THE SMARANDACHE-PĂTRAŞCU THEOREM OF ORTHOHOMOLOGICAL TRIANGLES

Edited by Mihai Dicu
Frații Buzești College, Craiova, Romania

The Smarandache-Pătrașcu Theorem of Orthohomological Triangles is the folllowing:
 If P_{1}, P_{2} are isogonal points in the triangle $A B C$, and if $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are their pedal triangles such that the triangles $A B C$ and $A_{1} B_{1} C_{1}$ are homological (the lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent), then the triangles $A B C$ and $A_{2} B_{2} C_{2}$ are also homological.

Proof

It is known that the projections of the isogonal points on the sides of the triangle $A B C$ are 6 concyclic points. Therefore $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic (the Circle of Six Points).

It is also known the following:
Theorem: If in the triangle $A B C$ the Cevianes $A A_{1}, B B_{1}, C C_{1}$ are concurrent in the point F_{1} and the circumscribed circle to the triamgle $A_{1} B_{1} C_{1}$ intersects the sides of the triangle $A B C$ in A_{2}, B_{2}, C_{2}, then the lines $A A_{2}, B B_{2}, C C_{2}$ are concurrent in a point F_{2} (The Terquem's Theorem, in "Nouvelles Annales de Mathématiques", by Terquem and Gérono, 1842).

Note

The points F_{1} and F_{2} were named the Terquem's points by Candido from Pisa in 1900.
From these two theorems it results the theorem from above.
The homologic centers of the triangles $A B C, A_{1} B_{1} C_{1}$ and $A B C, A_{2} B_{2} C_{2}$ being the Terquem's Points in the triangle $A B C$.

References

[1] Ion Pătrașcu \& Florentin Smarandache, A Theorem about Simultaneous Orthological and Homological Triangles, in arXiv.org, Cornell University, NY, USA.
[2] Mihai Dicu, The Smarandache-Pătrașcu Theorem of Orthohomological Triangles, http://www.scribd.com/doc/28311880/Smarandache-Patrascu-Theorem-of-OrthohomologicalTriangles
[3] Claudiu Coandă, A Proof in Barycentric Coordinates of the Smarandache-Pătrașcu Theorem, Sfera journal, 2010.

