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Abstract

In this paper, we present characterizations of annihilator polynomials over the ring, Zn =
Z/nZ, of integers modulo n. These characterizations are used to derive an expression for
the number of annihilator polynomials of degree k over Zn, as well as one for the number of
monic annihilators of degree k.

1 Introduction

Given the ring, Zn = Z/nZ, of integers modulo n, and a polynomial, f(x) ∈ Zn[x], over Zn,
we say that f(x) annihilates Zn if f(l) ≡ 0 (mod n) for all l ∈ Zn. A polynomial over Zn that
annihilates Zn is called an annihilator polynomial. We shall denote the set of all annihilator
polynomials of degree k over Zn by A(n, k), and the cardinality of this set by A(n, k). To allow
for the zero polynomial (f(x) ≡ 0), we shall let A(n, 0) = {0}, so that A(n, 0) = 1. We shall
also be interested in monic polynomials, i.e., polynomials f(x) =

∑k
i=0 aix

i with ak = 1, that
annihilate Zn. The set of monic annihilator polynomials of degree k over Zn shall be denoted
byM(n, k), and we set M(n, k) = |M(n, k)|.
If p is prime, then Zp is a field, and it is well-known that annihilator polynomials over Zp are

precisely all the multiples of xp − x. It follows that, for k ≥ p, we have A(p, k) = pk−p(p − 1)
and M(p, k) = pk−p, and for 1 ≤ k < p, A(p, k) = M(p, k) = 0. In this paper, we find
characterizations of annihilator polynomials over Zn for an arbitrary integer n, which we use to
derive expressions for A(n, k) and M(n, k).
Given an integer n > 0, we shall find it useful to associate with it another integer S(n),

defined as the smallest integer j > 0 such that n|j! (i.e. n divides j!). S(n) is often called the
nth Smarandache number. For example, we have S(1) = 1, S(2) = 2, S(6) = 3, S(8) = 4 and
so on. It is not hard to see that S(p) = p for any prime p, and if n =

∏s
i=1 pi

mi is the prime
factorization of n, then S(n) = max{S(pi

mi) : i = 1, 2, . . . , s}.
The paper is organized as follows. We first show in Section 2 that the problem of analyzing

annihilator polynomials over Zn, for an arbitrary integer n, can be reduced to one of charac-
terizing such polynomials over Zn with n a prime power, i.e. n = pm where p is prime and m
is a positive integer. It turns out that the latter problem was independently solved by Sophie
Frisch [1] in the far more general setting of polynomials over finite commutative local rings. In
Section 3, we present Frisch’s result in the special case of the ring Zpm , and use the result to
determine expressions for A(n, k) and M(n, k). Finally, in Section 4, we prove an alternative
characterization of annihilators over Zpm , which unfortunately only holds for m ≤ p, but which
is more in the spirit of the characterization of annihilators over Zp mentioned above.
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2 Reduction to the Case of n a Prime Power

In this section, we shall show that in order to characterize annihilator polynomials over Zn, it
is sufficient to find a characterization of annihilator polynomials over Zpm , where p is prime and
m is some positive integer. Let n =

∏s
i=1 pi

mi be the prime factorization of n, and let qi = pi
mi ,

i = 1, 2, . . . , s.

Theorem 1 If f(x) ∈ Zn[x] is an annihilator over Zn, then for i = 1, 2, . . . , s, fi(x) = f(x)
mod qi is an annihilator over Zqi . Conversely, given polynomials fi(x) ∈ Zqi [x], i = 1, 2, . . . , s,
such that fi(x) annihilates Zqi , there exists a unique f(x) ∈ Zn[x] that annihilates Zn, such that
f(x) ≡ fi(x) (mod qi).

Proof : If f(x) ∈ Zn[x] annihilates Zn, then it is clear that fi(x) = f(x) mod qi annihilates Zqi .
The converse statement in the theorem is a consequence of the Chinese remainder theorem
(CRT). This is because if, for i = 1, 2, . . . , s, fi(x) =

∑

j≥0 ai,jx
j with ai,j ∈ Zqi , then by the

CRT, for each j ≥ 0, there exists a unique aj ∈ Zn such that aj ≡ ai,j (mod qi), i = 1, 2, . . . , s.
Hence, f(x) =

∑

j≥0 ajx
j is the unique polynomial in Zn[x] such that f(x) ≡ fi(x) (mod qi) for

each i, and by the CRT again, f(x) annihilates Zn since for each i, fi(x) annihilates Zqi .

Note that with f(x) and fi(x), i = 1, 2, . . . , s, as in the statement of the theorem, f(x) is
of degree k if and only if all the fi(x)’s are of degree at most k, with at least one fi(x) being
of degree exactly k. Thus, the above theorem shows that there is a one-to-one correspondence
between A(n, k) and the set of all s-tuples (f1(x), f2(x), . . . , fs(x)) such that each fi(x) is of
degree at most k and at least one fi(x) has degree exactly k. In other words, A(n, k) is in
one-to-one correspondence with

∏s
i=1 ∪

k
j=0A(qi, j) \

∏s
i=1 ∪

k−1
j=0A(qi, j), from which we obtain

the following result.

Corollary 2 For any k ≥ 0, A(n, k) =
∏s
i=1

∑k
j=0A(qi, j)−

∏s
i=1

∑k−1
j=0 A(qi, j).

Thus, in order to determine A(n, k) for arbitrary integers n and k, it is sufficient to restrict
our attention to n’s that are powers of primes.
The expression for M(n, k), the number of monic annihilator polynomials of degree k over

Zn, in terms of the number of annihilators over Zqi is considerably simpler. Observe that if f(x)
is in M(n, k), then for i = 1, 2, . . . , s, fi(x) = f(x) mod qi belongs to M(qi, k). Conversely,
if we are given polynomials fi(x) ∈ M(qi, k), i = 1, 2, . . . , s, then it follows from the Chinese
remainder theorem that there exists a unique polynomial f(x) ∈M(n, k) such that f(x) ≡ fi(x)
(mod qi). Consequently, the sets M(n, k) and

∏s
i=1M(qi, k) have the same cardinality, which

shows that M(n, k) can be expressed in terms of the M(qi, k)’s as follows.

Corollary 3 For any k ≥ 0, M(n, k) =
∏s
i=1M(qi, k).

So, to derive an expression for M(n, k) for arbitrary n and k, it once again suffices to
consider n’s that are powers of primes. Much of the remainder of this paper is devoted to
finding characterizations of annihilator polynomials over Zpm , with p prime and m a positive
integer.

3 Annihilators over Zpm

As mentioned in the introduction, a characterization of annihilator polynomials over a fairly
general class of finite commutative local rings, which includes Zpm , was found by S. Frisch ([1],
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Proposition 1). For the sake of completeness, we present a proof of this result in the case of the
ring Zpm .

Let us first define the polynomials f0(x) = 1 and fj(x) =
∏j−1
i=0 (x − i), for j ≥ 1. It is

a fact that any polynomial f(x) ∈ Z[x] can be uniquely written as a Z-linear combination of
these fj(x)’s, i.e. f(x) has a unique representation of the form

∑

j≥0 cjfj(x), for some choice of
integers cj . In other words, the fj(x)’s form a basis for the Z-module Z[x]. This is because, as
is easily verified, any monomial xi can be written as a Z-linear combination of the fj(x)’s, and
the polynomials fj(x) are linearly independent over Z.
Annihilator polynomials over Zpm have a representation involving these polynomials fj(x),

as shown in the following theorem.

Theorem 4 f(x) ∈ Zpm [x] annihilates Zpm if and only if

f(x) ≡
∑

j≥1

ajp
m−α(j)fj(x) (mod pm)

for some aj ∈ Zpα(j), j ≥ 1, where α(j) is defined to be the largest α ∈ {0, 1, 2, . . . ,m} such that
pα|j!.

Proof : We first show that if f(x) ≡
∑

j≥1 ajp
m−α(j)fj(x) (mod p

m), then f(x) annihilates
Zpm . We need to show that f(t) ≡ 0 (mod p

m) for all t ∈ Zpm . So, fix an arbitrary t ∈ Zpm . It
suffices to show that for any j ≥ 1, pm−α(j)fj(t) ≡ 0 (mod p

m). Note that fj(t), when evaluated
over Z, is the product of j consecutive integers, and hence, j!|fj(t). Furthermore, by definition
of α(j), pα(j)|j!, and so we see that pα(j)|fj(t). Therefore, p

m divides pm−α(j)fj(t), which means
that pm−α(j)fj(t) ≡ 0 (mod p

m), as desired.
For the converse, suppose that f(x) ∈ Z[x] is a polynomial such that f(x) mod pm annihilates

Zpm . So, f(t) ≡ 0 (mod pm) for all t ∈ Zpm . Since f(x) has a representation of the form
∑

j≥0 cjfj(x) for some cj ’s in Z, we only need to show that c0 ≡ 0 (mod p
m), and for all j ≥ 1,

cj ≡ ajp
m−α(j) (mod pm) for some aj ∈ Zpα(j) .

Recall that S(pm) is the smallest integer l > 0 such that pm|l!. Hence, for all j ≥ S(pm),
α(j) = m, so that the congruence cj ≡ ajp

m−α(j) (mod pm) is trivially satisfied for any j ≥
S(pm). So, it is only the cj ’s for j < S(pm) that need to be analyzed. Here, we shall show by
induction on j that for 0 ≤ j < S(pm), cj ≡ 0 (mod p

m−α(j)), so that cj ≡ ajp
m−α(j) (mod pm)

with aj ∈ Zpα(j) .
Since f(0) ≡ 0 (mod pm), we have

∑

j≥0 cjfj(0) ≡ 0 (mod p
m). However, fj(0) = 0 for

j > 0, by definition of the fj polynomials, and so we get c0 ≡ 0 (mod p
m).

Now, suppose that cj ≡ 0 (mod p
m−α(j)) for all j < t, t being some integer in [0, S(pm)− 1].

To complete the induction step, we need to show that ct ≡ 0 (mod p
m−α(t)). Note first that

fk(t) = 0 for all k > t, by definition of fk(x). Moreover, by the induction hypothesis, for all
j < t, cjfj(t) ≡ ajp

m−α(j)fj(t) (mod p
m), for some aj ∈ Zpα(i) . But, since c0 ≡ 0 (mod p

m),

and as shown previously, pm−α(j)fj(t) ≡ 0 (mod p
m) for any j ≥ 1 and t ∈ Zpm , we therefore

have cjfj(t) ≡ 0 (mod p
m) for all j < t.

Therefore, f(t) =
∑

j≥0 cjfj(t) ≡ ctft(t) (mod p
m). But since f(t) ≡ 0 (mod pm) for any

t ∈ Zpm , and ft(t) = t!, we obtain ct(t!) ≡ 0 (mod p
m). Now, since t < S(pm), α(t) is the largest

integer α such that pα|t!. Therefore, ct(t!) ≡ 0 (mod p
m) implies that ct ≡ 0 (mod p

m−α(t)),
thus completing the inductive step of the proof.

It should be noted that each f(x) ∈ Zpm [x] that annihilates Zpm has a unique representation
of the form

∑

j≥1 ajp
m−α(j)fj(x) mod p

m with aj ∈ Zpα(j) . This is because we may regard
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any polynomial with coefficients in Zpm as a polynomial having coefficients in Z, with all the
coefficients being restricted to the interval [0, pm− 1]. As observed earlier, each polynomial with
integer coefficients can be uniquely expressed as a Z-linear combination of the polynomials fj(x),
and this representation must remain unique upon reduction modulo pm.
From the uniqueness of the representation in Theorem 4, it is clear that A(pm, k) is precisely

the number of degree-k polynomials of the form
∑

j≥1 ajp
m−α(j)fj(x) with aj ∈ Zpα(j) . Similarly,

M(pm, k) is the number of monic polynomials of degree k of this form, leading us to the following
result.

Corollary 5 Let n = pm. (i) For all k ≥ 0, A(n, k) = (pα(k) − 1) p
∑k−1
j=1 α(j).

(ii) For 0 ≤ k < S(n), M(n, k) = 0. For k ≥ S(n), M(n, k) = pm(k−S(n)) p
∑S(n)−1
j=1 α(j).

Proof : Since each polynomial fj(x) is monic of degree j, it follows from Theorem 4 that

f(x) ∈ A(pm, k) if and only if f(x) ≡
∑k

j=1 ajp
m−α(j)fj(x) (mod p

m) for some aj ∈ Zpα(j) ,
j = 1, 2, . . . , k, with ak 6= 0. The expression for A(p

m, k) now follows by counting the number of
ways of choosing the aj ’s.
We next show that M(pm, k) = 0 for 0 ≤ k < S(pm). If 0 ≤ k < S(pm), then for all

j ≤ k, α(j) < m, so that p|pm−α(j). Therefore, pm−α(j) ≡ 0 (mod p) for all j ≤ k, and hence
if f(x) ∈ A(pm, k), then f(x) ≡ 0 (mod p). In particular, f(x) cannot be monic, which shows
that M(pm, k) = 0.
If k ≥ S(pm), then Theorem 4 shows that f(x) ∈ A(pm, k) if and only if

f(x) ≡

S(pm)−1
∑

j=1

ajp
m−α(j)fj(x) +

k
∑

j=S(pm)

ajfj(x) (mod pm)

with aj ∈ Zpα(j) for 1 ≤ j ≤ S(pm) − 1 and aj ∈ Zpm for j ≥ S(pm), since α(j) = m for all
j ≥ S(pm). In particular, f(x) is monic if and only if it is of the above form with ak = 1, so the
expression for M(pm, k) now follows by counting.

Corollaries 2, 3 and 5 together yield exact expressions for A(n, k) and M(n, k) for arbitrary
integers n and k. In particular, it follows from Corollaries 3 and 5 that for an arbitrary integer
n, M(n, k) = 0 if and only if k < S(n), since as noted in Section 1, if n =

∏s
i=1 pi

mi is the prime
factorization of n, then S(n) = max{S(pi

mi) : i = 1, 2, . . . , s}.

4 A Characterization of Annihilators over Zpm when m ≤ p

As is well-known, since Zp is a field, f(x) ∈ Zp[x] annihilates Zp if and only if f(x) ≡ (x
p−x)g(x)

(mod p) for some g(x) ∈ Zp[x]. This characterization of annihilator polynomials has a nice
generalization that applies to annihilators over the ring Zpm with m ≤ p. This characterization
differs from the one in Theorem 4, and is stated in Theorem 8 below. Our derivation of this
alternative characterization uses the notion of Hasse derivatives which we define next.
Given a polynomial f(x) ∈ Z[x], and an integer j ≥ 0, let Djf(x) denote the jth formal

derivative of f(x). As usual, we take D0f(x) to be f(x) itself. We can then formally define the
jth Hasse derivative of f(x) to be f (j)(x) = 1

j!D
jf(x). Now, the integers 1, 2, . . . , p − 1 are all

co-prime with pm, and hence are all invertible in the ring Zpm . Thus, if f(x) ∈ Zpm [x], then
for j = 0, 1, . . . , p − 1, the Hasse derivatives f (j)(x), taken modulo pm, are also polynomials in
Zpm [x].
Our proof of Theorem 8 begins with the following lemma.

4



Lemma 6 Let f(x), g(x) be polynomials in Zp[x] such that f(x) ≡ (xp − x)kg(x) (mod p), for
some k ∈ {1, 2, . . . , p− 1}. Then, for all r ∈ Zp and j = k + 1, k + 2, . . . , p− 1,

f (j)(r) ≡ (−1)kg(j−k)(r) (mod p)

Proof : We shall only prove the lemma for k = 1. The general result then easily follows by
induction on k.
So, let f(x) ≡ (xp − x)g(x) (mod p). We need to show that for all r ∈ Zp, and j =

1, 2, . . . , p− 1, f (j)(r) ≡ −g(j−1)(r) (mod p).
Let h(x) = xp−x, so that f(x) = g(x)h(x). Note that the product rule for Hasse derivatives

is given by

f (j)(x) =

j
∑

l=0

g(j−l)(x)h(l)(x) (1)

Now, for any r ∈ Zp, h(r) = 0 since h(x) annihilates Zp. Furthermore, h
(1)(r) = prp−1− 1 ≡

−1 (mod p), and for l = 2, . . . , p− 1, h(l)(r) =
(

p
l

)

rp−l ≡ 0 (mod p), since p|
(

p
l

)

. The result for
k = 1 now follows by plugging these into (1).

The above lemma is used to prove the following theorem, which is an important ingredient
in our derivation of the alternative characterization of annihilator polynomials.

Theorem 7 Let n = pm, m ≤ p, p prime. If f(x) ∈ Zn[x] annihilates Zn, then f(x) ≡
(xp − x)mg(x) (mod p) for some g(x) ∈ Zp[x].

Proof : Let f(x) ∈ Zn[x] be an annihilator for Zn. Our aim is to show by induction on j that
for j = 1, 2, . . . ,m, f(x) ≡ (xp − x)jgj(x) (mod p) for some gj(x) ∈ Zp[x].
The fact that f(x) annihilates Zn shows that for any a ∈ Zpm−1 and r ∈ Zp, f(ap +

r) ≡ 0 (mod pm). Some straightforward manipulations modulo pm show that f(ap + r) ≡
∑m−1

j=0 (ap)
jf (j)(r) (mod pm), so that we have

m−1
∑

j=0

(ap)jf (j)(r) ≡ 0 (mod pm) (2)

It should be kept in mind that the above equation holds for arbitrary a ∈ Zpm−1 and r ∈ Zp.
Note first that as f(x) mod p annihilates Zp, we must have f(x) ≡ (x

p − x)g1(x) (mod p)
for some g1(x) ∈ Zp[x]. This is because Zp is a field, and so any annihilator for Zp has to be a
multiple of (xp − x).
Now, define Sk to be the following statement:

For j = 1, 2, . . . , k, f(x) ≡ (xp − x)jgj(x) (mod p) for some gj(x) ∈ Zp[x], and
f (k−j)(r) ≡ 0 (mod pj) for all r ∈ Zp.

As noted above, S1 is true. We shall show that if Sk is true for some k ≤ m − 1, then Sk+1 is
true as well.
So, suppose that Sk is true. Since f(x) ≡ (x

p − x)kgk(x) (mod p), applying Lemma 6, we
have for all j = k + 1, k + 2, . . . , p− 1, and any r ∈ Zp,

f (j)(r) ≡ (−1)kgk
(j−k)(r) + pbj (mod pm)
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for some bj ∈ Zpm−1 , which may depend on r. Moreover, by the induction hypothesis, for any

r ∈ Zp and j = 0, 1, . . . , k− 1, f
(j)(r) = pk−jcj for some integer cj , which may also depend on r.

Plugging the above into (2), we get

k−1
∑

j=0

(ap)jpk−jcj +
m−1
∑

j=k

(ap)j((−1)kgk
(j−k)(r) + pbj) ≡ 0 (mod pm) (3)

Reducing the above equation modulo pk+1, we get

pk
k−1
∑

j=0

ajcj + (ap)
k(−1)kgk(r) ≡ 0 (mod pk+1)

Now, dividing the above congruence by pk, we find that

k−1
∑

j=0

ajcj + a
k(−1)kgk(r) ≡ 0 (mod p) (4)

Note that the above must hold for arbitrary a ∈ Zpm−1 and r ∈ Zp.

Define the polynomial h(x) =
∑k−1

j=0 cjx
j + (−1)kgk(r)x

k. From (4), we have h(a) ≡ 0
(mod p) for all a ∈ Zpm−1 , so that h(x) mod p annihilates Zp. However, h(x) has degree k ≤
m− 1 < p, and so h(x) mod p can annihilate Zp only if h(x) ≡ 0 (mod p). Therefore, gk(r) ≡ 0
(mod p). Since r ∈ Zp is arbitrary, gk(x) annihilates Zp, and hence, gk(x) ≡ (x

p − x)gk+1(x)
(mod p) for some gk+1(x) ∈ Zp[x]. Therefore, f(x) ≡ (xp − x)kgk(x) ≡ (xp − x)k+1gk+1(x)
(mod p).
The fact that h(x) ≡ 0 (mod p) also implies that for j = 0, 1, . . . , k − 1, cj ≡ 0 (mod p).

As a result, f (j)(r) = pk−jcj = pk+1−jaj for some integer aj . Equivalently, for j = 1, 2, . . . , k,
f (k+1−j)(r) ≡ 0 (mod pj). Moreover, this congruence holds for j = k + 1 as well, since f(r) ≡ 0
(mod pm) implies that f(r) ≡ 0 (mod pk+1).
Thus, we have shown that if Sk is true for some k ≤ m− 1, then so is Sk+1. Since S1 is true,

by induction, Sm is true as well, which proves the theorem.

We are now ready to prove the following theorem.

Theorem 8 Let n = pm, m ≤ p. f(x) ∈ Zn[x] annihilates Zn if and only if

f(x) ≡

m
∑

j=1

pm−j(xp − x)jgj(x) (mod pm)

for some g1(x), g2(x), . . . , gm(x) ∈ Zp[x]. Moreover, the above representation of f(x) is unique,
i.e. if f(x) ≡

∑m
j=1 p

m−j(xp − x)jgj(x) ≡
∑m

j=1 p
m−j(xp − x)jhj(x) (mod p

m) for some gj(x),
hj(x) ∈ Zp[x], j = 1, 2, . . . ,m, then gj(x) = hj(x) for all j.

Proof : We first show that if f(x) ∈ Zpm [x] has a representation of the form
∑m

j=1 p
m−j(xp−

x)jgj(x), with gj(x) ∈ Zp[x], then the representation is unique. It suffices to show that if g1(x),
g2(x), . . . , gm(x) ∈ Zp[x] are such that

m
∑

j=1

pm−j(xp − x)jgj(x) ≡ 0 (mod pm) (5)
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then gj(x) = 0 for j = 1, 2, . . . ,m.
So, let gj(x) ∈ Zp[x], j = 1, 2, . . . ,m, satisfy the congruence in (5). Reducing the congruence

modulo p, we obtain (xp−x)mgm(x) ≡ 0 (mod p). This shows that gm(x) ≡ 0 (mod p), so that
gm(x) = 0 since gm(x) ∈ Zp[x].
Now, suppose that gj(x) = 0 for j = m,m − 1, . . . ,m − k + 1, for some integer k < m.

Equation (5) now becomes

m−k
∑

j=1

pm−j(xp − x)jgj(x) ≡ 0 (mod pm)

Dividing this congruence by pk, we get

m−k
∑

j=1

pm−k−j(xp − x)jgj(x) ≡ 0 (mod pm−k)

Reducing this modulo p, we obtain (xp − x)m−kgm−k(x) ≡ 0 (mod p), which implies that
gm−k(x) ≡ 0 (mod p), or equivalently, gm−k(x) = 0 since gm−k(x) ∈ Zp[x]. It now follows
by induction that gj(x) = 0 for j = 1, 2, . . . ,m.
We next show that f(x) ∈ Zpm annihilates Zpm if and only if it is of the form

∑m
j=1 p

m−j(xp−

x)jgj(x). It is easy to see that if f(x) ≡
∑m

j=1 p
m−j(xp − x)jgj(x) (mod p

m) for some gj(x) ∈
Zp[x], j = 1, 2, . . . ,m, then f(x) annihilates Zpm . The reason for this is that for any integer r,
p|(rp−r) by Fermat’s (little) theorem, and hence, pj |(rp − r)j for any j ≥ 1. As a result, for any
r ∈ Zn, p

m−j(rp − r)j ≡ 0 (mod pm) for any j ≥ 0, from which we see that f(r) ≡ 0 (mod pm).
We prove the converse by induction on m = 1, 2, . . . , p. When m = 1, Zp is a field, and so

any polynomial that annihilates Zp must be a multiple of (x
p − x), modulo p.

So, suppose that the desired result is true for m = 1, 2, . . . , s − 1, with s ≤ p. Consider
m = s, and let f(x) be an annihilator over Zps .
From Theorem 7, f(x) ≡ (xp − x)sg(x) (mod p), for some g(x) ∈ Zp[x]. As noted above, for

any integer r, ps|(rp − r)s. Hence, it follows that (xp − x)sg(x) is also an annihilator for Zps .
Now, since f(x) ≡ (xp − x)sg(x) (mod p), we can write

f(x) ≡ (xp − x)sg(x) + p h(x) (mod ps) (6)

for some h(x) ∈ Zps−1 [x]. Since both f(x) and (xp−x)sg(x) annihilate Zps , so must p h(x). But,
writing an arbitrary x ∈ Zps as x = aps−1 + r for r ∈ Zps−1 , it is easily seen that p h(x) can
annihilate Zps if and only if h(x) annihilates Zps−1 .
So, applying the induction hypothesis, we find

h(x) ≡
s−1
∑

j=1

ps−1−j(xp − x)jgj(x) (mod ps−1)

for some gj(x) ∈ Zp[x], j = 1, 2, . . . , s− 1. Plugging this into (6) proves the required statement
for m = s, thus completing the induction step of the proof.

We can obtain expressions for A(pm, k) and M(pm, k), m ≤ p, from the above theorem in
much the same way as from Theorem 4. In this case, to obtain an expression for A(pm, k), we
need to count the number of ways of choosing the gj(x)’s so that the resultant f(x) is of degree
k. It is not hard to show that for f(x) to be of degree k ≥ mp, each gj(x) must be of degree
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k − jp or less, with at least one gj(x) being of degree exactly k − jp. Similarly, for f(x) to be
an annihilator of degree k < mp, we must have gj(x) = 0 for j > bk/pc, and for 1 ≤ j ≤ bk/pc,
gj(x) must have degree at most k − jp, with at least one of these gj(x)

′s having degree exactly

k − jp. Counting arguments now show that when m ≤ p, A(pm, k) = (pl − 1)plk−p
l(l+1)

2 , where
l = min(bk/pc,m). Some algebraic manipulations are needed to show that this agrees with the
result of part (i) of Corollary 5.
Finally, for f(x) to be a monic annihilator of degree k, the gj(x)’s must satisfy the above

conditions, and moreover, gl(x) must be monic of degree exactly k− lp, where l = min(bk/pc,m)

as above. From this, we obtain for m ≤ p, M(pm, k) = plk−p
l(l+1)

2 , which agrees with part (ii) of
Corollary 5.
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