Smarandache hyper BCC-algebra

A. Ahadpanah a, A. Borumand Saeid b, *

a Islamic Azad university Kerman Branch, Kerman, Young researchers club, Iran
b Department of Math., Shahid Bahonar university of Kerman, Kerman, Iran

ARTICLE INFO
Article history:
Received 23 November 2010
Received in revised form 23 February 2011
Accepted 23 February 2011

Keywords:
Hyper BCC-algebra
Hyper BCK-algebra
Smarandache hyper BCC-algebra
Smarandache hyper BCC-ideals of type 1, 2, 3, 4

ABSTRACT
In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC-algebras, and then we determine the relationships between these hyper ideals.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A Smarandache structure on a set A means a weak structure W on A such that there exists a proper subset B of A which is embedded with a strong structure S. In [1], Vasantha Kandasamy studied the concept of Smarandache groupoids, subgroupoids, ideal of groupoids and strong Bol groupoids and obtained many interesting results about them. Smarandache semigroups are very important for the study of congruences, and it was studied by Padilla [2]. It will be very interesting to study the Smarandache structure in this algebraic structures. Borumand Saeid et al. defined the Smarandache structure in BL-algebras [3].

It is clear that any hyper BCK-algebra is a hyper BCC-algebra. A hyper BCC-algebra is a weaker structure than hyper BCK-algebra, and then we can consider in any hyper BCC-algebra a stronger structure as hyper BCK-algebra.

In this paper, we introduce the notion of Smarandache hyper BCC-algebra and we deal with Smarandache hyper BCC-ideal structures in Smarandache BCC-algebra, and then we obtain some related results which have been mentioned in the abstract.

2. Preliminaries

Definition 2.1 ([4–6]). A BCC-algebra is defined as a nonempty set X endowed with a binary operation “∗” and a constant “0” satisfying the following axioms:

(a 1) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,
(a 2) 0 ∗ x = 0,
(a 3) x ∗ 0 = x,
(a 4) x ∗ y = 0 and y ∗ x = 0 imply x = y,

for all x, y, z ∈ X.

* Corresponding author.
E-mail addresses: a_ahadpanah24@yahoo.com (A. Ahadpanah), a_b_saeid@yahoo.com, arsham@mail.uk.ac.ir (A. Borumand Saeid).

0898-1221/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
A BCC-algebra with the condition

\[(a_0)(x \ast (x \ast y)) \ast y = 0\]

is called a BCK-algebra [7,8]. Note that every BCK-algebra is a BCC-algebra, but the converse is not true. A BCC-algebra which is not a BCK-algebra is called a proper BCC-algebra. The smallest proper BCC-algebra has four elements, and for every \(n \geq 4\), there exists at least one proper BCC-algebra [9].

Definition 2.2 ([9]). A Smarandache BCC-algebra (briefly, S-BCC-algebra) is defined to be a BCC-algebra \(X\) in which there exists a proper subset \(Q\) of \(X\) such that

(i) \(0 \in Q\) and \(|Q| \geq 4\),

(ii) \(Q\) is a BCK-algebra with respect to the same operation on \(X\).

Note that any proper BCC-algebra \(X\) with four elements cannot be a S-BCC-algebra. Hence, if \(X\) is a S-BCC-algebra, then \(|X| \geq 5\) [9].

Definition 2.3 ([10]). A hyper BCC-algebra is defined as a nonempty set \(H\) endowed with hyper operation “\(\circ\)” and a constant “\(0\)” satisfying the following axioms:

\[(HC_1) (x \circ z) \circ (y \circ z) \ll x \circ y,\]
\[(HC_2) 0 \circ x = \{0\},\]
\[(HC_3) x \circ 0 = \{x\},\]
\[(HC_4) x \ll y \text{ and } y \ll x \text{ imply } x = y,\]

for all \(x, y, z \in H\), where \(x \ll y\) is defined by \(0 \in x \circ y\) and for every \(A, B \subseteq H\), \(A \ll B\) is defined for all \(a \in A\), there exists \(b \in B\) such that \(a \ll b\). In such case “\(\ll\)” is called the hyper order in \(H\).

Note that if \(A, B \subseteq H\), then by \(A \circ B\) we mean the subset \(\bigcup_{a \in A, b \in B} a \circ b\) of \(H\).

Definition 2.4 ([11]). A hyper BCK-algebra is defined as a nonempty set \(H\) endowed with hyper operation “\(\circ\)” and a constant “\(0\)” satisfying the following axioms:

\[(HK_1) (x \circ z) \circ (y \circ z) \ll x \circ y,\]
\[(HK_2) (x \circ y) \circ z = (x \circ z) \circ y,\]
\[(HK_3) x \circ H = \{x\},\]
\[(HK_4) x \ll y \text{ and } y \ll x \text{ imply } x = y,\]

for all \(x, y, z \in H\), where \(x \ll y\) is defined by \(0 \in x \circ y\) and for every \(A, B \subseteq H\), \(A \ll B\) is defined by for all \(a \in A\), there exists \(b \in B\) such that \(a \ll b\). In such case “\(\ll\)” is called the hyper order in \(H\).

Proposition 2.5 ([11]). In any hyper BCK-algebra \(H\), for all \(x, y, z \in H\), the following holds:

(a) \(0 \circ 0 = \{0\}\),

(b) \(0 \circ x = \{x\}\),

(c) \(x \circ 0 = \{x\}\).

Definition 2.6 ([11]). Let \(I\) be a nonempty subset of a hyper BCK-algebra \(H\) and \(0 \in I\). Then \(I\) is said to be a weak hyper BCK-ideal of \(H\) if \(x \circ y \ll I\) and \(y \in I\) imply \(x \in I\) for all \(x, y \in H\), hyper BCK-ideal of \(H\) if \(x \circ y \ll I\) and \(y \in I\) imply \(x \in I\) for all \(x, y \in H\), strong hyper BCK-ideal of \(H\) if \((x \circ y) \cap I \neq \emptyset\) and \(y \in I\) imply \(x \in I\) for all \(x, y \in H\), hyper subalgebra of \(H\) if \(x \circ y \subseteq I\) for all \(x, y \in H\), \(I\) is called a hyper BCK-algebra.

Theorem 2.7 ([10]). Any hyper BCK-algebra is a hyper BCC-algebra.

The converse of Theorem 2.7 is not true in general.

Example 2.8 ([10]). Let \(H = \{0, 1, 2\}\) in the following table.

<table>
<thead>
<tr>
<th>(\circ)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{2}</td>
<td>{0, 1}</td>
</tr>
</tbody>
</table>

then \(H\) is a hyper BCC-algebra, but it is not a hyper BCC-algebra, because \((2 \circ 1) \circ 2 \neq (2 \circ 2) \circ 1\).

Theorem 2.9 ([10]). Let \(H\) be a hyper BCK-algebra. Then \(H\) is a hyper BCK-algebra if and only if

\((x \circ y) \circ z = (x \circ z) \circ y\)

for all \(x, y, z \in H\).
Definition 2.10 ([10]). Hyper BCC-algebra H is called a proper hyper BCC-algebra if H is not a hyper BCK-algebra.

Corollary 2.11 ([10]). For $n \geq 3$, there exists at least one proper hyper BCC-algebra of order n.

Definition 2.12 ([10]). A nonempty subset I of a hyper BCC-algebra X satisfies the closed condition if $x \ll y$ and $y \in I$ imply $x \in I$.

Definition 2.13 ([10]). A nonempty subset I of X such that $0 \notin I$ is called:

(i) a hyper BCC-ideal of type 1, if
$$(x \circ y) \circ z \ll I, y \in I \Rightarrow x \circ z \subseteq I,$$

(ii) a hyper BCC-ideal of type 2, if
$$(x \circ y) \circ z \subseteq I, y \in I \Rightarrow x \circ z \subseteq I,$$

(iii) a hyper BCC-ideal of type 3, if
$$(x \circ y) \circ z \ll I, y \in I \Rightarrow x \circ z \ll I,$$

(iv) a hyper BCC-ideal of type 4, if
$$(x \circ y) \circ z \subseteq I, y \in I \Rightarrow x \circ z \ll I.$$

Theorem 2.14 ([10]). In any hyper BCC-algebra, any hyper BCC-ideal of type (1), (2) and (3) is a hyper BCC-ideal of type (4).

3. Smarandache hyper BCC-algebra and Smarandache hyper BCC-ideals

Definition 3.1. A Smarandache hyper BCC-algebra (briefly, S-H-BCC-algebra) is defined to be a hyper BCC-algebra X in which there exists a proper subset Q of X such that

(S1) $0 \in Q$ and $|Q| \geq 3$,

(S2) Q is a hyper BCK-algebra with respect to the same operation on X.

Note that any proper hyper BCC-algebra X with three elements cannot be a S-H-BCC-algebra. Hence, if X is a S-H-BCC-algebra, then $|X| \geq 4$ [10].

Example 3.2. Consider $X = \{0, 1, 2, 3\}$ in the following table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>1</td>
<td>[1]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>2</td>
<td>[2]</td>
<td>[2]</td>
<td>[0, 1]</td>
<td>[2]</td>
</tr>
<tr>
<td>3</td>
<td>[3]</td>
<td>{1, 3}</td>
<td>{0, 1, 3}</td>
<td>{0, 1, 3}</td>
</tr>
</tbody>
</table>

Then X is a hyper BCC-algebra. If we consider $Q_1 = \{0, 1, 2\}$, then we can see that Q_1 is not a hyper BCK-algebra since $(2 \circ 1) \circ 2 \neq (2 \circ 2) \circ 1$ also $Q_2 = \{0, 1, 3\}$ is not a hyper BCK-algebra since $(2 \circ 2) \circ 3 \neq (2 \circ 3) \circ 2$. Therefore X is not a S-H-BCC-algebra.

Example 3.3. (i) Let $X = \{0, 1, 2, 3\}$ in the following tables.

<table>
<thead>
<tr>
<th>o</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>1</td>
<td>[1]</td>
<td>{0, 1}</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>2</td>
<td>[2]</td>
<td>[2]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>3</td>
<td>[3]</td>
<td>[2]</td>
<td>{2}</td>
<td>{0, 1}</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>1</td>
<td>[1]</td>
<td>{0, 1}</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>2</td>
<td>[2]</td>
<td>[2]</td>
<td>{0, 2}</td>
<td>{0, 2}</td>
</tr>
<tr>
<td>3</td>
<td>[3]</td>
<td>{2}</td>
<td>{1, 2}</td>
<td>{0, 1, 2}</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>1</td>
<td>[1]</td>
<td>{0, 1}</td>
<td>{0, 1}</td>
<td>[1]</td>
</tr>
<tr>
<td>2</td>
<td>[2]</td>
<td>{1, 2}</td>
<td>{0, 2}</td>
<td>[2]</td>
</tr>
<tr>
<td>3</td>
<td>[3]</td>
<td>[0]</td>
<td>[0]</td>
<td>{0, 3}</td>
</tr>
</tbody>
</table>
Note that $Q = \{0, 1, 2\}$ is a hyper BCK-algebra with each of the above operations and is properly contained in X. Then $(X, \circ, 0), (X, *, 0)$ and $(X, \ast, 0)$ are S-H-BCC-algebra.

(ii) Let $\{X, o, 0\}$ be a finite hyper BCK-algebra containing at least three elements and $\epsilon \not\in X, Y = X \cup \{\epsilon\}$. Define the hyper operation $"\circ"$ on H as follows:

$$
x \circ y = \begin{cases}
|c| & \text{if } x = c, y = 0, \\
|x| & \text{if } x \in X, y = c, \\
|0, c| & \text{if } x = y = c, \\
|0| & \text{if } x = c, y \in X - \{0\}, \\
x \circ y & \text{if } x, y \in X
\end{cases}
$$

for all $x, y \in Y$, then $(Y, \circ, 0)$ is a hyper BCC-algebra; therefore Y is a S-H-BCC-algebra.

Theorem 3.4. Any S-BCC-algebra is a S-H-BCC-algebra.

Proof. Straightforward. \(\square\)

The converse of Theorem 3.4 is not true in general, since any hyper BCC-algebra is not necessary a BCC-algebra.

Theorem 3.5. Let X be a S-H-BCC-algebra and $|X| \geq 5$. Then the set

$$
S(X) = \{x \in X : x \circ x = \{0\}\}
$$

is a S-BCC-algebra.

Proof. Let X be a S-H-BCC-algebra and $S(X) = \{x \in X : x \circ x = \{0\}\}$. We claim that for all $y, z \in S(X), |y \circ z| = 1$. Let there exist $y, z \in S(X)$ such that $|y \circ z| \geq 1$. Hence there exist $a, b \in y \circ z$ such that $a \neq b$. By (HC_1) and hypothesis $a \circ b = b \circ a = (y \circ z) \circ (y \circ z) \circ y = \{0\}$.

Then $a \circ b \ll \{0\}$ and $b \circ a \ll \{0\}$ and so $a \ll b$ and $b \ll a$. Hence by $(HC_3), a = b$ which is a contradiction. Therefore, for all $y, z \in S(X), y \circ z$ is a singleton set and so $S(X)$ is a S-BCC-algebra. \(\square\)

If $S(X) = X$, then the S-H-BCC-algebra become a S-BCC-algebra, which shows that S-H-BCC-algebra is a generalization of S-BCC-algebra.

In what follows, let X and Q denote a S-H-BCC-algebra and a nontrivial hyper BCK-algebra which is properly contained in X, respectively, unless otherwise specified.

Definition 3.6. A nonempty subset I of X such that $0 \in I$ is called

(i) a Smarandache hyper BCC-ideal of type 1 of X related to Q, if

$$
(\forall x, z \in Q)(x \circ y) \circ z \ll I, y \in I \Rightarrow x \circ z \subseteq I,
$$

(ii) a Smarandache hyper BCC-ideal of type 2 of X related to Q, if

$$
(\forall x, z \in Q)(x \circ y) \circ z \subseteq I, y \in I \Rightarrow x \circ z \subseteq I,
$$

(iii) a Smarandache hyper BCC-ideal of type 3 of X related to Q, if

$$
(\forall x, z \in Q)(x \circ y) \circ z \ll I, y \in I \Rightarrow x \circ z \ll I,
$$

(iv) a Smarandache hyper BCC-ideal of type 4 of X related to Q, if

$$
(\forall x, z \in Q)(x \circ y) \circ z \subseteq I, y \in I \Rightarrow x \circ z \ll I.
$$

Example 3.7. Consider $X = \{0, 1, 2, 3\}$ in the following table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0, 1}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{2}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>3</td>
<td>{3}</td>
<td>{2}</td>
<td>{2}</td>
<td>{0, 1}</td>
</tr>
</tbody>
</table>

X is a S-H-BCC-algebra where $Q = \{0, 1, 2\}$ is hyper BCK-algebra. We can see

- $I_1 = \{0\}, I_2 = \{0, 1\}, I_3 = \{0, 1, 2\}, \text{and } I_4 = \{0, 1, 2, 3\}$ are Smarandache hyper BCC-ideals of types (1)–(4) of X related to Q.
- $I_5 = \{0, 1, 3\}$ and $I_6 = \{0, 2, 3\}$ are not Smarandache hyper BCC-ideals of type (1) of X related to Q. (Since $(2 \circ 3) \circ 0 \ll I_5, 3 \in I_5,$ but $(2 \circ 0) = 2 \not\subseteq I_5$ and $(1 \circ 3) \circ 0 \ll I_6, 3 \in I_6,$ but $(1 \circ 0) = 1 \not\subseteq I_6.$)
Theorem 3.8. In any S-H-BCC-algebra, the following statements are valid.

(i) Any Smarandache hyper BCC-ideal of type (1) of X related to Q is a Smarandache hyper BCC-ideal of types (2) and (3) of X related to Q.

(ii) Any Smarandache hyper BCC-ideal of type (2) of X related to Q is a Smarandache hyper BCC-ideal of type (4) of X related to Q.

(iii) Any Smarandache hyper BCC-ideal of type (3) of X related to Q is a Smarandache hyper BCC-ideal of type (4) of X related to Q.

Proof. The proof is straightforward. □

The converse of Theorem 3.8 is not true in general.

Example 3.9. Consider X = {0, 1, 2, 3} in the following table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

X is a S-H-BCC-algebra where Q = {0, 1, 2} is hyper BCK-algebra. I = {0, 1, 3} is a Smarandache hyper BCC-ideal of type (2) of X related to Q, but it is not a Smarandache hyper BCC-ideal of type (1) of X related to Q. (Since (2 ⊗ 1) ∋ 1 ⊆ I, 1 ∈ I, but (2 ⊗ 0) = 2 ⊆ I.)

Example 3.10. In Example 3.7, I₇ and I₈ are Smarandache hyper BCC-ideals of types (3) and (4) of X related to Q but are not Smarandache hyper BCC-ideals of types (1) and (2) of X related to Q.

Example 3.11. Consider X = {0, 1, 2, 3} in the following table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

X is a S-H-BCC-algebra where Q = {0, 1, 2} is hyper BCK-algebra. I₁ = {0, 1} is not a Smarandache hyper BCC-ideal of type (4) of X related to Q, (since (2 ⊗ 1) ∋ 0 ⊆ I, 1 ∈ I, but (2 ⊗ 0) = 2 ⊆ I). Therefore by Theorem 3.8, I is not Smarandache hyper BCC-ideal of types (3),(2) and (1) of X related to Q.

Theorem 3.12. In any S-H-BCC-algebra the following statements are valid.

(i) I is a Smarandache hyper BCC-ideal of type (1) of X related to Q if and only if I is a hyper BCK-ideal of Q.

(ii) I is a Smarandache hyper BCC-ideal of type (2) of X related to Q if and only if I is a weak hyper BCK-ideal of Q.

Proof. (i) Let I be a Smarandache hyper BCC-ideal of type (1) of X related to Q. x ⊗ y ⊆ I and y ⊆ I, for all x, y ∈ Q. Hence by Proposition 2.5(c), we obtain (x ⊗ y) ∋ 0 = (x ⊗ y) ⊆ I, y ⊆ I, so applying the hypothesis and Proposition 2.5(c) we get that [x] = x ⊗ 0 ⊆ I. This shows that I is a hyper BCK-ideal of Q.

Conversely, let I be a hyper BCK-ideal of Q, (x ⊗ y) ⊆ I and y ⊆ I, for all x, y ∈ Q. Since y ⊆ I ⊆ Q; therefore y ∈ Q, by (HK₃)(x ⊗ y) ⊆ I and y ⊆ I, for each a ∈ x ⊗ y, a ⊆ I since y ∈ I and I is a hyper BCK-ideal of Q, then a ⊆ I and so x ⊗ y ⊆ I, hence I is a hyper BCK-ideal of type (1) of X related to Q.

(ii) The proof is similar to the proof of (i). □
In the following diagram we show the relationship between all types of Smarandache hyper BCC-ideals in Smarandache hyper BCC-algebras, and also the relationship with hyper BCK-ideals.

\begin{center}
\begin{tikzpicture}
 \node (1) at (0,0) {\text{hyper BCK-ideals \iff (1) \iff (4) \iff (2) \iff \text{weak hyper BCK-ideals}}};
 \node (2) at (0,-2) {\rightarrow \rightarrow \rightarrow \rightarrow};
 \node (3) at (-1,-1) {\text{(3)}};
 \node (4) at (1,-1) {\text{(4)}};
 \node (5) at (0,-3) {\text{(2)}};
 \node (6) at (0,-4) {\text{(1) \iff (3) \iff (4) \iff (2) \iff \text{weak hyper BCK-ideals}}};
\end{tikzpicture}
\end{center}

(1)–(4) denote the Smarandache hyper BCC-ideal of types 1, 2, 3 and 4 of X related to Q, respectively.

Proposition 3.13. Let I be a Smarandache hyper BCC-ideal of type 2 of X related to Q and $A \subseteq Q$. If $A \circ B \subseteq I$ and $B \subseteq I$, then $A \subseteq I$.

Proof. For all $a \in A$, $b \in B$ we have $a \circ b \subseteq A \circ B \subseteq I$, then $a \circ b = (a \circ b) \circ 0 \subseteq I$. Since I is a Smarandache hyper BCC-ideal of type 2 of X related to Q and $b \in I$ we conclude that $a = a \circ 0 \subseteq I$, thus $A \subseteq I$. \qed

Proposition 3.14. Let I be a Smarandache hyper BCC-ideal of type 3 of X related to Q and $A \subseteq Q$. If $A \circ B \ll I$ and $B \subseteq I$, then $A \ll I$.

Proof. We have $A \circ B = \bigcup_{a \in A, b \in B} a \circ b$ and $A \circ B \ll I$. Thus there exists $t \in a \circ b$ for some $a \in A$, $b \in B$ and $s \in I$ such that $t \ll s$. Hence $a \circ b \ll I$, then $a \circ b = (a \circ b) \circ 0 \ll I$. Since I is a Smarandache hyper BCC-ideal of type 3 of X related to Q and $b \in I$ we conclude that $a = a \circ 0 \ll I$, thus $A \ll I$. \qed

Proposition 3.15. Let I be a Smarandache hyper BCC-ideal of type 4 of X related to Q and $A \subseteq Q$. If $A \circ B \ll I$ and $B \subseteq I$, then $A \ll I$.

Proof. For all $a \in A$, $b \in B$, we have $a \circ b \subseteq A \circ B \subseteq I$, then $a \circ b = (a \circ b) \circ 0 \subseteq I$. Since I is a Smarandache hyper BCC-ideal of type 4 of X related to Q and $b \in I$ we conclude that $a = a \circ 0 \ll I$, thus $A \ll I$. \qed

Example 3.16. If I_0 is a Smarandache hyper BCC-ideal of type i of X related to Q, for $1 \leq i \leq 4$ of X and $I_0 \subseteq I_1$, then I_1 is not a Smarandache hyper BCC-ideal of type i of X related to Q, for $1 \leq i \leq 4$ of X. In Example 3.9, $I_0 = \{0\}$ is a Smarandache hyper BCC-ideal of type i of X related to Q, for $1 \leq i \leq 4$ of X and consider $I_1 = \{0, 1\}$, then $I_0 \subseteq I_1$ but I_1 is not a Smarandache hyper BCC-ideal of type i of X related to Q, for $1 \leq i \leq 4$ of X.

Theorem 3.17. A nonempty subset I of a S-H-BCC-algebra X satisfying the closed condition is a Smarandache hyper BCC-ideal of type i of X related to Q, for $1 \leq i \leq 4$ if and only if I is a Smarandache hyper BCC-ideal of type j of X related to Q, for $1 \leq j \leq 4$, $i \neq j$.

Proof. Let I satisfy the closed condition. It is easy to prove that for any subset A of X if $A \ll I$, then $A \subseteq I$. Hence the proof is clear. \qed

Proposition 3.18. Every Smarandache hyper BCC-ideal of type 1 of X related to Q satisfies the following

(i') \((\forall x \in Q)(\forall a \in I)(x \circ a \ll I \Rightarrow x \subseteq I)\).

Proof. Taking $z = 0$ and $y = a$ in Definition 3.6(i) and using Proposition 2.5(c) induce the desired implication. \qed

Theorem 3.19. If I is a subset of Q and $0 \in I$ that satisfies condition (i'), then I is a Smarandache hyper BCC-ideal of type 1 of X related to Q.

Proof. Let $x, z \in Q$ and $a \in I$ be such that $(x \circ a) \circ z \ll I$. Since $a \in I \subseteq Q$ and Q is a hyper BCK-algebra, it follows that $(x \circ z) \circ a = (x \circ a) \circ z \ll I$, from (i') we conclude that $x \circ z \subseteq I$. Hence I is a Smarandache hyper BCC-ideal of type 1 of X related to Q. \qed

Remark 3.20. Similarly we can prove the above theorem for the other types of Smarandache hyper BCC-ideals of X related to Q.

The following example shows that the condition (i') is necessary in the above theorem.
Example 3.21. In Example 3.11, $I_1 = \{0, 1\}, I_1 \subseteq Q$ but is not satisfying the condition (i') (since $2 \in Q, 1 \in I$ and $2 \circ 1 = 1 \ll I$ but $[2] \not\subseteq I$) and I is not Smarandache hyper BCC-ideal of type 1 of X related to Q; therefore condition (i') is necessary in the above theorem.

Remark 3.22. Every hyper BCC-ideal of type i of X, for $1 \leq i \leq 4$, of X is a Smarandache hyper BCC-ideal of the same type of X related to Q.

The converse of Remark 3.22 is not true in general.

Example 3.23. In Example 3.7, I_3 is a Smarandache hyper BCC-ideal of type i of X related to Q, for $1 \leq i \leq 4$ but is not a hyper BCC-ideal of the same type of X (Since $(3 \circ 1 \circ 0) \subseteq I_1, 1 \in I_1$, but $(3 \circ 0) = 3 \ll I_1$ hence is not hyper BCC-ideal of type 4 of X related to Q; therefore by Theorem 2.14 is not a hyper BCC-ideal of type i of X for $1 \leq i \leq 4$).

Theorem 3.24. Let Q_1, Q_2 be hyper BCK-algebras which are properly contained in X and $Q_1 \subset Q_2$. Then every Smarandache hyper BCC-ideal of type i, for $1 \leq i \leq 4$ of X related to Q_2 is Smarandache hyper BCC-ideal (the same type) of X related to Q_1.

Proof. Straightforward. □

In the following example, we show that the converse of Theorem 3.24 is not true.

Example 3.25. Consider $X = \{0, 1, 2, 3, 4, 5\}$ in the following table.

<table>
<thead>
<tr>
<th>\circ</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

X is a S-H-BCC-algebra related to Q_1 and Q_2, where $Q_1 = \{0, 1, 2, 3\}$ and $Q_2 = \{0, 1, 2, 3, 4\}$ are hyper BCK-algebra. $I = \{0, 1, 2, 3\}$ is a Smarandache hyper BCC-ideal of type i, for $1 \leq i \leq 4$ of X related to Q_1 but is not a Smarandache hyper BCC-ideal of the same type of X related to Q_2. (Since $(4 \circ 2) \circ 0 \subseteq I, 2 \in I$, but $(4 \circ 0) = 4 \ll I$. Therefore by Theorem 3.8, I is not a Smarandache hyper BCC-ideal of type (3), (2) and (1) of X related to Q_2.)

Proposition 3.26. Let X be a S-H-BCC-algebra. Then $\{0\}$ is a Smarandache hyper BCC-ideal of type i, for $1 \leq i \leq 4$ of X related to Q.

Proof. For all $x, z \in Q$, let $(x \circ y) \circ z \ll \{0\}, y \in \{0\}$ hence $x \circ z = (x \circ 0) \circ z \ll \{0\}$ and we have $\{0\} \ll x \circ z; \therefore HC_3, x \circ z = \{0\}$, hence $\{0\}$ is a Smarandache hyper BCC-ideal of type 1, then by Theorem 3.8, $\{0\}$ is a Smarandache hyper BCC-ideal of type i, for $1 \leq i \leq 4$ of X related to Q. □

Proposition 3.27. Let X be a S-H-BCC-algebra. Q and X are Smarandache hyper BCC-ideals of type i of X related to Q, for $1 \leq i \leq 4$.

Proof. Straightforward. □

4. Conclusion

A Smarandache structure is a structure S which has a proper subset with a stronger structure, or a proper subset with a weaker structure, or both (two proper subsets, one with a stronger structure, and another with a weaker structure). In the present paper, by using this notion we have introduced the concept of Smarandache hyper BCC-algebras and investigated some of their useful properties. In our opinion, these definitions and main results can be similarly extended to some other algebraic systems such as lattices and Lie algebras. It is our hope that this work will laid other foundations for further study of the theory of hyper BCC-algebra and hyper BCK-algebra.

In our future study of Smarandache structure of hyper BCC-algebras, the following topics may be considered.

(1) To get more results in Smarandache hyper BCC-algebras and application.

(2) To get more connection between hyper BCK-algebra and Smarandache hyper BCC-algebra.

(3) To define another Smarandache structure.

(4) To define fuzzy structure of Smarandache hyper BCC-algebras.

Acknowledgements

The authors would like to express their thanks to the Editor in Chief Prof. Ervin Y. Rodin and the referees for their comments and suggestions which improved the paper.
References