On the F.Smarandache LCM function ${ }^{1}$

Guoping Feng
Department of Mathematics, Tianshui Normal University
Tianshui, Gansu, P.R.China

Abstract

For any positive integer n, the famous F.Smarandache LCM function $S L(n)$ is defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, where $[1,2, \cdots, k]$ denotes the least common multiple of $1,2, \cdots, k$. The main purpose of this paper is using the elementary methods to study the value distribution properties of the function $S L(n)$, and give an interesting asymptotic formula for it.

Keywords F.Smarandache LCM function, value distribution, asymptotic formula.

§1. Introduction

For any positive integer n, the famous F.Smarandache LCM function $S L(n)$ defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, where $[1,2, \cdots, k]$ denotes the least common multiple of $1,2, \cdots, k$. For example, the first few values of $S L(n)$ are $S L(1)=1$, $S L(2)=2, S L(3)=3, S L(4)=4, S L(5)=5, S L(6)=3, S L(7)=7, S L(8)=8, S L(9)=9$, $S L(10)=5, S L(11)=11, S L(12)=4, S L(13)=13, S L(14)=7, S L(15)=5, S L(16)=16$, $S L(17)=17, S L(18)=9, S L(20)=5, \cdots \cdots$. About the elementary properties of $S L(n)$, some authors had studied it, and obtained many interesting results, see reference [2], [3], [4] and [5]. For example, Murthy [2] showed that if n be a prime, then $S L(n)=S(n)$, where $S(n)$ denotes the Smarandache function, i.e., $S(n)=\min \{m: n \mid m!, m \in N\}$. Simultaneously, Murthy [2] also proposed the following problem:

$$
\begin{equation*}
S L(n)=S(n), \quad S(n) \neq n ? \tag{1}
\end{equation*}
$$

Le Maohua [3] completely solved this problem, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

$$
n=12 \text { or } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} p,
$$

where $p_{1}, p_{2}, \cdots, p_{r}, p$ are distinct primes, and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ are positive integers satisfying $p>p_{i}^{\alpha_{i}}, i=1,2, \cdots, r$.

Lv Zhongtian [4] studied the mean value properties of $S L(n)$, and proved that for any fixed positive integer k and any real number $x>1$, we have the asymptotic formula

[^0]$$
\sum_{n \leq x} S L(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{2}}{\ln ^{i} x}+O\left(\frac{x^{2}}{\ln ^{k+1} x}\right)
$$
where $c_{i}(i=2,3, \cdots, k)$ are computable constants.
Ge Jian [5] studied the value distribution of $[S L(n)-S(n)]^{2}$, and proved that
$$
\sum_{n \leq x}[S L(n)-S(n)]^{2}=\frac{2}{3} \cdot \zeta\left(\frac{3}{2}\right) \cdot x^{\frac{3}{2}} \cdot \sum_{i=1}^{k} \frac{c_{i}}{\ln ^{i} x}+O\left(\frac{x^{\frac{3}{2}}}{\ln ^{k+1} x}\right)
$$
where $\zeta(s)$ is the Riemann zeta-function, $c_{i}(i=1,2, \cdots, k)$ are constants. The main purpose of this paper is using the elementary methods to study the value distribution properties of $S L(n)$, and prove an interesting asymptotic formula. That is, we shall prove the following conclusion:

Theorem. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{\substack{n \in N \\ S L(n) \leq x}} 1=2^{\frac{x}{\ln x}\left[1+O\left(\frac{\ln \ln x}{\ln x}\right)\right]}
$$

where N denotes the set of all positive integers.
From this Theorem we may immediately deduce the following:
Corollary. For any real number $x>1$, let $\pi(x)$ denotes the number of all primes $p \leq x$, then we have the limit formula

$$
\lim _{x \longrightarrow \infty}\left[\sum_{\substack{n \in N \\ S L(n) \leq x}} 1\right]^{\frac{1}{\pi(x)}}=2
$$

§2. Proof of the theorem

In this section, we shall prove our theorem directly. Let x be any real number with $x>2$, then for any prime $p \leq x$, there exists one and only one positive integer $\alpha(p)$ such that

$$
p^{\alpha(p)} \leq x<p^{\alpha(p)+1}
$$

From the properties of $S L(n)$ and [2] we know that if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the factorization of n into primes powers, then

$$
\begin{equation*}
S L(n)=\max \left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \cdots, p_{r}^{\alpha_{r}}\right\} . \tag{2}
\end{equation*}
$$

Let $m=\prod_{p \leq x} p^{\alpha(p)}$. Then for any integer $d \mid m$, we have $S L(d) \leq x$. For any positive integers u and v with $(u, v)=1$, if $S L(u) \leq x, S L(v) \leq x$, then $S L(u v) \leq x$. On the other hand, for any $S L(n) \leq x$, from the definition of $S L(n)$ we also have $n \mid m$. So from these and the properties of the Dirichlet divisor function $d(n)$ we have

$$
\begin{equation*}
\sum_{\substack{n \in N \\ S L(n) \leq x}} 1=\sum_{d \mid m} 1=\prod_{p \leq x}(1+\alpha(p))=e^{\sum_{p \leq x} \ln (1+\alpha(p))} \tag{3}
\end{equation*}
$$

From the definition of $\alpha(p)$ we have $\alpha(p) \leq \frac{\ln x}{\ln p}<\alpha(p)+1$ or

$$
\begin{equation*}
\alpha(p)=\left[\frac{\ln x}{\ln p}\right] \tag{4}
\end{equation*}
$$

Therefore, from (4) we may immediately get

$$
\begin{align*}
\sum_{p \leq x} \ln (1+\alpha(p)) & =\sum_{p \leq x} \ln \left(1+\left[\frac{\ln x}{\ln p}\right]\right) \\
& =\sum_{p \leq \frac{x}{\ln ^{2} x}} \ln \left(1+\left[\frac{\ln x}{\ln p}\right]\right)+\sum_{\frac{x}{\ln ^{2} x}<p \leq x} \ln \left(1+\left[\frac{\ln x}{\ln p}\right]\right) \tag{5}
\end{align*}
$$

Now we estimate each term in (5). It is clear that

$$
\begin{equation*}
\sum_{p \leq \frac{x}{\ln ^{2} x}} \ln \left(1+\left[\frac{\ln x}{\ln p}\right]\right) \ll \sum_{p \leq \frac{x}{\ln ^{2} x}} \ln \ln x \ll \frac{x \ln \ln x}{\ln ^{3} x} \tag{6}
\end{equation*}
$$

If $\frac{x}{\ln ^{2} x}<p \leq x$, then $1 \leq \frac{\ln x}{\ln p}<1+\frac{2 \ln \ln x}{\ln x-2 \ln \ln x}$. So from the famous Prime Theorem

$$
\pi(x)=\frac{x}{\ln x}+O\left(\frac{x}{\ln ^{2} x}\right)
$$

and

$$
\ln (1+y) \sim y, \quad \text { as } \quad y \longrightarrow 0
$$

we have

$$
\begin{align*}
\sum_{\frac{x}{\ln ^{2} x}<p \leq x} \ln \left(1+\left[\frac{\ln x}{\ln p}\right]\right) & =\sum_{\frac{x}{\ln ^{2} x}<p \leq x} \ln 2+O\left(\sum_{\frac{x}{\ln ^{2} x}<p \leq x} \frac{\ln \ln x}{\ln x}\right) \\
& =\ln 2 \cdot \frac{x}{\ln x}+O\left(\frac{x \ln \ln x}{\ln ^{2} x}\right) . \tag{7}
\end{align*}
$$

Combining (3), (5), (6) and (7) we may immediately obtain

$$
\sum_{\substack{n \in N \\ S L(n) \leq x}} 1=2^{\frac{x}{\ln x}\left[1+O\left(\frac{\ln \ln x}{\ln x}\right)\right]}
$$

where N denotes the set of all positive integers. This completes the proof of Theorem.
The corollary follows from

$$
\left[\sum_{\substack{n \in N \\ S L(n) \leq x}} 1\right]^{\frac{1}{\pi(x)}}=2^{1+O\left(\frac{\ln \ln x}{\ln x}\right)}=2+O\left(\frac{\ln \ln x}{\ln x}\right)
$$

as $x \longrightarrow \infty$.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[2] A.Murthy, Some notions on least common multiples, Smarandache Notions Journal, 12(2001), 307-309.
[3] Le Maohua, An equation concerning the Smarandache LCM function, Smarandache Notions Journal, 14(2004), 186-188.
[4] Lv Zhongtian, On the F.Smarandache LCM function and its mean value, Scientia Magna, 3(2007), No.1, 22-25.
[5] Jian Ge, Mean value of F.Smarandache LCM function, Scientia Magna, 3(2007), No. 2, 109-112.
[6] Zhang Wenpeng, The elementary number theory, Shaanxi Normal University Press, Xi'an, 2007.
[7] Wu Qibin, A conjecture involving the F.Smarandache LCM function, Scientia Magna, 3(2007), No. 1, 26-28.
[8] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
[9] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shanghai Science and Technology Press, Shanghai, 1988.

[^0]: ${ }^{1}$ This work partly supported by the N.S.F.C.(10671155).

