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§1. Introduction and preliminaries

Majumdar [1] gave the formula for nth term of the following sequences: Smarandache cyclic
natural determinant sequence, Smarandache cyclic arithmetic determinant sequence, Smaran-
dache bisymmetric natural determinant sequence and Smarandache bisymmetric arithmetic
determinant sequence.

Definition 1.1. A Smarandache cyclic geometric determinant sequence {SCGDS(n)} is
a sequence of the form

{SCGDS(n)} =




|a|,

∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣

a ar ar2
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, . . .





.

Definition 1.2. A matrix RCIRCn(~c) ∈ Mnxn(R) is said to be a right circulant matrix
if it is of the form

RCIRCn(~c) =




c0 c1 c2 ... cn−2 cn−1

cn−1 c0 c1 ... cn−3 cn−2

cn−2 cn−1 c0 ... cn−4 cn−3

...
...

...
. . .

...
...

c2 c3 c4 ... c0 c1

c1 c2 c3 ... cn−1 c0




,

where ~c = (c0, c1, c2, ..., cn−2, cn−1) is the circulant vector.
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Definition 1.3. A matrix LCIRCn(~c) ∈ Mnxn(R) is said to be a leftt circulant matrix if
it is of the form

LCIRCn(~c) =




c0 c1 c2 ... cn−2 cn−1

c1 c2 c3 ... cn−1 c0

c2 c3 c4 ... c0 c1

...
...

...
. . .

...
...

cn−2 cn−1 c0 ... cn−4 cn−3

cn−1 c0 c1 ... cn−4 cn−2




,

where ~c = (c0, c1, c2, ..., cn−2, cn−1) is the circulant vector.
Definition 1.4. A right circulant matrix RCIRCn(~g) with geometric sequence is a matrix

of the form

RCIRCn(~g) =




a ar ar2 ... arn−2 arn−1

arn−1 a ar ... arn−3 arn−2

arn−2 arn−1 a ... arn−4 arn−3

...
...

...
. . .

...
...

ar2 ar3 ar4 ... a ar

ar ar2 ar3 ... arn−1 a.




.

Definition 1.5. A left circulant matrix LCIRCn(~g) with geometric sequence is a matrix
of the form

LCIRCn(~g) =




a ar ar2 ... arn−2 arn−1

ar ar2 ar3 ... arn−1 a

ar2 ar3 ar4 ... a ar
...

...
...

. . .
...

...

arn−2 arn−1 a ... arn−4 arn−3

arn−1 a ar ... arn−4 arn−2.




.

The right and left circulant matrices has the following relationship:

LCIRCn(~c) = ΠRCIRCn(~c).

where Π =


 1 O1

O2 Ĩn−1


 with Ĩn−1 =




0 0 ... 0 1

0 0 ... 1 0
...

...
. . .

...
...

0 1 ... 0 0

1 0 ... 0 0




, O1 = (0 0 0 ... 0) and

O2 = OT
1 .
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Clearly, the terms of {SCGDS(n)} are just the determinants of LCIRCn(~g). Now, for the
rest of this paper, let |A| be the notation for the determinant of a matrix A. Hence

{SCGDS(n)} = {|LCIRC1(~g)| , |LCIRC2(~g)| , |LCIRC3(~g)| , . . .} .

§2. Preliminary results

Lemma 2.1.
|RCIRCn(~g)| = an(1− rn)n−1.

Proof.

RCIRCn(~g) =




a ar ar2 ... arn−2 arn−1

arn−1 a ar ... arn−3 arn−2

arn−2 arn−1 a ... arn−4 arn−3

...
...

...
. . .

...
...

ar2 ar3 ar4 ... a ar

ar ar2 ar3 ... arn−1 a




= a




1 r r2 ... rn−2 rn−1

rn−1 1 r ... rn−3 rn−2

rn−2 rn−1 1 ... rn−4 rn−3

...
...

...
. . .

...
...

r2 r3 r4 ... 1 r

r r2 r3 ... rn−1 1.




.

By applying the row operations −rn−kR1 + Rk+1 → Rk+1 where k = 1, 2, 3, . . . , n− 1,

RCIRCn(~g) ∼ a




1 r r2 ... rn−2 rn−1

0 −(rn − 1) −r(rn − 1) ... −rn−3(rn − 1) −rn−2(rn − 1)

0 0 −(rn − 1) ... −rn−4(rn − 1) −rn−3(rn − 1)
...

...
...

. . .
...

...

0 0 0 ... −(rn − 1) −r(rn − 1)

0 0 0 ... 0 −(rn − 1)




.

Since |cA| = cn |A| and its row equivalent matrix is a lower traingular matrix it follows that
|RCIRCn(~g)| = an(1− rn)n−1.

Lemma 2.2.
|Π| = (−1)bn−1

2 c,
where bxc is the floor function.

Proof. Case 1: n = 1, 2,

|Π| = |In| = 1.
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Case 2: n is even and n > 2 If n is even then there will be n−2 rows to be inverted because
there are two 1’s in the main diagonal. Hence there will be n−2

2 inversions to bring back Π to
In so it follows that

|Π| = (−1)
n−2

2 .

Case 3: n is odd and and n > 2 If n is odd then there will be n − 1 rows to be inverted
because of the 1 in the main diagonal of the frist row. Hence there will be n−1

2 inversions to
bring back Π to In so it follows that

|Π| = (−1)
n−1

2 .

But
⌊

n−1
2

⌋
=

⌊
n−2

2

⌋
, so the lemma follows.

§3. Main results

Theorem 3.1. The nth term of {SCGDS(n)} is given by

SCGDS(n) = (−1)bn−1
2 can(1− rn)n−1

via the previous lemmas.
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