THE 57-TH SMARANDACHE'S PROBLEM II *

Liu Huaning
Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China
hnliu@nwu.edu.cn

Gao Jing
School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R.China

Abstract

For any positive integer n, let r be the positive integer such that: the set $\{1,2$, $\cdots, r\}$ can be partitioned into n classes such that no class contains integers x, y, z with $x^{y}=z$. In this paper, we use the elementary methods to give a sharp lower bound estimate for r.

Keywords: Smarandache-type multiplicative functions; Mangoldt function; Hybrid mean value.

§1. Introduction

For any positive integer n, let r be a positive integer such that: the set $\{1,2, \cdots, r\}$ can be partitioned into n classes such that no class contains integers x, y, z with $x^{y}=z$. In [1], Schur asks us to find the maximum r. About this problem, Liu Hongyan [2] obtained that $r \geq n^{m+1}$, where m is any integer with $m \leq n+1$.

In this paper, we use the elementary methods to improve Liu Hongyan's result. That is, we shall prove the following:

Theorem. For sufficiently large integer n, let r be a positive integer such that: the set $\{1,2, \cdots, r\}$ can be partitioned into n classes such that no class contains integers x, y, z with $x^{y}=z$. Then we have

$$
r \geq\left(n^{n!}+2\right)^{n^{n!}+1}-1
$$

[^0]
§2. Proof of the Theorem

In this section, we complete the proof of the theorem.
Let $r=\left(n^{n!}+2\right)^{n^{n!+1}}-1$ and partition the set $\left\{1,2, \cdots,\left(n^{n!}+2\right)^{n^{n!}+1}-\right.$ 1 \} into n classes as follows:

Class 1: $1, \quad n^{n!}+1, \quad n^{n!}+2, \quad \cdots, \quad\left(n^{n!}+2\right)^{n^{n!}+1}-1$.
Class 2: $2, \quad n+1, \quad n+2, \quad \cdots, \quad n^{2}$.

Class k: $k, \quad n^{(k-1)!}+1, \quad n^{(k-1)!}+2, \cdots, \quad n^{k!}$.

Class n: $n, \quad n^{(n-1)!}+1, \quad n^{(n-1)!}+2, \cdots, \quad n^{n!}$.
It is obvious that Class $k(k \geq 2)$ contains no integers x, y, z with $x^{y}=z$. In fact for any integers $x, y, z \in$ Class $\mathrm{k}, k=2,3, \cdots, n$, we have

$$
x^{y} \geq\left(n^{(k-1)!}+1\right)^{k}>n^{k!} \geq z
$$

Similarly, Class 1 also contains no integers x, y, z with $x^{y}=z$. This completes the proof of the theorem.

Reference

[1] F. Smarandache, Only Problems, Not Solutions, Xiquan Publishing House, Chicago, 1993.
[2] Liu Hongyan and Zhang Wenpeng. A note on the 57 -th Smarandache's problem. Smarandache Notions Journal 14 (2004), 164-165.

[^0]: *This work is supported by the N.S.F.(60472068) and the P.N.S.F. of P.R.China.

