divisor function

Yang Qianli
Department of Mathematics, Weinan Teacher's College
Weinan, Shaanxi, P.R.China

Abstract

In this paper, we introduce a new arithmetic function $\tau_{s p}(n)$ which we called the simple divisor function. The main purpose of this paper is to study the asymptotic properties of the mean value of $\tau_{s p}(n)$ by using the elementary methods, and obtain an interesting asymptotic formula for it.

Keywords Smarandache simple number divisor; Simple divisor function; Asymptotic formula.

§1. Introduction

A positive integer n is called simple number if the product of its all proper divisors is less than or equal to n. In problem 23 of [1], Professor F.Smarandache asked us to study the properties of the sequence of the simple numbers. About this problem, many scholars have studied it before. For example, in [2], Liu Hongyan and Zhang Wenpeng studied the mean value properties of $1 / n$ and $1 / \phi(n)$ (where n is a simple number), and obtained two asymptotic formulae for them. For convenient, let \mathcal{A} denotes the set of all simple numbers, they proved that

$$
\sum_{\substack{n \in \mathcal{A} \\ n \leq x}} \frac{1}{n}=(\ln \ln x)^{2}+B_{1} \ln \ln x+B_{2}+O\left(\frac{\ln \ln x}{\ln x}\right)
$$

and

$$
\sum_{\substack{n \in \mathcal{A} \\ n \leq x}} \frac{1}{\phi(n)}=(\ln \ln x)^{2}+C_{1} \ln \ln x+C_{2}+O\left(\frac{\ln \ln x}{\ln x}\right)
$$

where $B_{1}, B_{2}, C_{1}, C_{2}$ are constants, and $\phi(n)$ is the Euler function.
For $n>1$, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ denotes the factorization of n into prime powers. If one of the divisor d of n satisfing $\tau(d) \leq 4$ (where $\tau(n)$ denotes the numbers of all divisors of n), then we call d as a simple number divisor. In this paper, we introduce a new arithmetic function

$$
\tau_{s p}(n)=\sum_{\substack{d \mid n \\ \tau(d) \leq 4}} 1,
$$

which we called the simple divisor function. The main purpose of this paper is to study the asymptotic property of the mean value of $\tau_{s p}(n)$ by using the elementary methods, and obtain an interesting asymptotic formula for it. That is, we will prove the following:

Theorem. For any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} \tau_{s p}(n)=\frac{1}{2} x(\log \log x)^{2}+\frac{1}{2}(a+1) x \log \log x+\left(\frac{b+A}{2}+B+C\right) x+O\left(\frac{x \log \log x}{\log x}\right)
$$

where a and b are two computable constants, $A=\gamma+\sum_{p}(\log (1-1 / p)+1 / p), \gamma$ is the Euler constant, $B=\sum_{p} \frac{1}{p^{2}}$ and $C=\sum_{p} \frac{1}{p^{3}}$.

§2. Two Lemmas

Before the proof of Theorem, two useful Lemmas will be introduced which we will use subsequently.

Lemma 1. For any real number $x \geq 1$, we have the asymptotic formula
(a) $\quad \sum_{n \leq x} \omega(n)=x \log \log x+A x+O\left(\frac{x}{\log x}\right)$,
(b) $\quad \sum_{n \leq x} \omega^{2}(n)=x(\log \log x)^{2}+a x \log \log x+b x+O\left(\frac{x \log \log x}{\log x}\right)$,
where $A=\gamma+\sum_{p}(\log (1-1 / p)+1 / p), \gamma$ is the Euler constant, a and b are two computable constants.

Proof. See references [3] and [4].
Lemma 2. For any positive integer $n \geq 1$, we have

$$
\tau_{s p}(n)=\frac{1}{2} \omega^{2}(n)+\frac{1}{2} \omega(n)+\sum_{p^{2} \mid n} 1+\sum_{p^{3} \mid n} 1,
$$

where $\omega(n)$ denotes the number of all different prime divisors of $n, \sum_{p^{2} \mid n} 1$ denotes the number of all primes such that $p^{2} \mid n, \sum_{p^{3} \mid n} 1$ denotes the number of all primes such that $p^{3} \mid n$.

Proof. Let $n>1$, we can write $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, then from the definition of $\tau_{s p}(n)$ we know that there are only four kinds of divisors d such that the number of the divisors of d less or equal to 4 . That is $p\left|n, p_{i} p_{j}\right| n, p^{2} \mid n$ and $p^{3} \mid n$, where $p_{i} \neq p_{j}$.

Hence, we have

$$
\begin{aligned}
\tau_{s p}(n) & =\sum_{p \mid n} 1+\sum_{\substack{p_{i} p_{j} \mid n \\
p_{i} \neq p_{j}}} 1+\sum_{p^{2} \mid n} 1+\sum_{p^{3} \mid n} 1 \\
& =\omega(n)+\frac{1}{2} \omega(n)(\omega(n)-1)+\sum_{p^{2} \mid n} 1+\sum_{p^{3} \mid n} 1 \\
& =\frac{1}{2} \omega^{2}(n)+\frac{1}{2} \omega(n)+\sum_{p^{2} \mid n} 1+\sum_{p^{3} \mid n} 1
\end{aligned}
$$

This proves Lemma 2.

§3. Proof of the theorem

Now we completes the proof of Theorem. From the definition of the simple divisor function, Lemma 1 and Lemma 2, we can write

$$
\begin{aligned}
\sum_{n \leq x} \tau_{s p}(n)= & \sum_{n \leq x}\left(\frac{1}{2} \omega^{2}(n)+\frac{1}{2} \omega(n)+\sum_{p^{2} \mid n} 1+\sum_{p^{3} \mid n} 1\right) \\
= & \frac{1}{2} \sum_{n \leq x} \omega^{2}(n)+\frac{1}{2} \sum_{n \leq x} \omega(n)+\sum_{n \leq x} \sum_{p^{2} \mid n} 1+\sum_{n \leq x} \sum_{p^{3} \mid n} 1 \\
= & \frac{1}{2}\left(x(\log \log x)^{2}+a x \log \log x+b x+O\left(\frac{x \log \log x}{\log x}\right)\right) \\
& +\frac{1}{2}\left(x \log \log x+A x+O\left(\frac{x}{\log x}\right)\right)+\sum_{p \leq x}\left[\frac{x}{p^{2}}\right]+\sum_{p \leq x}\left[\frac{x}{p^{3}}\right] \\
= & \frac{1}{2}\left(x(\log \log x)^{2}+(a+1) x \log \log x+(b+A) x+O\left(\frac{x \log \log x}{\log x}\right)\right) \\
& +x \sum_{p \leq x} \frac{1}{p^{2}}+O\left(\frac{x}{\log x}\right)+x \sum_{p \leq x} \frac{1}{p^{3}}+O\left(\frac{x}{\log x}\right) \\
= & \frac{1}{2}\left(x(\log \log x)^{2}+(a+1) x \log \log x+(b+A) x+O\left(\frac{x \log \log x}{\log x}\right)\right) \\
& +(B+C) x+O\left(\frac{x}{\log x}\right) \\
= & \frac{1}{2} x(\log \log x)^{2}+\frac{1}{2}(a+1) x \log \log x+\left(\frac{b+A}{2}+B+C\right) x+O\left(\frac{x \log \log x}{\log x}\right)
\end{aligned}
$$

where $B=\sum_{p} \frac{1}{p^{2}}$ and $C=\sum_{p} \frac{1}{p^{3}}$.
This completes the proof of Theorem.

References

[1] F. Smarandache, Only problems, not Solutions, Xiquan Publ. House, Chicago, 1993, pp. 23.
[2] Liu Hongyan and Zhang Wenpeng, On the simple numbers and the mean value properties, Smarandache Notions Journal, 14(2004), pp. 171.
[3] G.H.Hardy and S.Ramanujan, The normal number of prime factors of a number n, Quart. J. Math., 48(1917), pp. 76-92.
[4] H.N.Shapiro, Introduction to the theory of numbers, John Wiley and Sons, 1983, pp. 347.

