Simple Path Covers in Graphs

S. Arumugam and I. Sahul Hamid

National Centre for Advanced Research in Discrete Mathematics of Kalasalingam University, Anand Nagar, Krishnankoil-626190, INDIA.
E-mail: s_arumugam_akce@yahoo.com

Abstract

A simple path cover of a graph G is a collection ψ of paths in G such that every edge of G is in exactly one path in ψ and any two paths in ψ have at most one vertex in common. More generally, for any integer $k \geq 1$, a Smarandache path k-cover of a graph G is a collection ψ of paths in G such that each edge of G is in at least one path of ψ and two paths of ψ have at most k vertices in common. Thus if $k=1$ and every edge of G is in exactly one path in ψ, then a Smarandache path k-cover of G is a simple path cover of G. The minimum cardinality of a simple path cover of G is called the simple path covering number of G and is denoted by $\pi_{s}(G)$. In this paper we initiate a study of this parameter.

Key Words: Smarandache path k-cover, simple path cover, simple path covering number.
AMS(2000): 05C35, 05C38.

§1. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to Harary [5]. All graphs in this paper are assumed to be connected and non-trivial.

If $P=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right)$ is a path or a cycle in a graph G, then $v_{1}, v_{2}, \ldots, v_{n-1}$ are called internal vertices of P and v_{0}, v_{n} are called external vertices of P. If $P=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right)$ and $Q=\left(v_{n}=w_{0}, w_{1}, w_{2}, \ldots, w_{m}\right)$ are two paths in G, then the walk obtained by concatenating P and Q at v_{n} is denoted by $P \circ Q$ and the path $\left(v_{n}, v_{n-1}, \ldots, v_{2}, v_{1}, v_{0}\right)$ is denoted by P^{-1}. For a unicyclic graph G with cycle C, if w is a vertex of degree greater than 2 on C with deg $w=k$, let $e_{1}, e_{2}, \ldots, e_{k-2}$ be the edges of $E(G)-E(C)$ incident with w. Let $T_{i}, 1 \leq i \leq k-2$, be the maximal subtree of G such that T_{i} contains the edge e_{i} and w is a pendant vertex of T_{i}. Then $T_{1}, T_{2}, \ldots, T_{k-2}$ are called the branches of G at w. Also the maximal subtree T of G such that $V(T) \cap V(C)=\{w\}$ is called the subtree rooted at w.

The concept of path cover and path covering number of a graph was introduced by Harary [6]. Preliminary results on this parameter were obtained by Harary and Schwenk [7], Peroche [9] and Stanton et al. [10], [11].

[^0]Definition 1.1([6]) A path cover of a graph G is a collection ψ of paths in G such that every edge of G is in exactly one path in ψ. The minimum cardinality of a path cover of G is called the path covering number of G and is denoted by $\pi(G)$ or simply π.

Theorem 1.2([10]) For any tree T with k vertices of odd degree, $\pi(T)=\frac{k}{2}$.
Theorem 1.3([7]) The path covering number of the complete graph K_{p} is given by $\pi\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$. (For any real number $x,\lceil x\rceil$ denotes the least positive integer $\geq x$.)

Theorem 1.4([4]) Let G be a unicyclic graph with unique cycle C. Let m denote the number of vertices of degree greater than 2 on C. Let k denote the number of vertices of odd degree. Then

$$
\pi(G)= \begin{cases}2 & \text { if } m=0 \\ \frac{k}{2}+1 & \text { if } m=1 \\ \frac{k}{2} & \text { otherwise }\end{cases}
$$

Theorem $1.5([4])$ For any graph $G, \pi(G) \geq\left\lceil\frac{\Delta}{2}\right\rceil$.
The concepts of graphoidal cover and acyclic graphoidal cover were introduced by Acharya et al. [1] and Arumugam et al. [4].

Definition 1.6([1]) A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G satisfying the following conditions.
(i) Every path in ψ has at least two vertices.
(ii) Every vertex of G is an internal vertex of at most one path in ψ.
(iii)Every edge of G is in exactly one path in ψ.

If further no member of ψ is a cycle in G, then ψ is called an acyclic graphoidal cover of G. The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$. Similarly we define the acyclic graphoidal covering number $\eta_{a}(G)$.

An elaborate review of results in graphoidal covers with several interesting applications and a large collection of unsolved problems is given in Arumugam et al.[2].

For any graph $G=(V, E), \psi=E$ is trivially an acyclic graphoidal cover and has the interesting property that any two paths in ψ have at most one vertex in common. Motivated by this observation we introduced the concept of simple acyclic graphoidal covers in graphs [3].

Definition 1.7([3]) A simple acyclic graphoidal cover of a graph G is an acyclic graphoidal cover ψ of G such that any two paths in ψ have at most one vertex in common. The minimum cardinality of a simple acyclic graphoidal cover of G is called the simple acyclic graphoidal covering number of G and is denoted by $\eta_{a s}(G)$ or simply $\eta_{a s}$.

Definition 1.8 Let ψ be a collection of internally disjoint paths in G. A vertex of G is said to be an interior vertex of ψ if it is an internal vertex of some path in ψ, otherwise it is said to
be an exterior vertex of ψ.

Theorem 1.9([3]) For any simple acyclic graphoidal cover ψ of a graph G, let t_{ψ} denote the number of exterior vertices of ψ. Let $t=\min t_{\psi}$, where the minimum is taken over all simple acyclic graphoidal covers ψ of G. Then $\eta_{\text {as }}(G)=q-p+t$.

Theorem 1.10([3]) Let G be a unicyclic graph with n pendant vertices. Let C be the unique cycle in G and let m denote the number of vertices of degree greater than 2 on C. Then

$$
\eta_{a s}(G)= \begin{cases}3 & \text { if } m=0 \\ n+2 & \text { if } m=1 \\ n+1 & \text { if } m=2 \\ n & \text { if } m \geq 3\end{cases}
$$

Theorem 1.11([3]) Let m and n be integers with $n \geq m \geq 4$. Then

$$
\eta_{a s}\left(K_{m, n}\right)= \begin{cases}m n-m-n & \text { if } n \leq\binom{ m}{2} \\ m n-m-n+r & \text { if } n=\binom{m}{2}+r, r>0\end{cases}
$$

In this paper we introduce the concept of simple path cover and simple path covering number π_{s} of a graph G and initiate a study of this parameter. We observe that the concept of simple path cover is a special case of Smarandache path k-cover [8]. For any integer $k \geq 1$, a Smarandache path k-cover of a graph G is a collection ψ of paths in G such that each edge of G is in at least one path of ψ and two paths of ψ have at most k vertices in common. Thus if $k=1$ and every edge of G is in exactly one path in ψ, then a Smarandache path k-cover of G is a simple path cover of G.

§2. Main results

Definition 2.1 A simple path cover of a graph G is a path cover ψ of G such that any two paths in ψ have at most one vertex in common. The minimum cardinality of a simple path cover of G is called the simple path covering number of G and is denoted by $\pi_{s}(G)$. Any simple path cover ψ of G for which $|\psi|=\pi_{s}(G)$ is called a minimum simple path cover of G.

Example 2.2 Consider the graph G given in Fig.2.1.

Fig. 2.1
Then $\psi=\left\{\left(v_{1}, v_{4}, v_{7}, v_{8}\right),\left(v_{3}, v_{4}, v_{5}, v_{6}\right),\left(v_{2}, v_{4}\right),\left(v_{7}, v_{5}\right)\right\}$ is a minimum simple path cover of G so that $\pi_{s}(G)=4$.

Remark 2.3 Every path in a simple path cover of a graph G is an induced path.
Theorem 2.4 For any simple path cover ψ of a graph G, let $t_{\psi}=\sum_{P \in \psi} t(P)$, where $t(P)$ denotes the number of internal vertices of P and let $t=\max t_{\psi}$, where the maximum is taken over all simple path covers ψ of G. Then $\pi_{s}(G)=q-t$.

Proof Let ψ be any simple path cover of G. Then

$$
\begin{aligned}
q=\sum_{P \in \psi} & |E(P)| \\
& =\sum_{P \in \psi}(t(P)+1) \\
& =|\psi|+\sum_{P \in \psi} t(P) \\
& =|\psi|+t_{\psi}
\end{aligned}
$$

Hence $|\psi|=q-t_{\psi}$ so that $\pi_{s}(G)=q-t$.
Corollary 2.5 For any graph G with k vertices of odd degree $\pi_{s}(G)=\frac{k}{2}+\sum_{v \in V(G)}\left\lfloor\frac{\operatorname{deg} v}{2}\right\rfloor-t$. Proof Since $q=\frac{k}{2}+\sum_{v \in V(G)}\left\lfloor\frac{\operatorname{deg} v}{2}\right\rfloor$ the result follows.

Corollary 2.6 For any graph $G, \pi_{s}(G) \geq \frac{k}{2}$ where k is the number of vertices of odd degree in G. Further, the following are equivalent.
(i) $\pi_{s}(G)=\frac{k}{2}$.
(ii) There exists a simple path cover ψ of G such that every vertex v in G is an internal vertex of $\left\lfloor\frac{\text { deg } v}{2}\right\rfloor$ paths in ψ.
(ii) There exists a simple path cover ψ of G such that every vertex of odd degree is an
external vertex of exactly one path in ψ and no vertex of even degree is an external vertex of any path in ψ.

Remark 2.7 For any (p, q)-graph $G, \pi_{s}(G) \leq q$. Further, equality holds if and only if G is complete. Hence it follows from Theorem 1.3 that $\pi_{s}\left(K_{n}\right)=\pi\left(K_{n}\right)$ if and only if $n=2$.

Remark 2.8 Since any path cover of a tree T is a simple path cover of T, it follows from Theorem 1.2 that $\pi_{s}(T)=\pi(T)=\frac{k}{2}$, where k is the number of vertices of odd degree in T.

We now proceed to determine the value of π_{s} for unicyclic graphs and wheels.
Theorem 2.9 Let G be a unicyclic graph with cycle C. Let m denote the number of vertices of degree greater than 2 on C. Let k be the number of vertices of odd degree. Then

$$
\pi_{s}(G)= \begin{cases}3 & \text { if } m=0 \\ \frac{k}{2}+2 & \text { if } m=1 \\ \frac{k}{2}+1 & \text { if } m=2 \\ \frac{k}{2} & \text { if } m \geq 3\end{cases}
$$

Proof Let $C=\left(v_{1}, v_{2}, \ldots, v_{r}, v_{1}\right)$.
Case 1. $m=0$.
Then $G=C$ so that $\pi_{s}(G)=3$.
Case 2. $m=1$.
Let v_{1} be the unique vertex of degree greater than 2 on C. Let G_{1} be the tree rooted at v_{1}. Then G_{1} has k vertices of odd degree and hence $\pi_{s}\left(G_{1}\right)=\frac{k}{2}$. Let ψ_{1} be a minimum simple path cover of G_{1}.

If $d e g v_{1}$ is odd, then $\operatorname{deg}_{G_{1}} v_{1}$ is odd. Let P be the path in ψ_{1} having v_{1} as a terminal vertex. Now, let
$P_{1}=P \circ\left(v_{1}, v_{2}\right)$
$P_{2}=\left(v_{2}, v_{3}, \ldots, v_{r}\right)$ and
$P_{3}=\left(v_{r}, v_{1}\right)$.
If $\operatorname{deg} v_{1}$ is even, then $\operatorname{deg}_{G_{1}} v_{1}$ is even. Let $P=\left(x_{1}, x_{2}, \ldots, x_{r}, v_{1}, x_{r+1}, \ldots, x_{s}\right)$ be a path in ψ_{1} having v_{1} as an internal vertex. Now, let
$P_{1}=\left(x_{1}, x_{2}, \ldots, x_{r}, v_{1}, v_{2}\right)$
$P_{2}=\left(x_{s}, x_{s-1}, \ldots, x_{r+1}, v_{1}, v_{r}\right)$ and
$P_{3}=\left(v_{2}, v_{3}, \ldots, v_{r}\right)$.
Then $\psi=\left\{\psi_{1}-\{P\}\right\} \cup\left\{P_{1}, P_{2}, P_{3}\right\}$ is a simple path cover of G and hence $\pi_{s}(G) \leq$ $\left|\psi_{1}\right|+2=\frac{k}{2}+2$. Further, for any simple path cover ψ of G, all the k vertices of odd degree and at least two vertices on C are terminal vertices of paths in ψ. Hence $t \leq q-\frac{k}{2}-2$, so that $\pi_{s}(G)=q-t \geq \frac{k}{2}+2$. Thus $\pi_{s}(G)=\frac{k}{2}+2$.

Case 3. $m=2$.
Let v_{1} and v_{i}, where $2 \leq i \leq r$, be the vertices of degree greater than 2 on C. Let P and Q denote respectively the $\left(v_{1}, v_{i}\right)$-section and $\left(v_{i}, v_{1}\right)$-section of C. Let v_{j} be an internal vertex of P (say). Let R_{1} and R_{2} be the $\left(v_{1}, v_{j}\right)$-section of P and $\left(v_{j}, v_{i}\right)$-section P respectively. Let G_{1} be the graph obtained by deleting all the internal vertices of P.

Subcase 3.1 Both $\operatorname{deg} v_{1}$ and $\operatorname{deg} v_{i}$ are odd.
Then both $\operatorname{deg}_{G_{1}} v_{1}$ and $\operatorname{deg}_{G_{1}} v_{i}$ are even. Hence G_{1} is a tree with $k-2$ odd vertices so that $\pi_{s}\left(G_{1}\right)=\frac{k}{2}-1$. Let ψ_{1} be a minimum simple path cover of G_{1}. Then $\psi=\psi_{1} \cup\left\{R_{1}, R_{2}\right\}$ is a simple path cover of G and $|\psi|=\frac{k}{2}+1$. Hence $\pi_{s}(G) \leq \frac{k}{2}+1$.
Subcase 3.2 Both $d e g v_{1}$ and $d e g v_{i}$ are even.
Then $\operatorname{deg}_{G_{1}} v_{1}$ and $\operatorname{deg}_{G_{1}} v_{i}$ are odd. Hence G_{1} is a tree with $k+2$ vertices of odd degree so that $\pi_{s}\left(G_{1}\right)=\frac{k}{2}+1$. Let ψ_{1} be a minimum simple path cover of G_{1}.

Suppose v_{1} and v_{i} are terminal vertices of two different paths in ψ_{1}, say P_{1} and P_{2} respectively. Now, let

$$
\begin{aligned}
& Q_{1}=P_{1} \circ R_{1} \\
& Q_{2}=P_{2} \circ R_{2}^{-1} \text { and } \\
& \psi=\left\{\psi_{1}-\left\{P_{1}, P_{2}\right\}\right\} \cup\left\{Q_{1}, Q_{2}\right\}
\end{aligned}
$$

Suppose there exists a path P_{1} in ψ_{1} having both v_{1} and v_{i} as its end vertices. Then let $P_{1}=Q$. Let P_{2} be an $u_{1}-w_{1}$ path in ψ_{1} having v_{1} as an internal vertex and P_{3} be an $u_{2}-w_{2}$ path in ψ_{1} having v_{i} as an internal vertex. Let S_{1} and S_{2} be the $\left(u_{1}, v_{1}\right)$-section of P_{2} and $\left(w_{1}, v_{1}\right)$ section of P_{2} respectively. Let S_{3} and S_{4} be the $\left(u_{2}, v_{i}\right)$-section of P_{3} and $\left(w_{2}, v_{i}\right)$-section of P_{3} respectively. Now, let

$$
\begin{aligned}
& Q_{1}=S_{1} \circ P_{1} \circ S_{3}^{-1} \\
& Q_{2}=S_{2} \circ R_{1} \\
& Q_{3}=S_{4} \circ R_{2}^{-1} \text { and } \\
& \psi=\left\{\psi_{1}-\left\{P_{1}, P_{2}, P_{3}\right\}\right\} \cup\left\{Q_{1}, Q_{2}, Q_{3}\right\}
\end{aligned}
$$

Then ψ is a simple path cover of G and $|\psi|=\left|\psi_{1}\right|=\frac{k}{2}+1$ and hence $\pi_{s}(G) \leq \frac{k}{2}+1$.
Subcase $3.3 \operatorname{deg} v_{1}$ is odd and $\operatorname{deg} v_{i}$ is even.
Then $\operatorname{deg}_{G_{1}} v_{1}$ is even and $\operatorname{deg}_{G_{1}} v_{i}$ is odd. Hence G_{1} is a tree with k vertices of odd degree so that $\pi_{s}\left(G_{1}\right)=\frac{k}{2}$. Let ψ_{1} be a minimum simple path cover of G_{1}. Let P_{1} be the path in ψ_{1} having v_{i} as a terminal vertex.

$$
\begin{aligned}
& \text { If } E\left(P_{1}\right) \cap E(Q)=\phi, \text { let } \\
& \quad Q_{1}=P_{1} \circ R_{2}^{-1} \\
& Q_{2}=R_{1} \text { and } \\
& \quad \psi=\left\{\psi_{1}-\left\{P_{1}\right\}\right\} \cup\left\{Q_{1}, Q_{2}\right\} .
\end{aligned}
$$

Suppose $E\left(P_{1}\right) \cap E(Q) \neq \phi$. Since $\operatorname{deg}_{G_{1}} v_{i} \geq 3$, there exists an $u_{1}-w_{1}$ path in ψ_{1}, say P_{2}, having v_{i} as an internal vertex. Let S_{1} and S_{2} be the $\left(w_{1}, v_{i}\right)$-section of P_{2} and $\left(u_{1}, v_{i}\right)$-section of P_{2} respectively. Now, let

$$
\begin{aligned}
& Q_{1}=P_{1} \circ S_{1}^{-1} \\
& Q_{2}=S_{2} \circ R_{2}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{3}=R_{1} \text { and } \\
& \psi=\left\{\psi_{1}-\left\{P_{1}, P_{2}\right\}\right\} \cup\left\{Q_{1}, Q_{2}, Q_{3}\right\} .
\end{aligned}
$$

Then ψ is a simple path cover of G and $|\psi|=\left|\psi_{1}\right|+1=\frac{k}{2}+1$. Hence $\pi_{s}(G) \leq \frac{k}{2}+1$.
Thus in either of the above subcases, we have $\pi_{s}(G) \leq \frac{k}{2}+1$. Also, for any simple path cover ψ of G all the k vertices of odd degree and at least one vertex on C are terminal vertices of paths in ψ. Hence $t \leq q-\frac{k}{2}-1$, so that $\pi_{s}(G)=q-t \geq \frac{k}{2}+1$.

Hence $\pi_{s}(G)=\frac{k}{2}+1$.
Case 4. $m \geq 3$.
Let $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{s}}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq r$ and $s \geq 3$, be the vertices of degree greater than 2 on C. Let $\psi_{i_{j}}, 1 \leq j \leq s$, be a minimum simple path cover of the tree rooted at $v_{i_{j}}$. Consider the vertices $v_{i_{1}}, v_{i_{2}}$ and $v_{i_{3}}$. For each j, where $1 \leq j \leq 3$, let P_{j} be the path in $\psi_{i_{j}}$ in which $v_{i_{j}}$ is a terminal vertex if $\operatorname{deg} v_{i_{j}}$ is odd, otherwise let P_{j} be an $u_{j}-w_{j}$ path in $\psi_{i_{j}}$ in which $v_{i_{j}}$ is an internal vertex and R_{j} and S_{j} be the $\left(u_{j}, v_{i_{j}}\right)$ and $\left(w_{j}, v_{i_{j}}\right)$ sections of P_{j} respectively. Further, let $P=\left(v_{i_{1}}, v_{i_{1}+1}, \ldots, v_{i_{2}}\right), Q=\left(v_{i_{2}}, v_{i_{2}+1}, \ldots, v_{i_{3}}\right)$ and $R=\left(v_{i_{3}}, v_{i_{3}+1}, \ldots, v_{i_{1}}\right)$.

If deg $v_{i_{1}}$, deg $v_{i_{2}}$ and deg $v_{i_{3}}$ are even, let $Q_{1}=R_{1} \circ P \circ R_{2}^{-1}, Q_{2}=S_{2} \circ Q \circ R_{3}^{-1}$ and $Q_{3}=S_{3} \circ R \circ S_{1}^{-1}$.

If deg $v_{i_{1}}$, deg $v_{i_{2}}$ and deg $v_{i_{3}}$ are odd, let $Q_{1}=P_{1} \circ P, Q_{2}=P_{2} \circ Q$ and $Q_{3}=P_{3} \circ R$.
If deg $v_{i_{1}}$, deg $v_{i_{2}}$ are odd and deg $v_{i_{3}}$ is even, let $Q_{1}=P_{1} \circ P \circ P_{2}^{-1}, Q_{2}=R_{3} \circ Q^{-1}$ and $Q_{3}=S_{3} \circ R$.

If deg $v_{i_{1}}$, deg $v_{i_{2}}$ are even and deg $v_{i_{3}}$ is odd, let $Q_{1}=R_{1} \circ P \circ R_{2}^{-1}, Q_{2}=S_{2} \circ Q \circ P_{3}^{-1}$ and $Q_{3}=R \circ S_{1}^{-1}$.

Then $\psi=\left(\bigcup_{j=1}^{s} \psi_{i_{j}}-\left\{P_{1}, P_{2}, P_{3}\right\}\right) \cup\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ is a simple path cover of G such that every vertex of odd degree is an external vertex of exactly one path in ψ and no vertex of even degree is an external vertex of any path in ψ. Hence $\pi_{s}(G)=\frac{k}{2}$.

Corollary 2.10 Let G be as in Theorem 2.9. Then $\pi_{s}(G)=\pi(G)$ if and only if $m \geq 3$.
Proof The proof follows from Theorem 2.9 and Theorem 1.4.
We observe that there are infinite families of graphs such as trees and unicyclic graphs having at least three vertices of degree greater than 2 on C for which $\pi_{s}=\pi$ and so the following problem arises naturally.

Problem 2.11 Characterize graphs for which $\pi_{s}=\pi$.
Theorem 2.12 For a wheel $W_{n}=K_{1}+C_{n-1}$, we have

$$
\pi_{s}\left(W_{n}\right)= \begin{cases}6 & \text { if } n=4 \\ \left\lfloor\frac{n}{2}\right\rfloor+3 & \text { if } n \geq 5\end{cases}
$$

Proof Let $V\left(W_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E\left(W_{n}\right)=\left\{v_{0} v_{i}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq\right.$ $i \leq n-2\} \cup\left\{v_{1} v_{n-1}\right\}$.

If $n=4$, then $W_{n}=K_{4}$ and hence $\pi_{s}\left(W_{n}\right)=6$.
Now, suppose $n \geq 5$. Let $r=\left\lfloor\frac{n}{2}\right\rfloor$
If n is odd, let

$$
\begin{aligned}
P_{i} & =\left(v_{i}, v_{0}, v_{r+i}\right), i=1,2, \ldots, r \\
P_{r+1} & =\left(v_{1}, v_{2}, \ldots, v_{r}\right) \\
P_{r+2} & =\left(v_{1}, v_{2 r}, v_{2 r-1}, \ldots, v_{r+2}\right) \text { and } \\
P_{r+3} & =\left(v_{r}, v_{r+1}, v_{r+2}\right)
\end{aligned}
$$

If n is even, let

$$
\begin{aligned}
P_{i} & =\left(v_{i}, v_{0}, v_{r-1+i}\right), i=1,2, \ldots, r-1 . \\
P_{r} & =\left(v_{0}, v_{2 r-1}\right) \\
P_{r+1} & =\left(v_{1}, v_{2}, \ldots, v_{r-1}\right), \\
P_{r+2} & =\left(v_{1}, v_{2 r-1}, \ldots, v_{r+1}\right) \text { and } \\
P_{r+3} & =\left(v_{r-1}, v_{r}, v_{r+1}\right) .
\end{aligned}
$$

Then $\psi=\left\{P_{1}, P_{2}, \ldots, P_{r+3}\right\}$ is a simple path cover of W_{n}. Hence $\pi_{s}\left(W_{n}\right) \leq r+3=\left\lfloor\frac{n}{2}\right\rfloor+3$. Further, for any simple path cover ψ of W_{n} at least three vertices on $C=\left(v_{1}, v_{2}, \ldots, v_{n-1}\right)$ are terminal vertices of paths in ψ. Hence $t \leq q-\frac{k}{2}-3$, so that $\pi_{s}\left(W_{n}\right)=q-t \geq \frac{k}{2}+3=\left\lfloor\frac{n}{2}\right\rfloor+3$. Thus $\pi_{s}\left(W_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+3$.

Remark 2.13 Since every simple acyclic graphoidal cover of a graph G is a simple path cover of G and every simple path cover of G is a path cover of G, we have $\eta_{a s} \geq \pi_{s} \geq \pi$. These parameters may be either equal or all distinct as shown below. For the graph G_{1} given in Figure 2, $\eta_{a s}\left(G_{1}\right)=7, \pi_{s}\left(G_{1}\right)=6, \pi\left(G_{1}\right)=5$ and for the graph G_{2} given in Fig.2.2, we have $\eta_{a s}\left(G_{2}\right)=\pi_{s}\left(G_{2}\right)=\pi\left(G_{2}\right)=3$.

Problem 2.14 Characterize graphs for which $\eta_{a s}=\pi_{s}=\pi$.
We now proceed to obtain some bounds for π_{s}.
Theorem 2.15 For any graph $G, \pi_{s}(G) \geq\left\lceil\frac{\Delta}{2}\right\rceil$. Further, the following are equivalent.
(i) $\pi_{s}(G)=\left\lceil\frac{\Delta}{2}\right\rceil$.
(ii) $\eta_{a s}(G)=\Delta-1$.
(iii) G is homeomorphic to a star.

Proof Since $\pi_{s} \geq \pi$, the inequality follows from Theorem 1.5.
Suppose $\pi_{s}(G)=\left\lceil\frac{\Delta}{2}\right\rceil$. Let $\psi=\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$, where $r=\left\lceil\frac{\Delta}{2}\right\rceil$ be a minimum simple path cover of G. Let v be a vertex of G with $\operatorname{deg} v=\Delta$. Then v lies on each P_{i} and v is an internal vertex of all the paths in ψ except possibly for at most one path. Hence $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{v\}$, for all $i \neq j$, so that G is homeomorphic to a star. Obviously, if G is homeomorphic to a star, then $\pi_{s}(G)=\left\lceil\frac{\Delta}{2}\right\rceil$. Thus (i) and (iii) are equivalent. Similarly the equivalence of (ii) and (iii) can be proved.

Theorem 2.16 For any graph $G, \pi_{s}(G) \geq\binom{\omega}{2}$, where ω is the clique number of G.
Proof Let H be a maximum clique in G so that $|E(H)|=\binom{\omega}{2}$. Let ψ be a simple path cover of G. Since any path in ψ covers at most one edge of H, it follows that $\pi_{s}(G) \geq\binom{\omega}{2}$.

In the following theorem we characterize cubic graphs for which $\pi_{s}=\binom{\omega}{2}$.
Theorem 2.17 Let G be a cubic graph. Then $\pi_{s}(G)=\binom{\omega}{2}$ if and only if $G=K_{4}$.
Proof Let G be a cubic graph with $\pi_{s}(G)=\binom{\omega}{2}$. Clearly $\omega=3$ or 4 . Suppose $\omega=3$. Then it follows from Corollary 2.6 that $\pi_{s}(G) \geq \frac{p}{2}$ so that $p=6$. Hence G is isomorphic to the cartesian product $K_{3} \times K_{2}$ and it can be shown that $\pi_{s}\left(K_{3} \times K_{2}\right)=6 \neq\binom{\omega}{2}$. Thus $\omega=4$ and consequently $G=K_{4}$.

Problem 2.18 Characterize graphs for which $\pi_{s}(G)=\binom{\omega}{2}$.
If $\Delta \leq 3$, then every simple path cover of G is a simple acyclic graphoidal cover of G and hence $\eta_{a s}(G)=\pi_{s}(G)$. However, the converse is not true. For the complete graph $K_{p}(p \geq 5)$, $\pi_{s}=\eta_{a s}$ whereas $\Delta \geq 4$. We now prove that the converse is true for trees and unicyclic graphs.

Theorem 2.19 Let G be a tree. Then $\eta_{a s}(G)=\pi_{s}(G)$ if and only if $\Delta \leq 3$.
Proof Let G be a tree with $\eta_{a s}(G)=\pi_{s}(G)$.
Suppose $\Delta \geq 4$. Let v be a vertex of G with $\operatorname{deg} v \geq 4$.
Let ψ be a minimum simple acyclic graphoidal cover of G. Let P_{1} and P_{2} be two paths in ψ having v as a terminal vertex. Let $Q=P_{1} \circ P_{2}^{-1}$. Since G is a tree, Q is an induced path and hence $\psi_{1}=\left(\psi-\left\{P_{1}, P_{2}\right\}\right) \cup\{Q\}$ is a simple path cover of G with $\left|\psi_{1}\right|=|\psi|-1=\eta_{\text {as }}-1$ so that $\pi_{s}(G) \leq \eta_{a s}(G)-1$, which is a contradiction. Hence $\Delta \leq 3$.

Theorem 2.20 Let G be a unicyclic graph. Then $\eta_{a s}(G)=\pi_{s}(G)$ if and only if $\Delta \leq 3$.
Proof Let G be a unicyclic graph with $\eta_{a s}(G)=\pi_{s}(G)$. Let k denote the number of vertices of odd degree and n be the number of pendant vertices of G.

It follows from Theorem 1.10 and Theorem 2.9 that $k=2 n$. Now, suppose $\Delta>3$. Then

$$
\begin{aligned}
2 q & =\sum_{\begin{array}{c}
v \in V(G) \\
d e g v=1
\end{array}} \operatorname{deg} v+\sum_{\substack{v \in V(G) \\
\text { deg } v>1 \\
\text { and is odd }}} \operatorname{deg} v+\sum_{\substack{v \in V(G) \\
\text { deg } v>1 \\
\text { and is even }}} \operatorname{deg} v \\
& >n+3(k-n)+2(p-k) \\
& =2 p
\end{aligned}
$$

which is a contradiction. Hence $\Delta \leq 3$.
The above results lead to the following problem.
Problem 2.21 Characterize graphs for which $\eta_{a s}(G)=\pi_{s}(G)$.
In the following theorem we establish a relation connecting the parameters $\eta_{a s}$ and π_{s}.
Theorem 2.22 For any (p, q)-graph $G, \eta_{\text {as }}(G) \leq \pi_{s}(G)+q-p+n-\frac{k}{2}$, where n and k respectively denote the number of pendant vertices and the number of odd vertices of G. Further, equality holds if and only if $\pi_{s}(G)=\frac{k}{2}$.

Proof Let ψ be a minimum simple path cover of G. Let $i(v)$ denote the number of paths in ψ having $v \in V$ as an internal vertex. If $i(v) \geq 2$, let P_{i}, where $1 \leq i \leq i(v)$, be the u_{i} - w_{i} path in ψ having v as an internal vertex and let Q_{i} and R_{i}, where $2 \leq i \leq i(v)$, respectively denote the $\left(v, w_{i}\right)$-section and $\left(v, u_{i}\right)$-section of P_{i}. Let ψ_{1} be the collection of paths obtained from ψ by replacing $P_{2}, P_{3}, \ldots, P_{i(v)}$ by $Q_{2}, Q_{3}, \ldots, Q_{i(v)}$ and $R_{2}, R_{3}, \ldots, R_{i(v)}$ for every $v \in V$ with $i(v) \geq 2$. Then ψ_{1} is a simple acyclic graphoidal cover of G with $\left|\psi_{1}\right|=\pi_{s}(G)+\sum_{\substack{v \in V \\ i(v) \geq 2}}(i(v)-1)$. Since $i(v) \leq\left\lfloor\frac{\operatorname{deg} v}{2}\right\rfloor$, it follows that

$$
\begin{aligned}
& \eta_{a s}(G) \leq \pi_{s}(G)+\sum_{\substack{v \in V \\
d e g \\
v \geq 4}}\left(\left\lfloor\frac{\operatorname{deg} v}{2}\right\rfloor-1\right) \\
& =\pi_{s}(G)+\sum_{\substack{v \in V \\
\operatorname{deg} v \geq 2}}\left(\left\lfloor\frac{\operatorname{deg} v}{2}\right\rfloor-1\right) \\
& =\pi_{s}(G)+\sum_{\begin{array}{c}
v \in V \\
d e g \\
v \geq 2
\end{array}}\left\lfloor\frac{\operatorname{deg} v}{2}\right\rfloor-(p-n) \\
& =\pi_{s}(G)+\sum_{\begin{array}{c}
v \in V \\
\text { deg } v \geq 2 \\
\text { and is odd }
\end{array}} \frac{\operatorname{deg} v-1}{2}+\sum_{\begin{array}{c}
v \in V \\
\text { deg } v \geq 2 \\
\text { and is even }
\end{array}} \frac{\operatorname{deg} v}{2}-p+n \\
& =\pi_{s}(G)+\sum_{\substack{v \in V \\
\text { deg } v \geq 2 \\
\text { and is odd }}} \frac{\operatorname{deg} v}{2}-\frac{k-n}{2}+\sum_{\substack{v \in V \\
d e g \\
v \geq 2 \\
\text { and is even }}} \frac{\operatorname{deg} v}{2}-p+n \\
& =\pi_{s}(G)+\sum_{\begin{array}{c}
v \in V \\
\operatorname{deg} v \geq 2
\end{array}} \frac{\operatorname{deg} v}{2}-\frac{k}{2}+\frac{n}{2}-p+n \\
& =\pi_{s}(G)+\sum_{v \in V} \frac{\operatorname{deg} v}{2}-\frac{k}{2}-p+n . \\
& =\pi_{s}(G)+q-p+n-\frac{k}{2} .
\end{aligned}
$$

Thus $\eta_{a s}(G) \leq \pi_{s}(G)+q-p+n-\frac{k}{2}$. Further, it is clear that $\eta_{a s}(G)=\pi_{s}(G)+q-p+n-\frac{k}{2}$ if and only if there exist a minimum simple path cover ψ of G such that $i(v)=\left\lfloor\frac{\operatorname{deg} v}{2}\right\rfloor$ for all $v \in V$. Hence it follows from Corollary 2.6 that $\eta_{a s}(G)=\pi_{s}(G)+q-p+n-\frac{k}{2}$ if and only if $\pi_{s}=\frac{k}{2}$.

Corollary 2.23 If $\pi_{s}(G)=\frac{k}{2}$, then $\eta_{a s}(G)=q-p+n$.

Proof Suppose $\pi_{s}(G)=\frac{k}{2}$. By Theorem 2.22, we have $\eta_{a s}(G) \leq q-p+n$. Hence it follows from Theorem 1.9 that $\eta_{a s}(G)=q-p+n$.

Remark 2.24 The converse of Corollary 2.23 is not true. For example, $\eta_{a s}\left(K_{4,5}\right)=q-p=11$, whereas $\pi_{s}\left(K_{4,5}\right)>2=\frac{k}{2}$.

References

[1] B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J. pure appl. Math., 18(10)(1987), 882-890.
[2] S. Arumugam, B. D. Acharya and E. Sampathkumar, Graphoidal covers of a graph - A creative review, Proceedings of the National workshop on Graph Theory and its Applications, Manonmaniam Sundaranar University, Tirunelveli, Eds. S. Arumugam, B. D. Acharya and E. Sampathkumar, Tata McGraw Hill, (1996), 1-28.
[3] S. Arumugam and I. Sahul Hamid, Simple Acyclic Graphoidal covers in a graph, Australasian Journal of Combinatorics, 37(2007), 243-255.
[4] S. Arumugam and J. Suresh Suseela, Acyclic graphoidal covers and path partitions in a graph, Discrete Math., 190(1998),67-77.
[5] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
[6] F. Harary, Covering and packing in graphs I, Ann. N. Y. Acad. Sci., 175(1970), 198 205.
[7] F. Harary and A. J. Schwenk, Evolution of the path number of a graph, covering and packing in graphs II, Graph Theory and Computing, Ed. R. C. Road, Academic Press, New York, (1972), 39-45.
[8] L.F. Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005
[9] B. Peroche, The path number of some multipartite graphs, Annals of Discrete Math., 9(1982), 193-197.
[10] R. G. Stanton, D. D. Cowan and L. O. James, Some results on path numbers, Proc. Louisiana Conf. on Combinatorics, Graph Theory and computing (1970), 112-135.
[11] R. G. Stanton, D. D. Cowan and L. O. James, Tripartite path number, Graph Theory and Computing, Eds. R. C. Read, Academic Press, New York, (1973), 285-294.

[^0]: ${ }^{1}$ Supported by NBHM Project 48/2/2004/R\&D-II/7372.
 ${ }^{2}$ Received May 16, 2008. Accepted September 16, 2008.

