A Smarandache-Wellin Number, $\operatorname{SWN}(\mathrm{n})$, in a given base b, is a number resulted from the concatenation of first consecutive prime numbers.

For example, in base 10:
$\mathrm{SW}(\mathrm{n})=23571113171923 \ldots \mathrm{p}_{\mathrm{n}}$, where p_{n} is the $\mathrm{n}^{\text {th }}$ prime.
A Smarandache-Wellin Prime, SWP(n), in a given base b , is a Smarandache-Wellin Number which is prime.

For example, in base 10, we have as SWP: 2, 23, 2357.
Another SWP is a 355-digit number
2357111317192329313741434753 ...677683691701709719

Question 1: How many SWP are? What is the largest SWP known?
Question 2 (F. Smarandache): How many primes, in a given base b, are composed of digits which are primes, but not necessarily consecutive primes?

For example: in base 10, we have 197=prime and it is formed by the concatenation of primes 19 and 7.

While 809 = prime, but its digits are not all primes (8 or 80 are not prime).
References:
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001: 72
H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997: 170-183

