Smarandache Φ-Theorem

Edited by Dr. Zhang Wenpeng Northwest University, Xi'an, PR China

Abstract.

Fermat's and Euler's theorem on congruencies are generalized to the case when the integers a and m are not necessarily co-prime.

Smarandache Ф-Theorem.

If
$$a, m \in Z$$
 and $m \neq 0$, then
$$a^{\varphi(m_s)+s} \equiv a^s \pmod{m}$$

where φ is Euler's totient function, and m_s and s are obtained from the below

Smarandache Φ-Algorithm:

Step 1.
$$A := a$$
, $M := m$, $i := 0$

Step 2. Calculate
$$d = (A, M)$$
 and $M' = \frac{M}{d}$

Step 3. If
$$d = 1$$
 take $s = i$, $m_s = M'$, and stop.

If
$$d \neq 1$$
 take $A := d$, $m = M'$, $i := i + 1$ and go to Step 2.

*

This is a generalization of Euler's Theorem: if $a,m\in Z$ and (a,m)=1, then $a^{\varphi(m)}\equiv 1 \pmod m$

*

Smarandache totient function is defined as:

$$S\Phi: Z^2 \to Z^2.$$
 For $m \neq 0$, $S\Phi(a,m) = (m_s,s)$ such that $a^{\varphi(m_s)+s} \equiv a^s \pmod{m}$.

*

Study the Smarandache Φ -Theorem, Smarandache Φ -Algorithm, and Smarandache totient function.