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Abstract For any positive integer n, let r be the positive integer such that: the set {1, 2,
· · · , r} can be partitioned into n classes such that no class contains integers x,
y, z with xy = z. In this paper, we use the elementary methods to give a sharp
lower bound estimate for r.
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§1. Introduction
For any positive integer n, let r be a positive integer such that: the set

{1, 2, · · · , r} can be partitioned into n classes such that no class contains inte-
gers x, y, z with xy = z. In [1], Schur asks us to find the maximum r. About
this problem, Liu Hongyan [2] obtained that r ≥ nm+1, where m is any integer
with m ≤ n + 1.

In this paper, we use the elementary methods to improve Liu Hongyan’s
result. That is, we shall prove the following:

Theorem. For sufficiently large integer n, let r be a positive integer such
that: the set {1, 2, · · · , r} can be partitioned into n classes such that no class
contains integers x, y, z with xy = z. Then we have

r ≥
(
nn! + 2

)nn!+1 − 1.
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§2. Proof of the Theorem
In this section, we complete the proof of the theorem.

Let r =
(
nn! + 2

)nn!+1−1 and partition the set {1, 2, · · · ,
(
nn! + 2

)nn!+1−
1} into n classes as follows:

Class 1: 1, nn! + 1, nn! + 2, · · · ,
(
nn! + 2

)nn!+1 − 1.

Class 2: 2, n + 1, n + 2, · · · , n2.

...
Class k: k, n(k−1)! + 1, n(k−1)! + 2, · · · , nk!.

...
Class n: n, n(n−1)! + 1, n(n−1)! + 2, · · · , nn!.

It is obvious that Class k(k ≥ 2) contains no integers x, y, z with xy = z.
In fact for any integers x, y, z ∈ Class k, k = 2, 3, · · · , n, we have

xy ≥
(
n(k−1)! + 1

)k
> nk! ≥ z.

Similarly, Class 1 also contains no integers x, y, z with xy = z.
This completes the proof of the theorem.
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