Smarandache cyclic geometric determinant sequences

A. C. F. Bueno
Department of Mathematics and Physics, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines

Abstract

In this paper, the concept of Smarandache cyclic geometric determinant sequence was introduced and a formula for its $n^{\text {th }}$ term was obtained using the concept of right and left circulant matrices.

Keywords Smarandache cyclic geometric determinant sequence, determinant, right circulan -t matrix, left circulant matrix.

§1. Introduction and preliminaries

Majumdar ${ }^{[1]}$ gave the formula for $n^{\text {th }}$ term of the following sequences: Smarandache cyclic natural determinant sequence, Smarandache cyclic arithmetic determinant sequence, Smarandache bisymmetric natural determinant sequence and Smarandache bisymmetric arithmetic determinant sequence.

Definition 1.1. A Smarandache cyclic geometric determinant sequence $\{\operatorname{SCGDS}(n)\}$ is a sequence of the form

$$
\{S C G D S(n)\}=\left\{|a|,\left|\begin{array}{cc}
a & a r \\
a r & a
\end{array}\right|,\left|\begin{array}{ccc}
a & a r & a r^{2} \\
a r & a r^{2} & a \\
a r^{2} & a & a r
\end{array}\right|, \ldots\right\} .
$$

Definition 1.2. A matrix $R C I R C_{n}(\vec{c}) \in M_{n x n}(\mathbb{R})$ is said to be a right circulant matrix if it is of the form

$$
\operatorname{RCIRC}_{n}(\vec{c})=\left(\begin{array}{cccccc}
c_{0} & c_{1} & c_{2} & \ldots & c_{n-2} & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & \ldots & c_{n-3} & c_{n-2} \\
c_{n-2} & c_{n-1} & c_{0} & \ldots & c_{n-4} & c_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
c_{2} & c_{3} & c_{4} & \ldots & c_{0} & c_{1} \\
c_{1} & c_{2} & c_{3} & \ldots & c_{n-1} & c_{0}
\end{array}\right),
$$

where $\vec{c}=\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n-2}, c_{n-1}\right)$ is the circulant vector.

Definition 1.3. A matrix $L C I R C_{n}(\vec{c}) \in M_{n x n}(\mathbb{R})$ is said to be a leftt circulant matrix if it is of the form

$$
\operatorname{LCIR} C_{n}(\vec{c})=\left(\begin{array}{cccccc}
c_{0} & c_{1} & c_{2} & \ldots & c_{n-2} & c_{n-1} \\
c_{1} & c_{2} & c_{3} & \ldots & c_{n-1} & c_{0} \\
c_{2} & c_{3} & c_{4} & \ldots & c_{0} & c_{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
c_{n-2} & c_{n-1} & c_{0} & \ldots & c_{n-4} & c_{n-3} \\
c_{n-1} & c_{0} & c_{1} & \ldots & c_{n-4} & c_{n-2}
\end{array}\right)
$$

where $\vec{c}=\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n-2}, c_{n-1}\right)$ is the circulant vector.
Definition 1.4. A right circulant matrix $R C I R C_{n}(\vec{g})$ with geometric sequence is a matrix of the form

$$
\operatorname{RCIRC}_{n}(\vec{g})=\left(\begin{array}{cccccc}
a & a r & a r^{2} & \ldots & a r^{n-2} & a r^{n-1} \\
a r^{n-1} & a & a r & \ldots & a r^{n-3} & a r^{n-2} \\
a r^{n-2} & a r^{n-1} & a & \ldots & a r^{n-4} & a r^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a r^{2} & a r^{3} & a r^{4} & \ldots & a & a r \\
a r & a r^{2} & a r^{3} & \ldots & a r^{n-1} & a .
\end{array}\right) .
$$

Definition 1.5. A left circulant matrix $\operatorname{LCIRC}(\vec{g})$ with geometric sequence is a matrix of the form

$$
\operatorname{LCIRC} n(\vec{g})=\left(\begin{array}{cccccc}
a & a r & a r^{2} & \ldots & a r^{n-2} & a r^{n-1} \\
a r & a r^{2} & a r^{3} & \ldots & a r^{n-1} & a \\
a r^{2} & a r^{3} & a r^{4} & \ldots & a & a r \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a r^{n-2} & a r^{n-1} & a & \ldots & a r^{n-4} & a r^{n-3} \\
a r^{n-1} & a & a r & \ldots & a r^{n-4} & a r^{n-2}
\end{array}\right)
$$

The right and left circulant matrices has the following relationship:

$$
L C I R C_{n}(\vec{c})=\Pi R C I R C_{n}(\vec{c})
$$

where $\Pi=\left(\begin{array}{cc}1 & O_{1} \\ O_{2} & \tilde{I}_{n-1}\end{array}\right)$ with $\tilde{I}_{n-1}=\left(\begin{array}{ccccc}0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0\end{array}\right), O_{1}=\left(\begin{array}{lllll}0 & 0 & 0 & \ldots & 0\end{array}\right)$ and $O_{2}=O_{1}^{T}$.

Clearly, the terms of $\{S C G D S(n)\}$ are just the determinants of $L C I R C_{n}(\vec{g})$. Now, for the rest of this paper, let $|A|$ be the notation for the determinant of a matrix A. Hence

$$
\{S C G D S(n)\}=\left\{\left|L C I R C_{1}(\vec{g})\right|,\left|L C \operatorname{IRC}_{2}(\vec{g})\right|,\left|L C I R C_{3}(\vec{g})\right|, \ldots\right\}
$$

§2. Preliminary results

Lemma 2.1

$$
\left|R C I R C_{n}(\vec{g})\right|=a^{n}\left(1-r^{n}\right)^{n-1}
$$

Proof.

$$
\begin{aligned}
\operatorname{RCIRC}_{n}(\vec{g}) & =\left(\begin{array}{ccccccc}
a & a r & a r^{2} & \ldots & a r^{n-2} & a r^{n-1} \\
a r^{n-1} & a & a r & \ldots & a r^{n-3} & a r^{n-2} \\
a r^{n-2} & a r^{n-1} & a & \ldots & a r^{n-4} & a r^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a r^{2} & a r^{3} & a r^{4} & \ldots & a & a r \\
a r & a r^{2} & a r^{3} & \ldots & a r^{n-1} & a
\end{array}\right) \\
& =a\left(\begin{array}{ccccccc}
1 & r & r^{2} & \ldots & r^{n-2} & r^{n-1} \\
r^{n-1} & 1 & r & \ldots & r^{n-3} & r^{n-2} \\
r^{n-2} & r^{n-1} & 1 & \ldots & r^{n-4} & r^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
r^{2} & r^{3} & r^{4} & \ldots & 1 & r \\
r & r^{2} & r^{3} & \ldots & r^{n-1} & 1 .
\end{array}\right)
\end{aligned}
$$

By applying the row operations $-r^{n-k} R_{1}+R_{k+1} \rightarrow R_{k+1}$ where $k=1,2,3, \ldots, n-1$,

$$
\operatorname{RCIRC}_{n}(\vec{g}) \sim a\left(\begin{array}{cccccc}
1 & r & r^{2} & \ldots & r^{n-2} & r^{n-1} \\
0 & -\left(r^{n}-1\right) & -r\left(r^{n}-1\right) & \ldots & -r^{n-3}\left(r^{n}-1\right) & -r^{n-2}\left(r^{n}-1\right) \\
0 & 0 & -\left(r^{n}-1\right) & \ldots & -r^{n-4}\left(r^{n}-1\right) & -r^{n-3}\left(r^{n}-1\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -\left(r^{n}-1\right) & -r\left(r^{n}-1\right) \\
0 & 0 & 0 & \ldots & 0 & -\left(r^{n}-1\right)
\end{array}\right) .
$$

Since $|c A|=c^{n}|A|$ and its row equivalent matrix is a lower traingular matrix it follows that $\left|R C I R C_{n}(\vec{g})\right|=a^{n}\left(1-r^{n}\right)^{n-1}$.

Lemma 2.2 .

$$
|\Pi|=(-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor},
$$

where $\lfloor x\rfloor$ is the floor function.
Proof. Case 1: $n=1,2$,

$$
|\Pi|=\left|I_{n}\right|=1
$$

Case 2: n is even and $n>2$ If n is even then there will be $n-2$ rows to be inverted because there are two 1's in the main diagonal. Hence there will be $\frac{n-2}{2}$ inversions to bring back Π to I_{n} so it follows that

$$
|\Pi|=(-1)^{\frac{n-2}{2}} .
$$

Case 3: n is odd and and $n>2$ If n is odd then there will be $n-1$ rows to be inverted because of the 1 in the main diagonal of the frist row. Hence there will be $\frac{n-1}{2}$ inversions to bring back Π to I_{n} so it follows that

$$
|\Pi|=(-1)^{\frac{n-1}{2}}
$$

But $\left\lfloor\frac{n-1}{2}\right\rfloor=\left\lfloor\frac{n-2}{2}\right\rfloor$, so the lemma follows.

§3. Main results

Theorem 3.1. The $n^{\text {th }}$ term of $\{S C G D S(n)\}$ is given by

$$
S C G D S(n)=(-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor} a^{n}\left(1-r^{n}\right)^{n-1}
$$

via the previous lemmas.

References

[1] M. Bahsi and S. Solak, On the Circulant Matrices with Arithmetic Sequence, Int. J. Contemp. Math. Sciences, 5, 2010, No. 25, 1213-1222.
[2] H. Karner, J. Schneid, C. Ueberhuber, Spectral decomposition of real circulant matrices, Institute for Applied Mathematics and Numerical Analysis, Vienna University of Technology, Austria.
[3] A. A. K. Majumdar, On some Smarandache determinant sequence, Scientia Magna, 4 (2008), No. 2, 89-95.

