Singed Total Domatic Number of a Graph

H.B. Walikar ${ }^{1}$, Shailaja S. Shirkol ${ }^{2}$, Kishori P.Narayankar ${ }^{3}$
1. Department of Computer Science, Karnatak University, Dharwad, Karnataka, INDIA-580003
2. Department of Mathematics, Karnatak University, Dharwad, Karnataka, INDIA
3. Department of Mathematics, Mangalore University, Mangalore, Karnataka, INDIA
Email: walikarhb@yahoo.co.in, shaila_shirkol@rediffmail.com

Abstract

Let G be a finite and simple graph with vertex set $V(G), k \geq 1$ an integer and let $f: V(G) \rightarrow\{-k, k-1, \cdots,-1,1, \cdots, k-1, k\}$ be $2 k$ valued function. If $\sum_{x \in N(v)} f(x) \geq k$ for each $v \in V(G)$, where $N(v)$ is the open neighborhood of v, then f is a Smarandachely k-Signed total dominating function on G. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of Smarandachely k-Signed total dominating function on G with the property that $\sum_{i=1}^{d} f_{i}(x) \leq k$ for each $x \in V(G)$ is called a Smarandachely k-Signed total dominating family (function) on G. Particularly, a Smarandachely 1-Signed total dominating function or family is called signed total dominating function or family on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number of G. In this paper, some properties related signed total domatic number and signed total domination number of a graph are studied and found the sign total domatic number of certain class of graphs such as fans, wheels and generalized Petersen graph.

Key Words: Smarandachely k-signed total dominating function, signed total domination number, signed total domatic number.

AMS(2000): 05C69

§1. Terminology and Introduction

Various numerical invariants of graphs concerning domination were introduced by means of dominating functions and their variants [1] and [4]. We considered finite, undirected, simple graphs $G=(V, E)$ with vertex set $V(G)$ and edge set $E(G)$. The order of G is given by $n=|V(G)|$. If $v \in V(G)$, then the open neighborhood of v is $N(v)=\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. The number $d_{G}(v)=d(v)=|N(v)|$ is the degree of the vertex $v \in V(G)$, and $\delta(G)$ is the minimum degree of G. The complete graph and the cycle of order n are denoted by K_{n} and C_{n} respectively. A fan and a wheel is a graph obtained from a path and a cycle by adding a new vertex and edges joining it to all the vertices of the path and cycle respectively. The generalized Petersen graph $P(n, k)$ is defined to be a graph on $2 n$ vertices with $V(P(n, k))=\left\{v_{i} u_{i}: 1 \leq i \leq n\right\}$ and $E(P(n, k))=$

[^0]$\left\{v_{i} v_{i+1}, v_{i} u_{i}, u_{i} u_{i+k}: 1 \leq i \leq n\right.$, subscripts modulo $\left.n\right\}$. If $A \subseteq V(G)$ and f is a mapping from $V(G)$ in to some set of numbers, then $f(A)=\sum_{x \in A} f(x)$.

Let $k \geq 1$ be an integer and let $f: V(G) \rightarrow\{-k, k-1, \cdots,-1,1, \cdots, k-1, k\}$ be $2 k$ valued function. If $\sum_{x \in N(v)} f(x) \geq k$ for each $v \in V(G)$, where $N(v)$ is the open neighborhood of v, then f is a Smarandachely k-Signed total dominating function on G. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of Smarandachely k-Signed total dominating function on G with the property that $\sum_{i=1}^{d} f_{i}(x) \leq k$ for each $x \in V(G)$ is called a Smarandachely k-Signed total dominating family (function) on G. Particularly, a Smarandachely 1-Signed total dominating function or family is called signed total dominating function or family on G. The singed total dominating function is defined in [6] as a two valued function $f: V(G) \rightarrow\{-1,1\}$ such that $\sum_{x \in N(v)} f(x) \geq 1$ for each $v \in V(G)$. The minimum of weights $w(f)$, taken over all signed total dominating functions f on G, is called the signed total domination number $\gamma_{t}^{s}(G)$. Signed total domination has been studied in [3].

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of signed total dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(x) \leq 1$ for each $x \in V(G)$, is called a signed total dominating family on G. The maximum number of functions in a signed total dominating family is the signed total domatic number of G, denoted by $d_{t}^{s}(G)$. Signed total domatic number was introduced by Guan Mei and Shan Er-fang [2]. Guan Mei and Shan Er-fang [2] have determined the basic properties of $d_{t}^{s}(G)$. Some of them are analogous to those of the signed domatic number in [5] and studied sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs. Guan Mei and Shan Er-fang [2] presented the following results which are useful in our investigations.

Proposition 1.1([6]) For Circuit C_{n} of length n we have $\gamma_{t}^{s}\left(C_{n}\right)=n$.
Proof Here no other signed total dominating exists than the constants equal to 1.
Theorem 1.2([3]) Let T be a tree of order $n \geq 2$. then, $\gamma_{t}^{s}(T)=n$ if and only if every vertex of T is a support vertex or is adjacent to a vertex of degree 2 .

Proposition 1.3([2]) The signed total domatic number $d_{t}^{s}(G)$ is well defined for each graph G.
Proposition 1.4([2]) For any graph G of order $n, \gamma_{t}^{s}(G) \cdot d_{t}^{s}(G) \leq n$.
Proposition 1.5([2]) If G is a graph with the minimum degree $\delta(G)$, then $1 \leq d_{t}^{s}(G) \leq \delta(G)$.
Proposition 1.6([2]) The signed total domatic number is an odd integer.
Corollary $1.7([2])$ If G is a graph with the minimum degree $\delta(G)=1$ or 2 , then $d_{t}^{s}(G)=1$. In particular, $d_{t}^{s}\left(C_{n}\right)=d_{t}^{s}\left(P_{n}\right)=d_{t}^{s}\left(K_{1, n-1}\right)=d_{t}^{s}(T)=1$, where T is a tree.

$\S 2$. Properties of the Signed Total Domatic Number

Proposition 2.1 If G is a graph of order n and $\gamma_{t}^{s}(G) \geq 0$ then, $\gamma_{t}^{s}(G)+d_{t}^{s}(G) \leq n+1$ equality
holds if and only if G is isomorphic to C_{n} or tree T of order $n \geq 2$.
Proof Let G be a graph of order n. The inequality follows from the fact that for any two non-negative integers a and $b, a+b \leq a b+1$. By Proposition 1.4 we have,

$$
\gamma_{t}^{s}(G)+d_{t}^{s}(G) \leq \gamma_{t}^{s}(G) \cdot d_{t}^{s}(G)+1 \leq n+1
$$

Suppose that $\gamma_{t}^{s}(G)+d_{t}^{s}(G)=n+1$ then, $n+1=\gamma_{t}^{s}(G)+d_{t}^{s}(G) \leq \gamma_{t}^{s}(G) \cdot d_{t}^{s}(G)+1 \leq n+1$.
This implies that $\gamma_{t}^{s}(G)+d_{t}^{s}(G)=\gamma_{t}^{s}(G) \cdot d_{t}^{s}(G)+1$. This shows that $\gamma_{t}^{s}(G) \cdot d_{t}^{s}(G)=n$ Solving equations 1 and 2 simultaneously, we have either $\gamma_{t}^{s}(G)=1$ and $d_{t}^{s}(G)=n$ or $\gamma_{t}^{s}(G)=n$ and $d_{t}^{s}(G)=1$. If $\gamma_{t}^{s}(G)=1$ and $d_{t}^{s}(G)=n$ then $n=d_{t}^{s}(G) \leq \delta(G)$ There fore, $\delta(G) \geq n$ a contradiction.

If $\gamma_{t}^{s}(G)=n$ and $d_{t}^{s}(G)=1$ then by Proposition 1.1 and Proposition 1.2, we have $\gamma_{t}^{s}\left(C_{n}\right)=$ n and $d_{t}^{s}\left(C_{n}\right)=1$ and By Theorem 1.2, If T is a tree of order $n \geq 2$ then, $\gamma_{t}^{s}(T)=n$ if and only if every vertex of T is a support vertex or is adjacent to a vertex of degree 2 and $d_{t}^{s}(T)=1$.

Theorem 2.2 Let G be a graph of order n then $d_{t}^{s}(G)+d_{t}^{s}(\bar{G}) \leq n-1$.
Proof Let G be a regular graph order n, By Proposition 1.5 we have $d_{t}^{s}(G) \leq \delta(G)$ and $d_{t}^{s}(\bar{G}) \leq \delta(\bar{G})$. Thus we have,

$$
d_{t}^{s}(G)+d_{t}^{s}(\bar{G}) \leq \delta(G)+\delta(\bar{G})=\delta(G)+(n-1-\Delta(G)) \leq n-1
$$

Thus the inequality holds.

§3. Signed Total Domatic Number of Fans, Wheels and Generalized Petersen Graph

Proposition 3.1 Let G be a fan of order n then $d_{t}^{s}(G)=1$.
Proof Let $n \geq 2$ and let $x_{1}, x_{2}, \ldots, x_{n}$ be the vertex set of the fan G such that $x_{1}, x_{2}, \ldots, x_{n}, x_{1}$ is a cycle of length n and x_{n} is adjacent to x_{i} for each $i=2,3, \ldots, n-2$. By Proposition 1.5 and Proposition $1.6,1 \leq d_{t}^{s}(G) \leq \delta(G)=2$, which implies $d_{t}^{s}(G)=1$ which proves the result.

Proposition 3.2 If G is a wheel of order n then $d_{t}^{s}(G)=1$.
Proof Let $x_{1}, x_{2}, \ldots, x_{n}$ be the vertex set of the wheel G such that $x_{1}, x_{2}, \ldots, x_{n-1}, x_{1}$ is a cycle of length $n-1$ and x_{n} is adjacent to x_{i} for each $i=1,2,3, \ldots, n-1$. According to the Proposition 1.5 and Proposition 1.6, we observe that either $d_{t}^{s}(G)=1$ or $d_{t}^{s}(G)=3$. Suppose to the contrary that $d_{t}^{s}(G)=3$. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be a corresponding signed total dominating family. Because of $f_{1}\left(x_{n}\right)+f_{2}\left(x_{n}\right)+f_{3}\left(x_{n}\right) \leq 1$, there exists at least one function say f_{1} with $f_{1}\left(x_{n}\right)=-1$ The condition $\sum_{x \in N(v)} f_{1}(x) \geq 1$ for each $v \in\left(V(G)-\left\{x_{n}\right\}\right)$ yields $f_{1}(x)=1$ for each some $i \in\{1,2, \ldots, n-1\}$ and $t=2,3$ then it follows that $f_{t}\left(x_{i+1}\right)=f_{t}\left(x_{i+2}\right)=1$, where the indices are taken taken modulo $n-1$ and $f_{t}\left(x_{n}\right)=1$. Consequently, the function f_{t} has at most $\left\lfloor\frac{n}{2}\right\rfloor-1$ for n is odd and $\frac{n}{2}-1$ for n is even number of vertices $x \in V(G)$ such that
$f_{t}(x)=-1$. Thus there exist at most $\left\lfloor\frac{n}{2}\right\rfloor-1$ for n is odd and $\frac{n}{2}-1$ for n is even number of vertices $x \in V(G)$ such that $f_{t}(x)=-1$ for at least one $i=1,2,3$. Since $n \geq 4$, we observe that $2\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)=2\left(\frac{n}{2}-1\right)+1<n$ for n is odd and $2\left(\frac{n}{2}-1\right)+1<n$, a contradiction to $f_{1}\left(x_{n}\right)+f_{2}\left(x_{n}\right)+f_{3}\left(x_{n}\right) \leq 1$ for each $x \in V(G)$.

Proposition 3.3 Let $G=P(n, k)$ be a generalized Petersen graph then for $k=1,2, d_{t}^{s}(G)=1$.
Proof The generalized Petersen graph $P(n, 1)$ is a graph on $2 n$ vertices with

$$
V(P(n, k))=\left\{v_{i} u_{i}: 1 \leq i \leq n\right\}
$$

and $E(P(n, k))=\left\{v_{i} v_{i+1}, v_{i} u_{i}, u_{i} u_{i+1}: 1 \leq i \leq n\right.$, subscripts modulo $\left.n\right\}$. According to the Proposition 1.5, Proposition 1.6, we observe that $d_{t}^{s}(G)=1$ or $d_{t}^{s}(G)=3$.

Case 1: $\quad k=1$
Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be a corresponding signed total dominating functions. Because of $f_{1}\left(v_{n}\right)+$ $f_{2}\left(v_{n}\right)+f_{3}\left(v_{n}\right) \leq 1$ for each $i \in\{1,2, \ldots, 2 n\}$, there exist at least one number $j \in\{1,2,3\}$ such that $f_{j}\left(v_{i}\right)=-1$. Let, for example, $f_{1}\left(v_{k}\right)=-1$ for for any $t \in\{1,2, \ldots, 2 n\}$ then $\sum_{x \in N\left(v_{t}\right)} f_{1}(v) \geq 1$ implies that $f_{1}\left(v_{k}\right)=f_{1}\left(v_{k+1}\right)=-1$ for $k \cong 0,1 \bmod 4$ and $f_{1}\left(v_{k}\right)=-1$ for $k \cong 0 \bmod 3$. This implies, there exist at most $8 r, 8 r+2,8 r+4,8 r+6, r \geq 1$ vertices such that $f_{t}(v)=-1$ for each $t=2,3$ when $P(n, 1)$ is of order $2(6 r+l)$ for $0 \leq l \leq 2,2(6 r+3)$, $2(6 r+4), 2(6 r+5)$ respectively. Thus there exist $3(8 r)=3\left(8\left(\frac{n}{12}-\frac{l}{6}\right)<n\right.$ (similarly $<n$ for all values of vertex set) a contradiction to $f_{1}\left(v_{n}\right)+f_{2}\left(v_{n}\right)+f_{3}\left(v_{n}\right) \leq 1$ for each $v \in V(G)$.

Case 2: $\quad k=2$
Similar to the proof of Case 1, we can prove the claim in this case.

References

[1] Cockayne E.J, Hedetniemi S.T. Towords a theory of domination in graphs, J. Networks, 1977, 7: 247-261.
[2] Guan Mei, Shan Er-fang. Signed total domatic number of a graph, J.Shanghai Univ (Engl Ed) 200812 (1): 31-34.
[3] Henning M.A. Signed total domination in graphs, J. Discrete Mathematics, 2001, 278 : 109-125.
[4] Haynes T.W, Hedetniemi S.T, Slater P.J. Fundamentals of domination in graphs, M. New York: Marcel Dekker, 1998.
[5] Volkmann L, Zelinka B. Signed domatic number of a graph, J. Discrete Applied Mathematics, 2005, 150: 261-267.
[6] Zelinka B, Liberec. Signed total domination number of a graph, J. Czechoslovak Mathematical Journal, 2001, 51: 225-229.

[^0]: ${ }^{1}$ Received February 18, 2010. Accepted March 20, 2010.

