THE SMARANDACHE MULTIPLICATIVE FUNCTION

Ma Jinping
Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China

Abstract

For any positive integer n, we define $f(n)$ as a Smarandache multiplicative function, if $f(a b)=\max (f(a), f(b)),(a, b)=1$. Now for any prime p and any positive integer α, we take $f\left(p^{\alpha}\right)=\alpha p$. It is clear that $f(n)$ is a Smarandache multiplicative function. In this paper, we study the mean value properties of $f(n)$, and give an interesting mean value formula for it.

Keywords: Smarandache multiplicative function; Mean Value; Asymptotic formula.

§1 Introduction and results

For any positive integer n, we define $f(n)$ as a Smarandache multiplicative function, if $f(a b)=\max (f(a), f(b)),(a, b)=1$. Now for any prime p and any positive integer α, we take $f\left(p^{\alpha}\right)=\alpha p$. It is clear that $f(n)$ is a new Smarandache multiplicative function, and if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ is the prime powers factorization of n, then

$$
\begin{equation*}
f(n)=\max _{1 \leq i \leq k}\left\{f\left(p_{i}^{\alpha_{i}}\right)\right\}=\max _{1 \leq i \leq k}\left\{\alpha_{i} p_{i}\right\} \tag{1}
\end{equation*}
$$

About the arithmetical properties of $f(n)$, it seems that none had studied it before. This function is very important, because it has many similar properties with the Smarandache function $S(n)$ (see reference [1][2]). The main purpose of this paper is to study the mean value properties of $f(n)$, and obtain an interesting mean value formula for it. That is, we shall prove the following:

Theorem. For any real number $x \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} f(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+O\left(\frac{x^{2}}{\ln ^{2} x}\right)
$$

$\S 2$ Proof of the theorem

In this section, we shall complete the proof of the theorem. First we need following one simple Lemma. For convenience, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the prime powers factorization of n, and $P(n)$ be the greatest prime factor of n, that is, $P(n)=\max _{1 \leq i \leq k}\left\{p_{i}\right\}$. Then we have

Lemma. For any positive integer n, if there exists $P(n)$ such that $P(n)>$ \sqrt{n}, then we have the identity

$$
f(n)=P(n)
$$

Proof. From the definition of $P(n)$ and the condition $P(n)>\sqrt{n}$, we get

$$
\begin{equation*}
f(P(n))=P(n) \tag{2}
\end{equation*}
$$

For other prime divisors p_{i} of $n\left(1 \leq i \leq k\right.$ and $\left.p_{i} \neq P(n)\right)$, we have

$$
f\left(p_{i}^{\alpha_{i}}\right)=\alpha_{i} p_{i}
$$

Now we will debate the upper bound of $f\left(p_{i}^{\alpha_{i}}\right)$ in three cases:
(I) If $\alpha_{i}=1$, then $f\left(p_{i}\right)=p_{i} \leq \sqrt{n}$.
(II) If $\alpha_{i}=2$, then $f\left(p_{i}^{2}\right)=2 p_{i} \leq 2 \cdot n^{\frac{1}{4}} \leq \sqrt{n}$.
(III) If $\alpha_{i} \geq 3$, then $f\left(p_{i}^{\alpha_{i}}\right)=\alpha_{i} \cdot p_{i} \leq \alpha_{i} \cdot n^{\frac{1}{2 \alpha_{i}}} \leq n^{\frac{1}{2 \alpha_{i}}} \cdot \frac{\ln n}{\ln p_{i}} \leq \sqrt{n}$, where we use the fact that $\alpha \leq \frac{\ln n}{\ln p}$ if $p^{\alpha} \mid n$.

Combining (I)-(III), we can easily obtain

$$
\begin{equation*}
f\left(p_{i}^{\alpha_{i}}\right) \leq \sqrt{n} \tag{3}
\end{equation*}
$$

From (2) and (3), we deduce that

$$
f(n)=\max _{1 \leq i \leq k}\left\{f\left(p_{i}^{\alpha_{i}}\right)\right\}=f(P(n))=P(n)
$$

This completes the proof of Lemma.
Now we use the above Lemma to complete the proof of the theorem. First we define two sets \mathcal{A} and \mathcal{B} as following:

$$
\mathcal{A}=\{n \mid n \leq x, P(n) \leq \sqrt{n}\}, \quad \mathcal{B}=\{n \mid n \leq x, P(n)>\sqrt{n}\}
$$

Using the Euler summation formula (see reference [3]), we may get

$$
\begin{align*}
& \sum_{n \in \mathcal{A}} f(n) \ll \sum_{n \leq x} \sqrt{n} \ln n \\
& =\int_{1}^{x} \sqrt{t} \ln t d t+\int_{1}^{x}(t-[t])(\sqrt{t} \ln t)^{\prime} d t+\sqrt{x} \ln x(x-[x]) \\
& \ll x^{\frac{3}{2}} \ln x \tag{4}
\end{align*}
$$

Similarly, from the Abel's identity we also have

$$
\begin{align*}
& \sum_{n \in \mathcal{B}} f(n)=\sum_{\substack{n \leq x \\
P(n)>\sqrt{n}}} P(n)=\sum_{n \leq \sqrt{x}} \sum_{n \leq p \leq \frac{x}{n}} p \\
= & \sum_{n \leq \sqrt{x}} \sum_{\sqrt{x} \leq p \leq \frac{x}{n}} p+O\left(\sum_{n \leq \sqrt{x}} \sum_{n \leq p \leq \frac{x}{n}} \sqrt{x}\right) \\
= & \sum_{n \leq \sqrt{x}}\left(\frac{x}{n} \pi\left(\frac{x}{n}\right)-\sqrt{x} \pi(\sqrt{x})-\int_{\sqrt{x}}^{\frac{x}{n}} \pi(s) d s\right)+O\left(x^{\frac{3}{2}} \ln x\right), \tag{5}
\end{align*}
$$

where $\pi(x)$ denotes all the numbers of prime which is not exceeding x. Note that

$$
\pi(x)=\frac{x}{\ln x}+O\left(\frac{x}{\ln ^{2} x}\right),
$$

from (5) we have

$$
\begin{align*}
\sum_{\sqrt{x} \leq p \leq \frac{x}{n}}= & \frac{x}{n} \pi\left(\frac{x}{n}\right)-\sqrt{x} \pi(\sqrt{x})-\int_{\sqrt{x}}^{\frac{x}{n}} \pi(s) d s \\
= & \frac{1}{2} \cdot \frac{x^{2}}{n^{2} \ln x / n}-\frac{1}{2} \cdot \frac{x}{\ln \sqrt{x}}+O\left(\frac{x^{2}}{n^{2} \ln ^{2} x / n}\right) \\
& +O\left(\frac{x}{\ln ^{2} \sqrt{x}}\right)+O\left(\frac{x^{2}}{n^{2} \ln ^{2} x / n}-\frac{x}{\ln ^{2} \sqrt{x}}\right) . \tag{6}
\end{align*}
$$

Hence

$$
\begin{align*}
\sum_{n \leq \sqrt{x}} \frac{x^{2}}{n^{2} \ln x / n} & =\sum_{n \leq \ln ^{2} x} \frac{x^{2}}{n^{2} \ln x / n}+O\left(\sum_{\ln ^{2} x \leq n \leq \sqrt{x}} \frac{x^{2}}{n^{2} \ln x}\right) \\
& =\frac{\pi^{2}}{6} \cdot \frac{x^{2}}{\ln x}+O\left(\frac{x^{2}}{\ln ^{2} x}\right), \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n \leq \sqrt{x}} \frac{x^{2}}{n^{2} \ln ^{2} x / n}=O\left(\frac{x^{2}}{\ln ^{2} x}\right) \tag{8}
\end{equation*}
$$

From (4), (5), (6), (7) and (8), we may immediately deduce that

$$
\begin{aligned}
\sum_{n \leq x} f(n) & =\sum_{n \in \mathcal{A}} f(n)+\sum_{n \in \mathcal{B}} f(n) \\
& =\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+O\left(\frac{x^{2}}{\ln ^{2} x}\right) .
\end{aligned}
$$

This completes the proof of the theorem.
Note. If we use the asymptotic formula

$$
\pi(x)=\frac{x}{\ln x}+\frac{c_{1} x}{\ln ^{2} x}+\cdots+\frac{c_{m} x}{\ln ^{m} x}+O\left(\frac{x}{\ln ^{m+1} x}\right)
$$

to substitute

$$
\pi(x)=\frac{x}{\ln x}+O\left(\frac{x}{\ln ^{2} x}\right)
$$

in (5) and (6), we can get a more accurate asymptotic formula for $\sum_{n \leq x} f(n)$.

References

[1] F. Smarandache, Only Problems, Not Solutions, Xiquan Publishing House, Chicago, 1993.
[2] Jozsef Sandor, On an generalization of the Smarandache function, Notes Numb. Th. Discr. Math. 5 (1999) 41-51.
[3] Tom M. Apostol, Introduction to Analytic Number Theory, New York, 1976.

