Smarandache \mathcal{N}–subalgebras (resp. filters) of CI–algebras

Akbar Rezaei and Arsham Borumand Saeid

Abstract. In this paper, we introduce the notions of \mathcal{N}-subalgebras and \mathcal{N}-filters based on Smarandache CI-algebra and give a number of their properties. The relationship between $\mathcal{N}(Q, f)$-subalgebras (filters) and \mathcal{N}-subalgebras (filters) are also investigated.

AMS Subject Classification (2000). 06F35; 03G25; 03E72.
Keywords. CI/BE-algebra, Smarandache, \mathcal{N}-subalgebra (filter), $\mathcal{N}(Q, f)$-subalgebra (filter), anti fuzzy subalgebra (filter).

1 Introduction

Some recent researchers led to generalizations of the notion of fuzzy set that introduced by Zadeh in 1965 [15]. The generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the point $\{1\}$ into the interval $[0, 1]$. In order to provide a mathematical tool to deal with negative information, Jun et. al. introduced \mathcal{N}-structures, based on negative-valued functions [6]. In 1966, Y. Imai and K. Iseki [3] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. H. S. Kim and Y. H. Kim defined a BE-algebra [5]. Biao Long Meng, defined notion of CI-algebra as a generalization of a BE-algebra [9]. It is known that any BE-algebra is a CI-algebra. Hence, every BE-algebra is
a weaker structure than CI-algebra, thus we can consider in any CI-algebra a weaker structure as BE-algebra. Jun et. al. discussed the notion of N-structures in $BCH/BCK/BCI$-algebras and investigated their properties in [6, 7]. They introduced the notions of N-ideals of subtraction algebras and N-closed ideals in BCI-algebras. We introduce the notions of N-subalgebras and N-filters in CI-algebras and give a number of their properties and The relationship between N-subalgebras and N-filters was discussed in [14]. Also, we discuss on Smarandache CI-algebra and investigated some of their useful properties in [2]. Beside, we introduced the notion of anti fuzzy set and stated the relationship with the N-function of CI-algebra X. We showed that every anti fuzzy filter is an anti fuzzy subalgebra in [1]. K. J. Lee and Y. B. Jun introduced the notion of N-subalgebras and N-ideals based on a sub-BCK-algebra of a BCI-algebras and their relations/properties are investigated in [8].

In the present paper, we continue study of CI-algebras and apply the N-structures to the filter theory in CI-algebras and Smarandache CI-algebras, also investigate the relationship between N-subalgebra and N-filters based on Smarandache CI-algebras. We show that any $N(Q, f)$-closed filter is an $N(Q, g)$-subalgebra. We give some conditions for N-subalgebras(filters) to be $N(Q, g)$-subalgebras(resp. filters).

2 Preliminaries

In this section we review the basic definitions and some elementary aspects that are necessary for this paper.

Definition 2.1. [9] An algebra $(X; *, 1)$ of type $(2, 0)$ is called a CI-algebra if it satisfying the following axioms:

\[(CI1)\quad x \ast x = 1,\]
\[(CI2)\quad 1 \ast x = x,\]
\[(CI3)\quad x \ast (y \ast z) = y \ast (x \ast z), \quad \text{for all } x, y, z \in X.\]

A CI–algebra X satisfying the condition $x \ast 1 = 1$ is called a BE-algebra. In any CI-algebra X one can define a binary relation “\leq” by $x \leq y$ if and only if $x \ast y = 1$.

A CI-algebra X has the following properties:

\[(i)\quad y \ast ((y \ast x) \ast x) = 1,\]
\((ii) \) \((x \ast 1) \ast (y \ast 1) = (x \ast y) \ast 1, \)

\((iii) \) if \(1 \leq x \), then \(x = 1 \), for all \(x, y \in X \).

A non-empty subset \(S \) of a CI-algebra \(X \) is called a subalgebra of \(X \) if \(x \ast y \in S \) whenever \(x, y \in S \). A mapping \(f : X \to Y \) of CI-algebra is called a homomorphism if \(f(x \ast y) = f(x) \ast f(y) \), for all \(x, y \in X \). A non-empty subset \(F \) of CI-algebra \(X \) is called a filter of \(X \) if (1) \(1 \in F \), (2) \(x \in F \) and \(x \ast y \in F \) implies \(y \in F \). A filter \(F \) of CI-algebra \(X \) is said to closed if \(x \in F \) implies \(x \ast 1 \in F \).

A nonempty subset \(S \) of a CI-algebra \(X \) is called a subalgebra of \(X \) if \(x \ast y \in S \), for all \(x, y \in S \). For our convenience, the empty set \(\emptyset \) is regarded as a subalgebra of \(X \). Denote by \(Q(X, [-1, 0]) \) the collection of functions from a set \(X \) to \([-1, 0] \). We say that an element of \(Q(X, [-1, 0]) \) is a negative-valued function from \(X \) to \([-1, 0] \) (briefly, \(N \)-function on \(X \)). By an \(N \)-structure we mean an ordered pair \((X, f)\) of \(X \) and an \(N \)-function \(f \) on \(X \).

In what follows, let \(X \) denote a CI-algebra and \(f \) an \(N \)-function on \(X \) unless otherwise specified.

Definition 2.2. [14] By a subalgebra of \(X \) based on \(N \)-function \(f \) (briefly, \(N \)-subalgebra of \(X \)), we mean an \(N \)-structure \((X, f)\) in which \(f \) satisfies the following assertion:

\[
f(x \ast y) \leq \max\{f(x), f(y)\}, \text{ for all } x, y \in X.
\]

Definition 2.3. [14] By a filter of \(X \) based on \(N \)-function \(f \) (briefly, \(N \)-filter of \(X \)), we mean an \(N \)-structure \((X, f)\) in which \(f \) satisfies the following conditions:

1. \(f(1) \leq f(y) \),
2. \(f(y) \leq \max\{f(x \ast y), f(x)\}, \text{ for all } x, y \in X \).

Definition 2.4. [2] A Smarandache CI-algebra \(X \) is defined to be a CI-algebra \(X \) in which there exists a proper subset \(Q \) of \(X \) such that satisfies the following conditions:

1. \(\text{(S1)} \ 1 \in Q \) and \(|Q| \geq 2 \),
2. \(\text{(S2)} \ Q \) is a BE-algebra under the operation of \(X \).
Example 2.1. [2] Let $X := \{1, a, b, c, d\}$ be a set with the following table.

<table>
<thead>
<tr>
<th>\ast</th>
<th>1</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>1</td>
</tr>
</tbody>
</table>

Then X is a CI-algebra and $Q = \{1, a, b, c\}$ is a BE-algebra.

Definition 2.5. [2] A nonempty subset F of CI-algebra X is called a Smarandache filter of X related to Q (or briefly, Q-Smarandache filter of X) if it satisfies:

- (SF1) $1 \in F$,
- (SF2) $(\forall y \in Q)(\forall x \in F)(x \ast y \in F \Rightarrow y \in F)$.

Definition 2.6. [11] A fuzzy set $\mu : X \rightarrow [0, 1]$ is called an anti fuzzy subalgebra of X if it satisfies:

$$\mu(x \ast y) \leq \max\{\mu(x), \mu(y)\}, \text{ for all } x, y \in X.$$

Definition 2.7. [1] A fuzzy set $\mu : X \rightarrow [0, 1]$ is called an anti fuzzy filter of X if it satisfies:

- (AFF1) $\mu(1) \leq \mu(x)$,
- (AFF2) $\mu(y) \leq \max\{\mu(x \ast y), \mu(x)\}, \text{ for all } x, y \in X$.

3 Smarandache N-subalgebras

Definition 3.1. Let X be a Q-Smarandache CI-algebra and $\varrho \in [-1, 0]$. An N-structure (X, f) is called an N-subalgebra of X based on Q and ϱ (briefly, $N(Q, \varrho)$-subalgebra of X) if it is an N-subalgebra of X such that satisfies the following condition:

- (type 1) $(\forall x \in Q)(\forall y \in X \setminus Q) (f(x) \leq \varrho \leq f(y)),$
- (type 2) $(\forall x \in Q)(\exists y \in X \setminus Q) (f(x) \leq \varrho \leq f(y)),$
- (type 3) $(\exists x \in Q)(\forall y \in X \setminus Q) (f(x) \leq \varrho \leq f(y)),$
\begin{itemize}
\item (type 4) ($\exists x \in Q$) ($\exists y \in X \setminus Q$) ($f(x) \leq g \leq f(y)$).
\end{itemize}

Note. If $\varrho := 0$, then $f(y) = 0$, for all $y \in X \setminus Q$. So, (Q, f) is an N-subalgebra. If $\varrho := -1$, then $f(x) = -1$, for all $x \in Q$. And so $(X, f) = N(Q, f)$.

Example 3.1. a) In Example 2.1, an N-structure (X, f) in which f is defined by $f(1) = f(a) = -0.7$, $f(b) = -0.4$, $f(c) = -0.6$ and $f(d) = -0.3$ is an $N(Q, g)$-subalgebra of all types on X, for $\varrho \in [-0.4, -0.3]$ and $Q = \{1, a, b, c\}$.

b) In Example 2.1, an N-structure (X, g) in which g is defined by $g(1) = g(a) = -0.7$, $g(b) = -0.2$, $g(c) = -0.6$ and $g(d) = -0.3$ is not an $N(Q, g)$-subalgebra of X because $g(d) = -0.3 \neq g(b) = -0.2$.

c) In Example 2.1, an N-structure (X, f) in which f is defined by $f(1) = f(a) = -0.7$, $f(b) = -0.4$, $f(c) = -0.5$ and $f(d) = -0.3$ is an $N(Q, g)$-subalgebra of type 2, type 3 and type 4 on X, for $\varrho \in [-0.4, -0.3]$ and $Q = \{1, a, b\}$, but it is not of type 1, because $f(c) \not\leq g$.

d) In Example 2.1, an N-structure (X, f) in which f is defined by $f(1) = f(a) = -0.7$, $f(b) = -0.2$, $f(c) = -0.3$ and $f(d) = -0.1$ is an $N(Q, g)$-subalgebra of type 3 and type 4 on X, for $\varrho \in [-0.7, -0.3]$ and $Q = \{1, a, b\}$, but it is not of type 1 and type 2 on X, because $f(b) \not\leq g$.

e) In Example 2.1, an N-structure (X, f) in which f is defined by $f(1) = f(a) = -0.7$, $f(b) = -0.2$, $f(c) = -0.5$ and $f(d) = -0.3$ is an $N(Q, g)$-subalgebra of type 4 on X, for $\varrho \in [-0.7, -0.3]$ and $Q = \{1, a, b\}$, but it is not of type 1, type 2, type 3 on X.

Now, in the following diagram we summarize the results of this definition. The mark $A \rightarrow B$, means that A implies B.

\begin{center}
\begin{tikzpicture}
\node (type1) {type 1};
\node (type2) [right of=type1] {type 2};
\node (type3) [below of=type1] {type 3};
\node (type4) [right of=type3] {type 4};
\draw (type1) -- (type2);
\draw (type1) -- (type3);
\draw (type2) -- (type4);
\draw (type3) -- (type4);
\end{tikzpicture}
\end{center}

In this paper, we focus on $N(Q, g)$-subalgebra of type 1 and from now on X is a Q-Smarandache CI-algebra.

The following example shows that there exists an N-structure (X, f) in X such that it satisfies the condition (type 1), but it is not an N-subalgebra of X.

Example 3.2. In Example 2.1, an N-structure (X, f) in which f is defined by $f(1) = -0.7$, $f(a) = -0.2$, $f(b) = -0.4$, $f(c) = -0.6$ and $f(d) = -0.3$.
Then \((X, f)\) satisfies the condition (2.1) for \(\varrho \in [-0.2, -0.1]\), but it is not an \(N\)-subalgebra. Because

\[f(b \ast c) = f(a) = -0.2 \not< -0.4 = \max\{f(b), f(c)\}. \]

Proposition 3.1. If an \(N\)-structure \((X, f)\) satisfies the following condition:

\[(\forall x \in Q)(\forall y \in X \setminus Q)(f(x) \leq f(y)), \]

then \((X, f)\) is an \((Q, \varrho)\)-subalgebra of \(X\), for every \(\varrho \in \left[\bigvee_{x \in Q} f(x), \bigwedge_{y \in X \setminus Q} f(y) \right]\).

Theorem 3.2. Let \(\varrho \in [-1, 0]\). If \((X, f)\) is an \(N(Q, \varrho)\)-subalgebra of \(X\), then

(i) \(Q \subseteq C(f; \varrho)\),

(ii) \((\forall \beta \in [-1, 0])(\beta < \varrho \Rightarrow C(f; \beta) \text{ is a subalgebra of } Q)\).

Proof. Let \((X, f)\) be a \(N(Q, \varrho)\)-subalgebra of \(X\). Obviously, \(Q \subseteq C(f; \varrho)\). If \(\beta \in [-1, 0]\) be such that \(\beta < \varrho\), then \(C(f; \beta) \subseteq Q\). Let \(x, y \in C(f; \beta)\). Then \(f(x) \leq \beta\) and \(f(x) \leq \beta\). Thus \(f(x \ast y) \leq \max\{f(x), f(y)\} \leq \beta\), and so \(x \ast y \in C(f; \beta)\). Thus \(C(f; \beta)\) is a subalgebra of \(Q\).

In the following theorem we give some conditions for an \(N\)-subalgebra to be an \(N(Q, \varrho)\)-subalgebra.

Theorem 3.3. Let \(\varrho \in [-1, 0]\). If \((X, f)\) is an \(N\)-subalgebra of \(X\) satisfies the conditions (i) and (ii) in Theorem 3.2, then \((X, f)\) is an \(N(Q, \varrho)\)-subalgebra of \(X\).

Proof. Let \(x \in Q\) and \(y \in X \setminus Q\). Then by Theorem 3.2(i), \(x \in C(f; \varrho)\), and so \(f(x) \leq \varrho\). Let \(f(y) = \beta\). If \(\beta < \varrho\), then by Theorem 3.2(ii), \(y \in C(f; \beta) \subseteq Q\), which is a contradiction. Hence \(f(x) \leq \varrho \leq \beta = f(y)\). Thus \((X, f)\) is an \(N(Q, \varrho)\)-subalgebra of \(X\).

\[\square \]

4 Smarandache \(N\)-filters

Definition 4.1. Let \(X\) be a \(Q\)-Smarandache \(CI\)-algebra and \(\varrho \in [-1, 0]\). An \(N\)-structure \((X, f)\) is called an \(N\)-filter of \(X\) based on \(Q\) and \(\varrho\) (briefly, \(N(Q, \varrho)\)-filter of \(X\)) if it satisfies the following conditions:

(i) \((\forall x \in Q)(\forall y \in X \setminus Q)(f(1) \leq f(x) \leq \varrho \leq f(y))\).
Example 4.1. In Example 2.1, an \mathcal{N}–structure (X, f) in which f is defined by $f(1) = -0.6$, $f(a) = -0.4$, $f(b) = -0.5$, $f(c) = -0.4$ and $f(d) = -0.3$ is an $\mathcal{N}(Q, g)$–filter of X for $g \in [-0.4, -0.3]$.

Theorem 4.1. Let $\{\mathcal{N}(Q_i, g_i) : i \in \Delta\}$ be a family of $\mathcal{N}(Q_i, g_i)$–subalgebras (filters) of X where $\Delta \neq \emptyset$ and $g_i \in [-1, 0]$, for all $i \in \Delta$.
Then $\mathcal{N}(\cap Q_i, \min \{g_i\})_{i \in \Delta}$ is a subalgebra (filter) of X, too.

Theorem 4.2. Let $g \in [-1, 0]$. If (X, f) is an $\mathcal{N}(Q, g)$–filter of X, then

(i) $Q \subseteq C(f; g)$,
(ii) $(\forall \beta \in [-1, 0]) (\beta < g \Rightarrow C(f; \beta) \text{ is a filter of } Q)$.

Proof. Let (X, f) be an $\mathcal{N}(Q, g)$–filter of X. Obviously, $Q \subseteq C(f; g)$. Let $\beta \in [-1, 0]$ be such that $\beta < g$. If $x \in C(f; \beta)$, then $f(x) \leq \beta < g$, and so $x \in Q$. Hence $C(f; \beta) \subseteq Q$. By Definition 4.1(i), $f(1) \leq f(x) \leq \beta$ for all $x \in X$. Hence $f(1) \leq f(x) \leq \beta$ for all $x \in C(f; \beta)$, and so $1 \in C(f; \beta)$. Let $x, y \in Q$ be such that $x \ast y \in C(f; \beta)$ and $x \in C(f, \beta)$. Then $f(x \ast y) \leq \beta$ and $f(x) \leq \beta$. If $x, y \in C(f; \beta)$, then $f(x) \leq \beta$. Now by Definition 4.1(ii), $f(y) \leq \max\{f(x \ast y), f(x)\} \leq \beta$. Thus $y \in C(f; \beta)$. Therefore, $C(f; \beta)$ is a filter of Q.

For a Q–Smarandache CI–algebra X and $g \in [-1, 0]$, the following example shows that an \mathcal{N}–filter (X, f) of X may not be an $\mathcal{N}(Q, g)$–filter of X.

Example 4.2. Let $X := \{1, a, b, c\}$ be a set with the following table.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>a</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

Then X is a CI–algebra and $Q := \{1, a\}$ is a BE–algebra [13]. Define an \mathcal{N}–structure (X, f) in which f is defined by $f(1) = -0.7$, $f(a) = -0.2$, $f(b) = -0.4$, $f(c) = -0.2$. Then (X, f) is an \mathcal{N}–filter of X. But it is not an $\mathcal{N}(Q, g)$ of X for $g \in [-0.7, -0.3]$. Because $f(a) = -0.2 > g$.

In the following theorem we give conditions for an \mathcal{N}–filter to be an $\mathcal{N}(Q, g)$–filter.
Theorem 4.3. Let $\varrho \in [-1,0]$ and (X,f) be an N-filter of X satisfies the conditions (i) and (ii) of Theorem 4.2. Then (X,f) is an $N(Q,\varrho)$-filter of X.

Proof. Let $x \in Q$ and $y \notin X \setminus Q$. Then by Theorem 4.2(i), $x \in C(f;\varrho)$, and so $f(x) \leq \varrho$. Let $f(y) = \beta$. If $\beta < \varrho$, then by Theorem 4.2(ii), $y \in C(f;\beta) \subseteq Q$, which is a contradiction. Hence $\varrho \leq \beta = f(y)$. Since f is an N-filter of X, the condition (ii) of Definition 4.1 is obvious. Therefore, (X,f) is an $N(Q,\varrho)$-filter of X.

The following example shows that an $N(Q,\varrho)$-subalgebra may not be an $N(Q,\varrho)$-filter.

Example 4.3. Let $X := \{1,a,b,c,d\}$ be a set with the following table.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Then X is a CI-algebra and $Q = \{1,a,b,c\}$ is a BE-algebra. Define an N-structure (X,f) in which f is defined by $f(1) = -0.7$, $f(a) = -0.3$ and $f(b) = -0.4$. Then (X,f) is an N-subalgebra, but it is not an N-filter because

$$f(c) = -0.2 \not\leq -0.3 = \max\{f(b \ast c), f(b)\}.$$

Definition 4.2. An N-function on X is called closed N-filter if f satisfies:

$$f(x \ast 1) \leq f(x) \leq \max\{f(y \ast x, f(y))\}, \text{ for all } x,y \in X.$$

Example 4.4. Let $X := \{1,a,b\}$ be a set with the following table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Then X is a CI-algebra [10]. Define an N-function $f : X \to [0,1]$ by $f(1) = -0.7$, $f(a) = -0.3$ and $f(b) = -0.4$. Then (X,f) is an N-filter of X. But it is not an N-closed filter because

$$f(b \ast 1) = f(a) = -0.3 \not\leq f(b) = -0.4.$$
Example 4.5. In Example 4.4, if define N-function $f : X \to [0, 1]$ by $f(1) = -0.7$, $f(a) = -0.4$ and $f(b) = -0.4$. Then (X, f) is an N-closed filter of X.

Proposition 4.4. Let (X, f) be an N-closed filter. Then $f(1) \leq f(x)$, for all $x \in X$.

Proof. Let $x \in X$. Now, by Definition 4.2, we have

$$f(1) \leq \max\{f(x * 1), f(x)\} \leq \max\{f(x), f(x)\} = f(x).$$

\Box

Theorem 4.5. Let (X, f) be an closed N-filter and $g \in [-1, 0]$. Then every $N(Q_1, \varrho)$-filter is $N(Q, \varrho)$-subalgebra of X.

Proof. Let (X, f) be $N(Q_1, \varrho)$-filter and $x, y \in X$. Then by (CI3) and Definition 4.2, we have

$$f(x * y) \leq \max\{f(y * (x * y)), f(y)\}$$
$$= \max\{f(x * (y * y)), f(y)\}$$
$$= \max\{f(x * 1), f(y)\}$$
$$\leq \max\{f(x), f(y)\}.$$

Therefore, (X, f) is an N-subalgebra of X. \Box

Theorem 4.6. Let (X, f) and (X, g) be $N(Q_1, \varrho_1)$ and $N(Q_2, \varrho_2)$-subalgebra (filter) of X respectively. Then $(X \times X, f \times g)$ is an $N(Q_1 \times Q_2, \max\{\varrho_1, \varrho_2\})$-subalgebra(filter) of $X \times X$.

Proof. Let $(x, y) \in (Q_1 \times Q_2)$ and $(z, t) \in (X \times X) \setminus (Q_1 \times Q_2)$. Then we have

$$(f \times g)(1, 1) = \max\{f(1), g(1)\} \leq \max\{f(x), g(y)\}$$
$$\leq \max\{\varrho_1, \varrho_2\}$$
$$\leq \max\{f(z), f(t)\} = (f \times g)(z, t).$$

Now, let $(x_1, x_2), (y_1, y_2) \in (Q_1 \times Q_2)$. Then

$$(f \times g)((x_1, x_2) * (y_1, y_2)) = (f \times g)((x_1 * y_1), (x_2 * y_2))$$
$$= \max\{f(x_1 * y_1), g(x_2 * y_2)\}$$
$$\leq \max\{\max\{f(x_1), f(y_1)\}, \max\{g(x_2), g(y_2)\}\}$$
$$= \max\{\max\{f(x_1), g(x_2)\}, \max\{f(y_1), g(y_2)\}\}$$
$$= \max\{(f \times g)(x_1, x_2), (f \times g)(y_1, y_2)\}.$$

Hence $(X \times X, f \times g)$ is an $N(Q_1 \times Q_2, \max\{\varrho_1, \varrho_2\})$-subalgebra(resp. filter) of $X \times X$. \Box
Proposition 4.7. Let Q_1 and Q_2 be two BE-algebras which are properly contained in X, $Q_1 \subseteq Q_2$ and $\varrho \in [-1,0]$. Then every $N(Q_2, \varrho)$-subalgebra(filter) of X is an $N(Q_1, \varrho)$-subalgebra(filter) of X.

Note. By the following example we show that the converse of above theorem is not correct in general.

Example 4.6. Let $X := \{1, a, b, c\}$ be a set with the following table.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>a</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

Then $Q_1 = \{1, a\}$, $Q_2 = \{1, a, b\}$ are BE-algebras which are properly contained in X and $f(1) = -0.7$, $f(a) = -0.4$, $f(b) = -0.2$ and $f(c) = -0.1$. Then (X, f) is an $N(Q_1, \varrho)$-subalgebra, for all $\varrho \in [-0.4, 0]$, but it is not an $N(Q_2, \varrho)$-subalgebra, because, if $\varrho := -0.3$, then $f(b) = -0.2 \not< -0.3$.

5 Conclusion

A Smarandache structure on a set A means a week structure W on A such that there exist a proper subset B of A which is embedded with a strong structure S. It is that any BE-algebra is a CI-algebra. Hence, every BE-algebra is a weaker structure than CI-algebra, thus we can consider in any CI-algebra a weaker structure as BE-algebra.

In this paper, we have introduced the concept of N-subalgebra (filter) based on Smarandache CI-algebras and some related properties are investigated. We show that any $N(Q, f)$-closed filter is an $N(Q, f)$-subalgebra. We give some conditions for an N-subalgebras (filters) to be $N(Q, \varrho)$-subalgebras (filters).

Acknowledgement

We thank the anonymous referees for the careful reading of the paper and the suggestions on improving its presentation.
References

Akbar Rezaei
Department of Mathematics
Payame Noor University
p. o. box. 19395-3697
Tehran
Iran

Institue of higher education
Mehr Kerman
Kerman
Iran
E-mail: Rezaei@pnu.ac.ir

Arsham Borumand Saeid
Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Shahid Bahonar University of Kerman,
Kerman, Iran

E-mail: arsham@uk.ac.ir

Received: 3.10.2014
Accepted: 29.12.2014