Smarandache pseudo-CI algebras

L. C. Ciungu

St Francis College 180 Remsen St, NY, 11201 USA lciungu@sfc.edu

A. Rezaei*

Department of Mathematics Payame Noor University P.O.Box. 19395-3697, Tehran Iran rezaei@pnu.ac.ir

A. Radfar

Department of Mathematics Payame Noor University P.O.Box. 19395-3697, Tehran Iran radfar@pnu.ac.ir

Abstract. In this paper, we define the notion of Smarandache pseudo-CI algebras and we investigate their properties. We also define and study the notions of Smarandache filters, pseudo-CI Smarandache homomorphisms and modal Smarandache operators on pseudo-CI algebras. The classes of Smarandache fantastic, implicative and positive implicative filters of Smarandache pseudo-CI algebras are defined and studied by extending some results regarding Smarandache fantastic, fresh and clean ideals in Smarandache BCI-algebras and Smarandache BCH-algebras to the case of Smarandache pseudo-CI algebras. The notion of Smarandache commutative pseudo-CI algebras is defined and a characterization theorem is given. It is proved that in the case of commutative Q-Smarandache pseudo-CI algebras the notions of Smarandache filters and fantastic filters coincide.

Keywords: pseudo-CI algebra, pseudo-BE algebra, Smarandache pseudo-CI algebra, Q-Smarandache filter.

1. Introduction

Developing algebraic models for non-commutative multiple-valued logics is a central topic in the study of fuzzy systems. Pseudo-BCK algebras were introduced by G. Georgescu and A. Iorgulescu in [13] as algebras with "two differences", a left- and right-difference, and with a constant element 0 as the least element. Pseudo-BCK algebras were intensively studied in [15] (also see

^{*.} Corresponding author

[14], [22], [21], [8]). Pseudo-BE algebras were introduced by R. A. Borzooei et al. as a generalization of BE-algebras and properties of these structures have recently been studied in [28] (also see [6]). L. C. Ciungu defined the notion of commutative pseudo-BE algebras and proved that the class of commutative pseudo-BE algebras is term equivalent to the class of commutative pseudo-BCK algebras ([9]). Recently, A. Rezaei et al. introduced the notion of pseudo-CI algebras as generalizations of CI-algebras and they provided some conditions for a pseudo-CI algebra to be a pseudo-BE algebra ([29]). The class of singular pseudo-CI algebras was defined and it was proved that any singular pseudo-CI algebra is a pseudo-BCI algebra (see [12], [29]). A. Rezaei et al. defined the dual pseudo-Q and dual pseudo-QC algebras, investigated their properties and gave characterizations of these structures ([30]). It was also proved that the class of commutative dual pseudo-QC algebras coincides with the class of commutative pseudo-BCI algebras.

Generally, a Smarandache structure on a set A means a weak structure W on A such that there exists a proper subset B which is embedded with a stronger structure S ([16]). Smarandache structures on multiple-valued logic algebras have been studied in [4] (also see [3], [5], [16], [17], [18], [19], [24], [25]). A. Borumand Saeid defined the notion of Smarandache (weak) BE-algebras and proved some of their properties ([2], [3]).

In this paper, we define the notion of Smarandache pseudo-CI algebras and we investigate their properties. We also define and study the notions of Smarandache filters, pseudo-CI Smarandache homomorphisms and modal Smarandache operators on pseudo-CI algebras. The classes of Smarandache fantastic, implicative and positive implicative filters of Smarandache pseudo-CI algebras are defined and studied by extending some results regarding Smarandache fantastic, fresh and clean ideals in Smarandache BCI-algebras and Smarandache BCHalgebras ([19], [18], [4]) to the case of Smarandache pseudo-CI algebras. We give a characterization of Smarandache implicative filters and we present conditions for a Smarandache filter to be a Smarandache implicative filter. For a Q-Smarandache pseudo-CI algebra we prove that any Smarandache implicative filter is a filter and any Smarandache positive implicative filter contained in Q is a Smarandache filter. We also give a characterization of Smarandache positive implicative filters. The notion of Smarandache commutative pseudo-CI algebras is defined and a characterization theorem is given. It is proved that in the case of commutative Q-Smarandache pseudo-CI algebras the notions of Smarandache filters and fantastic filters coincide. Finally, we define and investigate the notion of a Smarandache upper set in a pseudo-CI algebra and we show that every Q-Smarandache filter is a union of Q-Smarandache upper sets.

2. Preliminaries

In this section, we recall some basic notions and results regarding pseudo-CI algebras and pseudo-BE algebras. Pseudo-BE algebras were introduced in [5] as a generalization of BE-algebras (see [20]) and properties of it's have recently been studied in [30] and [6].

A CI-algebra ([23]) is an algebra $(X; \to, 1)$ of type (2, 0) satisfying the following axioms, for all $x, y, z \in X$:

```
(CI_1) x \to x = 1;

(CI_2) 1 \to x = x;
```

$$(CI_3)$$
 $x \to (y \to z) = y \to (x \to z).$

We introduce a binary relation \leq on X by $x \leq y$ if and only if $x \to y = 1$. A CI-algebra $(X; \to, 1)$ is said to be a BE-algebra ([20]) if (BE) $x \to 1 = 1$, for all $x \in X$.

Definition 2.1. ([29]) An algebra $(X; \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) is called a pseudo-CI algebra if, for all $x, y, z \in X$, it satisfies the following axioms:

```
(psCI_1) x \to x = x \leadsto x = 1;

(psCI_2) 1 \to x = 1 \leadsto x = x;

(psCI_3) x \to (y \leadsto z) = y \leadsto (x \to z);

(psCI_4) x \to y = 1 if and only if x \leadsto y = 1.
```

Remark 2.1. If $(X; \to, \leadsto, 1)$ is a pseudo-CI algebra satisfying $x \to y = x \leadsto y$, for all $x, y \in X$, then $(X; \to, 1)$ is a CI-algebra. Also, if $(X; \to, \leadsto, 1)$ is a pseudo-CI algebra, then $(X; \leadsto, \to, 1)$ is too.

Remark 2.2. Since every pseudo-BCI algebra satisfies (psCI₁)-(psCI₄), pseudo-BCI algebras are contained in the class of pseudo-CI algebras.

In the sequel, we will also refer to the pseudo-CI algebra $(X; \to, \leadsto, 1)$ by \mathfrak{X} . Any pseudo-CI algebra \mathfrak{X} verifying condition (psBE) $x \to 1 = x \leadsto 1 = 1$, for all $x, y \in X$, is said to be a pseudo-BE algebra ([6]). A pseudo-CI algebra which is not a pseudo-BE algebra, pseudo-BCI algebra and pseudo-BCH algebra will be called proper. A pseudo-CI algebra with condition (A) or a pseudo-CI(A) algebra for short, is a pseudo-CI algebra \mathfrak{X} satisfying the condition (A):

(A) for all $x, y, z \in X$, if $x \leq y$, then $y \to z \leq x \to z$ and $y \leadsto z \leq x \leadsto z$. In a pseudo-CI algebra $\mathfrak X$ we can introduce a binary relation \leq by:

 $x \leq y$ if and only if $x \to y = 1$ if and only if $x \leadsto y = 1$, for all $x, y \in X$. Note that \leq is reflexive by (psCI₁).

Example 2.1. ([29]) (1) Let $X = \{1, a, b, c, d, e\}$. Define the binary operations \rightarrow and \rightsquigarrow on X as follows:

\rightarrow	1	a	b	c	d	e	~→	1	a	b	c	d	e
1	1	a	b	c	d	e	1	1	a	b	c	d	\overline{e}
a	a	1	c	b	e	d	a	a	1	d	e	b	c
b							b	b	c	1	a	e	d
c	d	b	e	1	c	a	c	d	e	a	1	c	b
d	c	e	a	d	1	b	d	c	b	e	d	1	a
e	e	c	d	a	b	1	e						

Then, $(X; \to, \leadsto, 1)$ is a pseudo-CI algebra, but not a pseudo-BE algebra, since $a \to 1 = a \neq 1$ and $a \leadsto 1 = a \neq 1$.

(2) Let $X = \{1, a, b, c, d, e, f, g, h\}$. Define the binary operations \rightarrow and \rightsquigarrow on X as follows:

\rightarrow	1	a	b	c	d	e	f	g	h	~→	1	a	b	c	d	e	f	g	h
1	1	a	b	c	d	e	f	g	h	1	1	a	b	c	d	e	f	g	h
a	1	1	1	1	d	e	f	g	h	a	1	1	1	1	d	e	f	g	h
b	1	c	1	1	d	e	f	g	h	b	1	c	1	1	d	e	f	g	h
c	1	c	b	1	d	e	f	g	h	c	1	c	b	1	d	e	f	g	h
d	d	d	d	d	1	g	h	e	f	d	d	d	d	d	1	h	g	f	e
e	e	e	e	e	h	1	g	f	d	e	e	e	e	e	g	1	h	d	f
f	$\int f$	f	f	f	g	h	1	d	e	f	$\int f$	f	f	f	h	g	1	e	d
g	h	h	h	h	e	f	d	1	g	g	h	h	h	h	f	d	e	1	g
h	$\mid g \mid$	g	g	g	f	d	e	h	1	h	$\mid g \mid$	g	g	g	e	f	d	h	1

Then $(X; \rightarrow, \rightsquigarrow, 1)$ is a proper pseudo-CI algebra.

Definition 2.2. ([6]) Let \mathfrak{X} be a pseudo-BE algebra. A subset F of X is called a *filter* of \mathfrak{X} if for all $x, y \in X$:

 $(F_1) \ 1 \in F;$

 (F_2) $x \to y \in F$ and $x \in F$ imply $y \in F$.

Denote by $\mathcal{F}(X)$ set of all filters of \mathfrak{X} . Obviously, $\{1\}, X \in \mathcal{F}(X)$.

Definition 2.3. ([11]) Let \mathfrak{X} be a pseudo-BE algebra. A mapping $f: X \longrightarrow X$ is called a *modal operator* on X if it satisfies the following conditions for all $x, y \in X$:

 (M_1) $x \leq f(x)$;

 $(M_2) f(f(x)) = f(x);$

 (M_3) $f(x \to y) \le f(x) \to f(y)$ and $f(x \leadsto y) \le f(x) \leadsto f(y)$.

The pair (X, f) is called a modal pseudo-BE algebra.

Denote by $\mathcal{MOD}(X)$ set of all modal operators on X.

3. Smarandache pseudo-CI algebras

In this section, we define the notion of a Smarandache pseudo-CI algebra and investigate these properties. We also define and study the notions of Smarandache filters, pseudo-CI Smarandache homomorphisms and modal Smarandache operators on pseudo-CI algebras.

Definition 3.1. A pseudo-CI algebra \mathfrak{X} is said to be a *Q-Smarandache pseudo-CI algebra* if there is a proper subset Q of X such that:

- $(S_1) \ 1 \in Q \text{ and } |Q| \ge 2;$
- (S_2) $\mathfrak{Q} = (Q; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BE algebra under the operations of \mathfrak{X} . Q is called the *heart of* \mathfrak{X} , *if it satisfies* (S_1) , (S_2) *and axiom:*
- (S₃) If there is $\emptyset \neq S \subseteq X$ satisfies (S₁) and (S₂), then $S \subseteq Q$ (i.e. $Q = \{x \in X : x \to 1 = 1\}$).

Remark 3.1. Using (S_3) , the heart of \mathfrak{X} is unique and Q = X if and only if \mathfrak{X} is a pseudo-BE algebra.

Example 3.1. (1) Every pseudo-BE algebra is a Smarandache pseudo-CI algebra

(2) Consider the pseudo-CI algebra given in Example 2.1 (2), let $Q_1 = \{1, a, b, c\}$, $Q_2 = \{1, a\}$, $Q_3 = \{1, b\}$, $Q_4 = \{1, a, c\}$, and let $Q_5 = \{1, b, c\}$. Then \mathfrak{X} is a Q_1 , Q_2 , Q_3 , Q_4 and Q_5 Smarandache pseudo-CI algebra. Moreover, Q_1 satisfies (S_3) , hence it is the heart of \mathfrak{X} .

Proposition 3.1. In any Q-Smarandache pseudo-CI algebra \mathfrak{X} the following hold, for all $x, y \in X$:

- (1) if $x \notin Q$, then $x \to 1 \notin Q$ and $x \leadsto 1 \notin Q$;
- (2) $x \to 1 = 1$ or $x \to 1 \notin Q$;
- (3) if $x \to 1 \notin Q$, then $x \notin Q$;
- (4) if $x \to 1 = y \to 1$, then $x \to y \in Q$ and $y \to x \in Q$;
- (5) if $x \rightsquigarrow 1 = y \rightsquigarrow 1$, then $x \rightsquigarrow y \in Q$ and $y \rightsquigarrow x \in Q$;
- (6) if $x \in Q$ and $y \notin Q$, then $x \to y \notin Q$, $x \leadsto y \notin Q$ and $y \to x \notin Q$, $y \leadsto x \notin Q$.

Theorem 3.1. Let \mathfrak{X} be a proper pseudo-CI algebra. Then \mathfrak{X} is a Q-Smarandache pseudo-CI algebra if and only if there exists $Q \subseteq X$ such that $|Q| \ge 2$ and $x \to 1 = 1$, for all $x \in Q$.

Proof. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra. Then by definition we get there exists $Q \subseteq X$ such that $x \to 1 = 1$, for all $x \in Q$.

Conversely, consider $Q = \{x \in X \mid x \to 1 = 1\}$. It is suffice to prove that Q is a subalgebra of X. If $x, y \in Q$, then $x \to 1 = y \to 1 = 1$. By (a_4) , we get

$$(x \to y) \to 1 = (x \to 1) \leadsto (y \to 1) = 1 \leadsto 1 = 1.$$

Thus $x \to y \in Q$. Similarly, $x \leadsto y \in Q$. Hence Q is a subalgebra of \mathfrak{X} .

Definition 3.2. A subset F of a pseudo-CI algebra \mathfrak{X} is called a *Smarandache filter* of \mathfrak{X} related to \mathfrak{Q} (or briefly, Q-Smarandache filter of \mathfrak{X}) if it satisfies, for

all $y \in Q$ and $x \in F$:

- (SF_1) $1 \in F$;
- (SF_2) $x \to y \in F$ implies $y \in F$;
- (SF_3) $x \leadsto y \in F$ implies $y \in F$.

Denote by $\mathcal{F}_Q(X)$ set of all Q-Smarandache filters of \mathfrak{X} .

Example 3.2. Consider the pseudo-CI algebra given in Example 2.1 (2). We can see that \mathfrak{X} is a Q-Smarandache pseudo-CI algebra where $Q = \{1, a, b, c\}$. Note that $F_1 = \{1, a, b, c, d\}$, $F_2 = \{1, h\}$ and $F_3 = \{1, g, h\}$ are Q-Smarandache filters of \mathfrak{X} .

The following we provide some conditions for a subalgebra to be a Q-Smarandache filter.

Theorem 3.2. Let F be a subalgebra of \mathfrak{X} . Then F is a Q-Smarandache filter of \mathfrak{X} if and only if for all $x, y \in X$,

$$x \in F, \ y \in Q \setminus F \text{ imply } x \to y \in Q \setminus F \text{ and } x \leadsto y \in Q \setminus F.$$

Proof. Assume that $F \in \mathcal{F}_Q(X)$ and $x, y \in X$, such that $x \in F$ and $y \in Q \setminus F$. If $x \to y \notin Q \setminus F$, then $x \to y \in F$ (i.e. $y \in F$), which is a contradiction. Hence $x \to y \in Q \setminus F$. Now, if $x \leadsto y \notin Q \setminus F$, then $x \leadsto y \in F$ (i.e. $y \in F$), which is a contradiction. Hence $x \leadsto y \in Q \setminus F$.

Conversely, assume that the hypothesis is valid. Since F is a subalgebra, we have $1 \in F$. For every $x \in F$, let $x \to y \in F$. If $y \notin F$, then $x \to y \in Q \setminus F$ by assumption, which is a contradiction. Hence $y \in F$. Now, let $x \leadsto y \in F$. Then by hypothesis we have $y \in F$. Therefore, F is a Q-Smarandache filter of \mathfrak{X} . \square

Theorem 3.3. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra, and let F be a subset of X such that $Q \subseteq F$. Then F is a Smarandache filter of \mathfrak{X} .

The next example shows that the converse of Theorem 3.3 is not valid in general.

Example 3.3. Let \mathfrak{X} be the pseudo-CI algebra from Example 2.1 (2).

- (1) If $Q = \{1, a, b, c\}$ and $F = \{1, b, c, g\}$, then F is a Q-Smarandache filter.
- (2) If $Q = \{1, a, b, c\}$ we can easily see that, every filter F of \mathfrak{X} containing Q is a Q-Smarandache filter of \mathfrak{X} . For example $F_1 = \{1, a, b, c, d, e, \}$ is a Q-Smarandache filter of \mathfrak{X} .

Proposition 3.2. Any filter of a pseudo-CI algebra \mathfrak{X} is a Q-Smarandache filter.

The following example shows that the converse of above proposition is not valid in general.

Example 3.4. Consider the pseudo-CI algebra from Example 2.1 (2) and let $Q := \{1, a, b, c\}$. Then \mathfrak{X} is a Q-Smarandache pseudo-CI. Also, $F = \{1, h\}$ is a Q-Smarandache filter of \mathfrak{X} , but it is not a filter of \mathfrak{X} , since $h \to g = h \leadsto g = h \in F$ and $h \in F$, but $g \notin F$.

In [7], R. A. Borzooei et al. introduced the notion of distributive pseudo-BE algebras and got some useful results. The following we define the notion of weak distributive Q-Smarandach pseudo-CI algebras.

Definition 3.3. A Q-Smarandache pseudo-CI algebra \mathfrak{X} , where Q is the heart of \mathfrak{X} , is said to be *weak distributive* if it satisfies only one of the following conditions, for all $x, y, z \in Q$:

$$(WD_1)$$
 $x \to (y \leadsto z) = (x \to y) \leadsto (x \to z);$
 (WD_2) $x \leadsto (y \to z) = (x \leadsto y) \to (x \leadsto z).$

Remark 3.2. Take x = y in (WD_1) and (WD_2) and applying $(psCI_2)$, we get: $x \to (x \leadsto z) = (x \to x) \leadsto (x \to z) = 1 \leadsto (x \to z) = x \to z$ and $x \leadsto (x \to z) = (x \leadsto x) \to (x \leadsto z) = 1 \to (x \leadsto z) = x \leadsto z$. Now, using $(psCI_4)$, we have $x \to z = x \to (x \leadsto z) = x \leadsto (x \to z) = x \leadsto z$, for all $x, z \in Q$. Consequently, $\to = \leadsto$, and so Q is a BE-algebra.

In this paper, weak distributive pseudo-CI algebra satisfies (WD_1) .

Example 3.5. (1) Let $X = \{1, a, b, c, d\}$. Define the binary operations \rightarrow and \rightarrow on X by the following tables:

	\rightarrow	1	a	b	c	d		~ →	1	a	b	c	d
_	1	1	\overline{a}	b	c	d	•	1	1	\overline{a}	b	c	\overline{d}
	a	1	1	1	1	d		a	1	1	1	1	d
	b	1	1	1	1	d		b	1	1	1	1	d
	c	1	a	a	1	d		c	1	a	b	1	d
	d	d	d	d	d	1		d	d	d	d	d	1

Then $(X; \rightarrow, \rightsquigarrow, 1)$ is a weak distributive pseudo-CI algebra, where $Q = \{1, a, b, c\}$.

- (2) Consider the Q-Smarandache pseudo-CI algebra given in Example 2.1 (2), where $Q := \{1, a, b, c\}$. Then $\mathfrak X$ is not a weak distributive, since $b \to (b \leadsto a) = b \to c = 1 \neq c = 1 \leadsto c = (b \to b) \leadsto (b \to a)$.
- **Remark 3.3.** Singular pseudo-CI algebras were introduced and studied by Rezaei et al. in [29]. Now, if \mathfrak{X} is a singular pseudo-CI algebra, then $Q = \{1\}$, and so \mathfrak{X} is a weak distributive pseudo-CI algebra.

Proposition 3.3. If F is a Q-Smarandache filter of weak distributive pseudo-CI algebra \mathfrak{X} , then for all $x, y, z \in Q$:

- (1) $z \leadsto (y \to x) \in F$ and $z \leadsto y \in F$ imply $z \leadsto x \in F$;
- (2) $z \to (y \leadsto x) \in F$ and $z \to y \in F$ imply $z \to x \in F$.

Corollary 3.1. If F is a Q-Smarandache filter of weak distributive pseudo-CI algebra \mathfrak{X} , then for all $x, y \in Q$:

- (1) $y \leadsto (y \to x) \in F$ implies $y \leadsto x \in F$;
- (2) $y \to (y \leadsto x) \in F \text{ implies } y \to x \in F.$

Proposition 3.4. Let F be a Q-Smarandache filter of a pseudo-CI algebra \mathfrak{X} and $x, y \in Q$. Then

- (1) if $x \in F$, $y \in Q$ and $x \leq y$, then $y \in F$;
- (2) if \mathfrak{X} is weak distributive pseudo-CI algebra and $x, y \in F$, then $x \to y \in F$;
- (3) if \mathfrak{X} is weak distributive pseudo-CI algebra and $x, y \in F$, then $x \rightsquigarrow y \in F$.

Theorem 3.4. Any Q-Smarandache filter is a subalgebra of \mathfrak{Q} .

The converse of Theorem 3.4 is not valid in general. Indeed, in Example 2.1 (1), $S = \{1, a\}$ is a subalgebra, but it is not a Q-Smarandache filter.

Theorem 3.5. Let Q_1 and Q_2 be pseudo-BE algebras which are properly contained in a pseudo-CI algebra \mathfrak{X} and $Q_1 \subseteq Q_2$. Then every Q_2 -Smarandache filter is a Q_1 -Smarandache filter of \mathfrak{X} .

The following example shows that the converse of Theorem 3.5 is not valid in general.

Example 3.6. Let $X = \{1, a, b, c, d, e, f, g, h\}$, $Q_1 = \{1, a\}$, $Q_2 = \{1, a, b, c\}$ and $F = \{1, a, b\}$. According to Example 2.1 (2), we can see that \mathfrak{X} is a Q_1 -Smrandache pseudo-CI algebra and Q_2 -Smrandache pseudo-CI algebra. Also, F is a Q_1 -Smarandache filter of \mathfrak{X} , but F is not Q_2 -Smrandache filter of \mathfrak{X} . Indeed, $b \to c = 1 \in F$, $b \in F$, $c \in Q_2$, but $c \notin F$.

Definition 3.4. Let \mathfrak{X} and \mathfrak{Y} be Q_X and Q_Y -Smarandache pseudo-CI algebras, respectively. A mapping $f: X \longrightarrow Y$ is called a *Smarandache pseudo-CI homomorphism* if $f_s = f_{|Q}: Q_X \longrightarrow Q_Y$ is a pseudo-BE homomorphism.

Theorem 3.6. Let \mathfrak{X} and \mathfrak{Y} be Q_X and Q_Y Smarandache pseudo-CI algebras and $f: X \longrightarrow Y$ be a Smarandache pseudo-CI homomorphism. Then:

- (1) if $G \in \mathcal{F}_{Q_Y}(Y)$, then $f^{-1}(G) \in \mathcal{F}_{f^{-1}(Q_Y)}(X)$;
- (2) if f is injective and $F \in \mathcal{F}_{Q_X}(X)$, then $f(F) \in \mathcal{F}_{f(Q_X)}(Y)$.

Proof. (1) Assume that $G \in \mathcal{F}_{Q_Y}(Y)$ and $y \in f^{-1}(G)$. Obviously, $1_X \in f^{-1}(G)$. Let $x, x \to y \in f^{-1}(G)$ and $x \leadsto y \in f^{-1}(G)$. It follows that $f(x) \to f(y) = f(x \to y) \in G$ and $f(x) \leadsto f(y) = f(x \leadsto y) \in G$. Then $f(y) \in Q_Y$, since $f(x) \in G$ and $G \in \mathcal{F}_{Q_Y}(Y)$, we have $f(y) \in G$. Therefore, $y \in f^{-1}(G)$, and so $f^{-1}(G) \in \mathcal{F}_{f^{-1}(Q_Y)}(X)$.

(2) Assume that f is injective and $F \in \mathcal{F}_{Q_X}(X)$. Obviously, $1_Y \in f(F)$. Let $a, a \to b \in f(F)$ and $b \in f(Q_X)$. It follows that there exist $x_a, x_{a \to b} \in F$ and $x_b \in Q_X$ such that $f(x_a) = a, f(x_{a \to b}) = a \to b$ and $f(x_b) = b$. Now, we have

$$f(x_{a \to b}) = a \to b = f(x_a) \to f(x_b) = f(x_a \to x_b).$$

Since f is injective, we have $x_{a\to b}=x_a\to x_b\in F$, and so $x_b\in F$. Hence $b=f(x_b)\in f(F)$. Therefore, $f(F)\in \mathcal{F}_{f(Q_X)}(Y)$.

Definition 3.5. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra. A mapping $f: X \to X$ is called a modal Q-Smarandache operator if $f_s = f_{|Q}: Q \to Q$ is a modal pseudo-BE algebra.

Denote by $\mathcal{SMOD}_{\mathbb{Q}}(X)$ set of all modal Q-Smarandache operators on X.

Proposition 3.5. Let Q_1 and Q_2 be pseudo-BE algebras such that $Q_1 \subseteq Q_2 \subseteq X$. Then $\mathcal{SMOD}_{Q_1}(X) \subseteq \mathcal{SMOD}_{Q_2}(X)$.

4. Commutative Smarandache pseudo-CI algebras

The commutative pseudo-BE algebras were defined and investigated in [10], while the commutative Smarandache CI-algebras have been defined and studied in [5]. In this section we introduce the notion of commutative Smarandache pseudo-CI algebras, we give characterizations of these structures and investigate some of their properties.

Let
$$\mathfrak X$$
 be a pseudo-CI algebra. For all $x,y\in X$, denote: $x\vee_1 y=(x\to y)\leadsto y$ and $x\vee_2 y=(x\leadsto y)\to y$. If $\to=\leadsto$, then the pseudo-CI algebra $\mathfrak X$ is a CI-algebra and $x\vee y=(x\to y)\to y$.

Definition 4.1. A Q-Smarandache pseudo-CI algebra \mathfrak{X} is said to be *commutative* if Q is a commutative pseudo-BE algebra, that is, it satisfies the following conditions, for all $x, y \in Q$, $x \vee_1 y = y \vee_1 x$ and $x \vee_2 y = y \vee_2 x$.

Example 4.1. Let $X = \{1, a, b, c, d, e, f, g\}$. Define the binary operations \rightarrow and \rightsquigarrow on X by the following tables:

\rightarrow	1	a	b	c	d	e	f	g	~ →	1	a	b	c	d	e	f	g
1	1	a	b	c	d	e	f	g	1	1	a	b	c	d	e	f	\overline{g}
a	1	1	b	c	d	e	f	g	a	1	1	b	c	d	e	f	g
b	1	a	1	c	d	e	f	g	b	1	a	1	c	d	e	f	g
c	c	c	c	1	f	g	d	e	c	c	c	c	1	g	f	e	d
d	d	d	d	g	1	f	e	c	d	d	d	d	f	1	g	c	e
e	e	e	e	f	g	1	c	d	e	e	e	e	g	f	1	d	c
f	g	g	g	d	e	c	1	f	f	g	g	g	e	c	d	1	f
g	f	f	f	e	c	d	g	1	g	f	f	f	d	e	c	g	1

Then $(X; \to, \leadsto, 1)$ is a Q-Smarandache commutative pseudo-CI algebra, where $Q = \{1, a, b\}$.

Proposition 4.1. Let \mathfrak{X} be a Q-Smarandache commutative pseudo-CI algebra, and let $x, y \in Q$ such that $x \to y = y \to x = 1$ or $x \leadsto y = y \leadsto x = 1$. Then x = y.

Proof. Consider $x, y \in Q$ such that $x \to y = y \to x = 1$. Since \mathfrak{X} is commutative and applying (psCI₂), we get:

$$x=1 \leadsto x=(y \to x) \leadsto x=(x \to y) \leadsto y=1 \leadsto y=y.$$
 Similarly, $x \leadsto y=y \leadsto x=1$ implies $x=y.$

Proposition 4.2. In any Q-Smarandache commutative pseudo-CI algebra \mathfrak{X} the following hold, for all $x, y \in Q$:

- (1) $x \to y = y \lor_1 x \to y \text{ and } x \leadsto y = y \lor_2 x \leadsto y;$
- (2) $x \vee_1 y = (x \vee_1 y) \vee_1 x \text{ and } x \vee_2 y = (x \vee_2 y) \vee_2 x;$
- (3) $x \leq y$ implies $y \vee_1 x = y \vee_2 x = y$.

Theorem 4.1. An algebra \mathfrak{X} of the type (2,2,0) is a Q-Smarandache commutative pseudo-CI algebra if and only if the following hold, for all $x, y, z \in Q$:

- (P_1) $1 \rightarrow x = 1 \rightsquigarrow x = x$;
- $(P_2) \ x \to 1 = x \leadsto 1 = 1;$
- (P_3) $(x \to z) \leadsto (y \to z) = (z \to x) \leadsto (y \to x)$ and $(x \leadsto z) \to (y \leadsto z) = (z \leadsto x) \to (y \leadsto x);$
- (P_4) $x \to (y \leadsto z) = y \leadsto (x \to z);$
- (P_5) $x \rightarrow y = 1$ if and only if $x \rightsquigarrow y = 1$.

Theorem 4.2. An algebra \mathfrak{X} of the type (2,2,0) is a Q-Smarandache commutative pseudo-CI algebra if and only if the following hold, for all $x, y, z \in Q$:

- (Q_1) $(x \to 1) \leadsto y = (x \leadsto 1) \to y = y;$
- (Q_2) $(x \to z) \leadsto (y \to z) = (z \to x) \leadsto (y \to x)$ and $(x \leadsto z) \to (y \leadsto z) = (z \leadsto x) \to (y \leadsto x);$
- $(Q_3) \ x \to (y \leadsto z) = y \leadsto (x \to z);$
- (Q_4) $x \to y = 1$ if and only if $x \leadsto y = 1$.

Remark 4.1. According to [9] the following hold:

- Any pseudo BCK-algebra is a pseudo-BE algebra;
- The class of commutative pseudo-BE algebras is term equivalent to the class of commutative pseudo-BCK algebras.

It follows that in the definition of commutative Q-Smarandache pseudo-CI algebras, the pseudo-BE algebra can be replaced with a pseudo-BCK algebra.

5. Classes of Smarandache filters of Smarandache pseudo-CI algebras

Developing filter theory of multiple-valued logic algebras is a central topic in the study of fuzzy systems (see, e.g., [1, 26, 27]).

In this section we define and study the classes of Smarandache fantastic, implicative and positive implicative filters of Smarandache pseudo-CI algebras. We generalize some results regarding Smarandache fantastic, fresh and clean ideals proved in [19], [18] and [4] for Smarandache BCI-algebras and Smarandache BCH-algebras. It is proved that in the case of commutative Q-Smarandache pseudo-CI algebras the notions of Smarandache filters and fantastic filters coincide. We give a characterization of Smarandache implicative filters and we present conditions for a Smarandache filter to be a Smarandache implicative filter. For a Q-Smarandache pseudo-CI algebra we prove that any Smarandache implicative filter is a filter and any Smarandache positive implicative filter contained in Q is a Smarandache filter. Finally, we give a characterization of Smarandache positive implicative filters.

Definition 5.1. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra. A filter F of \mathfrak{X} is said to be Q-Smarandache fantastic filter of \mathfrak{X} if it satisfies the following conditions, for all $x, y \in Q$:

```
(FF_1) y \to x \in F implies x \lor_1 y \to x \in F; (FF_2) y \leadsto x \in F implies x \lor_2 y \leadsto x \in F.
```

Denote by $\mathcal{F}_{Q}^{F}(X)$ set of all Q-Smarandache fantastic filters of \mathfrak{X} .

Theorem 5.1. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra and let $F \subseteq X$. Then $F \in \mathcal{F}_Q^F(X)$ if and only if it satisfies the following conditions, for all $x, y \in Q$ and $z \in X$:

- $(1) \ 1 \in F;$
- (2) $z \to (y \to x) \in F$ and $z \in F$ imply $x \vee_1 y \to x \in F$;
- (3) $z \to (y \leadsto x) \in F$ and $z \in F$ imply $x \vee_2 y \leadsto x \in F$.

Proof. Consider $F \in \mathcal{F}_Q(X)$. Since $1 \in F$, condition (1) is satisfied. Let $x, y \in Q$ and $z \in F$ such that $z \to (y \to x) \in F$. Obviously, $y \to x \in Q$. Since $F \in \mathcal{F}(X)$, we have $y \to x \in F$, hence $x \vee_1 y \to x \in F$, that is, condition (2). Similarly, from $z \leadsto (y \leadsto x) \in F$ and $z \in F$, we get $x \vee_2 y \leadsto x \in F$, that is, condition (3).

Conversely, let $F \subseteq X$ satisfying conditions (1), (2) and (3). Obviously, $1 \in F$. Let $x, y \in Q$ such that $x \to y$, $x \in F$. Since $x \to (1 \to y) = x \to y \in F$, using (2), we have $y = y \lor_1 1 \to y \in F$. It follows that $F \in \mathcal{F}_Q(X)$. Let $x, y \in Q$ such that $y \to x \in F$. Since $1 \to (y \to x) \in F$ and $1 \in F$, by (2), we get $x \lor_1 y \to x \in F$. Similarly, from $y \leadsto x \in F$, we get $x \lor_2 y \leadsto x \in F$. We conclude that $F \in \mathcal{F}_Q^F(X)$.

Proposition 5.1. Let \mathfrak{X} be a pseudo-CI algebra and Q_1 , Q_2 be proper subsets of \mathfrak{X} such that $Q_1 \subseteq Q_2$. Then $\mathcal{F}_{Q_2}^F(X) \subseteq \mathcal{F}_{Q_1}^F(X)$.

Proposition 5.2. Let \mathfrak{X} be a Q-Smarandache pseudo-CI(A) algebra and $F_1 \in \mathcal{F}_Q^F(X)$, $F_2 \in \mathcal{F}_Q(X)$ such that $F_1 \subseteq F_2$. Then $F_2 \in \mathcal{F}_Q^F(X)$.

Proof. Consider $x, y \in Q$ such that $u = y \to x \in F_2$. It follows that $y \to (u \leadsto x) = y \to ((y \to x) \leadsto x) = 1 \in F_1$.

Since F_1 is fantastic, we have $(u \leadsto x) \lor_1 y \to (u \leadsto x) \in F_1$.

From $F_1 \subseteq F_2$, we get $(u \leadsto x) \lor_1 y \to (u \leadsto x) \in F_2$.

Applying $(psCI_3)$, it follows that $u \leadsto ((u \leadsto x) \lor_1 y \to x) \in F_2$.

Since $u \in F_2$ and $(u \leadsto x) \lor_1 y \to x \in Q$, we get $(u \leadsto x) \lor_1 y \to x \in F_2$.

In the pseudo-BE algebra Q, $x \leq (y \rightarrow x) \rightsquigarrow x = u \rightsquigarrow x$, hence by (A), we have $(u \rightsquigarrow x) \rightarrow y \leq x \rightarrow y$, and $(x \rightarrow y) \rightsquigarrow y \leq ((u \rightsquigarrow x) \rightarrow y) \rightsquigarrow y$, that is, $x \vee_1 y \leq (u \rightsquigarrow x) \vee_1 y$.

Finally, applying again (A), $(u \leadsto x) \lor_1 y \to x \preceq x \lor_1 y \to x$.

Hence $x \vee_1 y \to x \in F_2$. Similarly, from $y \rightsquigarrow x \in F_2$, we get $x \vee_2 y \rightsquigarrow x \in F_2$. We conclude that $F_2 \in \mathcal{F}_O^F(X)$.

Corollary 5.1. Let \mathfrak{X} be a Q-Smarandache pseudo-CI(A) algebra. Then $\{1\} \in \mathcal{F}_Q^F(X)$ if and only if $\mathcal{F}_Q(X) = \mathcal{F}_Q^F(X)$.

Theorem 5.2. If \mathfrak{X} is a commutative Q-Smarandache pseudo-CI algebra, then $\mathcal{F}_Q(X) = \mathcal{F}_Q^F(X)$.

Proof. Let $F \in \mathcal{F}_Q(X)$, and let $x, y \in Q$ such that $y \to x \in F$.

Obviously, $((y \to x) \leadsto x) \to x \in Q$ and by (a_6) , $y \to x \preceq ((y \to x) \leadsto x) \to x$, hence $((y \to x) \leadsto x) \to x = y \lor_1 x \to x \in F$. Since X is commutative, we get $x \lor_1 y \to x \in X$.

Similarly, $x, y \in Q$ and $y \leadsto x \in F$ imply $x \lor_2 y \leadsto x \in F$, hence $F \in \mathcal{F}_Q^F(X)$. We conclude that $\mathcal{F}_Q(X) \subseteq \mathcal{F}_Q^F(X)$, that is, $\mathcal{F}_Q(X) = \mathcal{F}_Q^F(X)$.

Definition 5.2. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra. A subset F of X is said to be a Q-Smarandache implicative filter of \mathfrak{X} if it satisfies the following conditions, for all $x, y \in Q$ and $z \in F$:

 (IF_1) $1 \in F$;

 (IF_2) $z \to ((x \to y) \leadsto x) \in F$ implies $x \in F$;

 (IF_3) $z \leadsto ((x \leadsto y) \to x) \in F$ implies $x \in F$.

Denote by $\mathcal{F}_Q^i(X)$ set of all Q-Smarandache implicative filters of \mathfrak{X} .

Proposition 5.3. In any Q-Smarandache pseudo-CI algebra \mathfrak{X} , $\mathcal{F}_Q^I(X) \subseteq \mathcal{F}_Q(X)$.

Proof. Let $F \in \mathcal{F}_Q^I(X)$. Obviously, (SF_1) is (IF_1) . Let $x \in F$ and $y \in Q$ such that $x \to y \in F$. Since $y \to ((x \to x) \leadsto x) = y \to x \in F$, by (IF_2) , we get $x \in F$, that is, (SF_2) is verified. Similarly, (SF_3) follows from (IF_3) , hence $F \in \mathcal{F}_Q(X)$. We conclude that $\mathcal{F}_Q^I(X) \subseteq \mathcal{F}_Q(X)$.

Theorem 5.3. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra, and let $F \in \mathcal{F}_Q(X)$. Then the following are equivalent; for all $x, y \in Q$, (1) $F \in \mathcal{F}_Q^I(X)$; (2) $(x \to y) \leadsto x \in F$ implies $x \in F$ and $(x \leadsto y) \to x \in F$ implies $x \in F$.

Proof. (1) \Rightarrow (2) Let $F \in \mathcal{F}_Q^I(X)$, and let $x, y \in Q$ such that $(x \to y) \leadsto x \in F$. Since $1 \to ((x \to y) \leadsto x) = (x \to y) \leadsto x \in F$ and $1 \in F$, by (IF_2) , we get $x \in F$. Similarly, $(x \leadsto y) \to x \in F$ implies $x \in F$. (2) \Rightarrow (1) Let $x, y \in Q$ such that $z \to ((x \to y) \leadsto x) \in F$, and let $z \in F$. Since $F \in \mathcal{F}_Q(X)$, we get $(x \to y) \leadsto x \in F$, and applying (2), we get $x \in F$. Similarly, $z \to ((x \leadsto y) \to x) \in F$ and $z \in F$ imply $x \in F$. Therefore, $F \in \mathcal{F}_Q^I(X)$.

Proposition 5.4. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra, and let $F \in \mathcal{F}_Q(X)$ such that $((x \to y) \leadsto x) \leadsto x \in F$ and $((x \leadsto y) \to x) \to x \in F$, for all $x, y \in Q$. Then $F \in \mathcal{F}_Q^I(X)$.

Proof. Let $F \in \mathcal{F}_Q(X)$ and let $x, y \in Q$ such that $z \to ((x \to y) \leadsto x) \in F$ and $z \in F$. Since $F \in \mathcal{F}_Q(X)$, by (SF_2) , we have $(x \to y) \leadsto x \in F$. Moreover, from $((x \to y) \leadsto x) \leadsto x \in F$, applying again (SF_2) , we get $x \in F$. Similarly, $z \leadsto ((x \leadsto y) \to x) \in F$ and $z \in F$ imply $x \in F$. Therefore, $F \in \mathcal{F}_Q^I(X)$.

Definition 5.3. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra. A subset F of X is said to be a Q-Smarandache positive implicative filter of \mathfrak{X} if it satisfies the following conditions, for all $x,y,z\in Q$:

 (PIF_1) $1 \in F$;

 (PIF_2) $z \to (x \to y) \in F$ and $z \leadsto x \in F$ imply $z \to y \in F$; (PIF_3) $z \leadsto (x \leadsto y) \in F$ and $z \to x \in F$ imply $z \leadsto y \in F$.

Denote by $\mathcal{F}_Q^{PI}(X)$ set of all Q-Smarandache implicative filters of \mathfrak{X} .

Proposition 5.5. In any Q-Smarandache pseudo-CI algebra \mathfrak{X} , $\{F \in \mathcal{F}_Q^{pi}(X) \mid F \subseteq Q\} \subseteq \mathcal{F}_Q(X)$.

Proof. Let $F \in \mathcal{F}_Q^{PI}(X)$. Obviously, (SF_1) is (PIF_1) . Let $x \in F$ and $y \in Q$ such that $x \to y \in F$. Since $1 \to (x \to y) = x \to y \in F$ and $1 \leadsto x = x \in F \subseteq Q$, applying (PIF_2) , we get $1 \to y = y \in F$. Thus (SF_2) is verified. Similarly, applying (PIF_3) , we get (SF_3) , hence $F \in \mathcal{F}_Q(X)$. We conclude that $\mathcal{F}_Q^{PI}(X) \subseteq \mathcal{F}_Q(X)$.

Proposition 5.6. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra, and let $F \in \mathcal{F}_Q(X)$ such that the following conditions are satisfied, for all $x, y, z \in Q$: $(PIF_4) \ z \to (x \to y) \in F$ implies $(z \leadsto x) \to (z \to y) \in F$; $(PIF_5) \ z \leadsto (x \leadsto y) \in F$ implies $(z \to x) \leadsto (z \leadsto y) \in F$. Then $F \in \mathcal{F}_Q^{PI}(X)$.

Proof. Let $F \in \mathcal{F}_Q(X)$, and let $x, y, z \in Q$ such that $z \to (x \to y) \in F$ and $z \leadsto x \in F$. By (PIF_4) , we have $(z \leadsto x) \to (z \to y) \in F$ and by (SF_2) , we get $z \to y \in F$. Similarly, applying (PIF_5) , from $z \leadsto (x \leadsto y) \in F$ and $z \to x \in F$, we get $z \leadsto y \in F$. It follows that $F \in \mathcal{F}_Q^{PI}(X)$.

Corollary 5.2. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra, and let $F \in$ $\mathcal{F}_{\mathcal{O}}(X)$ such that the following conditions are satisfied, for all $x,y\in Q$: $(PIF_4)'$ $x \to (x \to y) \in F$ implies $x \to y \in F$; $(PIF_5)' \times (x \leadsto y) \in F \text{ implies } x \leadsto y \in F.$ Then $F \in \mathcal{F}_{O}^{PI}(X)$.

Lemma 5.1. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra, and let $F \in \mathcal{F}_{O}^{PI}(X)$. Then F satisfies $(PIF_4)'$ and $(PIF_5)'$, for all $x, y \in Q$.

Proof. Let $F \in \mathcal{F}_Q(X)$, and let $x, y \in Q$ such that $x \to (x \to y) \in F$. Since $x \rightsquigarrow x = 1 \in F$, applying (PIF_2) we get $x \rightarrow y \in F$. Similarly, from $x \rightsquigarrow (x \rightsquigarrow y) \in F$, applying (PIF_3) , we get $x \rightsquigarrow y \in F$.

Theorem 5.4. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra, and let $F \in$ $\mathcal{F}_Q(X)$. Then $F \in \mathcal{F}_Q^{PI}(X)$ if and only if it satisfies $(PIF_4)'$ and $(PIF_5)'$.

Proof. It follows by Lemma 5.1 and Corollary 5.2.

Proposition 5.7. Let \mathfrak{X} be a Q-Smarandache pseudo-CI algebra, and let $F \in$ $\mathcal{F}_{Q}^{PI}(X)$ such that $F\subseteq Q$. Then the following hold, for all $x,y\in Q$, $z\in F$: (PIF_6) $z \to (x \to (x \to y)) \in F$ implies $x \to y \in F$; $(PIF_7) \ z \leadsto (x \leadsto (x \leadsto y)) \in F \ implies \ x \leadsto y \in F.$

Proof. Let $F \in \mathcal{F}_Q^{PI}(X)$, $F \subseteq Q$, and let $x, y \in Q$, $z \in F$ such that $z \to (x \to (x \to y)) \in F$. Since $F \subseteq Q$ we have $z \in Q$. By Proposition 5.5, $F \in \mathcal{F}_Q(X)$ and applying (SF_2) , we have $x \to (x \to y) \in F$. Hence by Lemma 5.1, we get $x \to y \in F$, thus (PIF_6) is verified. Similarly, for (PIF_7) .

Theorem 5.5. Let \mathfrak{X} and \mathfrak{Y} be Q_X and Q_Y -Smarandache pseudo-CI algebras and $f: X \longrightarrow Y$ be a Smarandache pseudo-CI homomorphism. Then:

- (1) if $G \in \mathcal{F}_{Q_Y}^F(Y)$ $(\mathcal{F}_{Q_Y}^I(Y), \mathcal{F}_{Q_Y}^{PI}(Y))$, then
- $f^{-1}(G) \in \mathcal{F}_{f^{-1}(Q_Y)}^F(X) \ (\mathcal{F}_{f^{-1}(Q_Y)}^I(X), \ \mathcal{F}_{f^{-1}(Q_Y)}^I(X));$ (2) if f is injective and $F \in \mathcal{F}_{Q_X}^F(X) \ (\mathcal{F}_{Q_X}^I(X), \ \mathcal{F}_{Q_X}^{PI}(X)),$ then $f(F) \in \mathcal{F}_{f(Q_X)}^F(Y) \ (\mathcal{F}_{f(Q_X)}^I(Y), \ \mathcal{F}_{f(Q_X)}^{PI}(Y)).$

Proof. (1) Let $G \in \mathcal{F}_{Q_Y}^F(Y)$, and let $x, y \in Q_X$ such that $y \to x \in f_{Q_Y}^{-1}(G)$, that is, $f(y \to x) \in G$, so $f(y) \to f(x) \in G$. Since $G \in \mathcal{F}_{Q_Y}^F(Y)$, we have $f(x) \vee_1 f(y) \to f(x) \in G$. It follows that $f(x \vee_1 y \to x) \in G$, hence $x \vee_1 y \to x \in f^{-1}(G)$. Similarly, $y \leadsto x \in f_{Q_Y}^{-1}(G)$ implies $x \vee_2 y \leadsto x \in f^{-1}(G)$. We conclude that $f^{-1}(G) \in \mathcal{F}_{f^{-1}(Q_Y)}^F(X)$. Similarly, for $G \in \mathcal{F}_{Q_Y}^I(Y)$ and $G \in \mathcal{F}_{Q_Y}^{PI}(Y)$. (2) Let $F \in \mathcal{F}_{Q_X}^F(X)$ and $x, y \in f(Q)$ such that $y \to x \in f(F)$. There exist $x_1, y_1, z_1 \in Q$ such that $x = f(x_1), y = f(y_1), y \to x = f(z_1)$. Therefore, $f(y_1) \to f(x_1) = f(z_1)$, that is, $f(y_1 \to x_1) = f(z_1)$. Since f is injective and F is fantastic, we get $y_1 \to x_1 = z_1 \in F$, hence $x_1 \vee_1 y_1 \to x_1 \in F$. It follows that $f(x_1 \vee_1 y_1 \rightarrow x_1) \in f(F)$, so $f(x_1) \vee_1 f(y_1) \rightarrow f(x_1) \in f(F)$, that is, $x \vee_1 y \to x \in f(F)$. Similarly, $y \leadsto x \in f(F)$ implies $x \vee_2 y \leadsto x \in f(F)$. Hence $f(F) \in \mathcal{F}_{f(Q_X)}^F(Y)$. Similarly, for $F \in \mathcal{F}_{Q_X}^I(X)$ and $F \in \mathcal{F}_{Q_X}^{PI}(X)$.

6. Q-Smarandache upper sets

In this section, we define and investigate the notion of Smarandache upper sets in a pseudo-CI algebra and we investigate some of their properties. We prove that every Q-Smarandache filter is a union of Q-Smarandache upper sets.

Let $x, y \in Q$ and $Q \subseteq X$ be a pseudo-BE algebra. Denote:

$$A(x,y) := \{ z \in Q : x \to (y \leadsto z) = 1 \}.$$

We call A(x, y) a Q-Smarandache upper set of x and y.

Remark 6.1. It is easy to see that, $1, x, y \in A(x, y)$. The set A(x, y), where $x, y \in Q$, is not a filter of \mathfrak{X} , in general. Also, using (psCI₃) and (psCI₄) we have

$$\begin{array}{lcl} A(x,y) & = & \{z \in Q : x \rightarrow (y \rightsquigarrow z) = 1\} \\ & = & \{z \in Q : x \rightsquigarrow (y \rightsquigarrow z) = 1\} \\ & = & \{z \in Q : y \rightsquigarrow (x \rightarrow z) = 1\} \\ & = & \{z \in Q : y \rightarrow (x \rightarrow z) = 1\}. \end{array}$$

Example 6.1. (1) Consider the pseudo-CI algebras from Example 2.1 (2) and let $Q := \{1, a, c\}$. Then $A(a, c) = \{1, a, c\}$.

(2) Consider the Q-Smarandache pseudo-CI algebras from Example 4.1. Then $A(a,1)=\{1,a,b\}\neq A(1,a)=\{1,a\}$, and so $A(x,y)\neq A(y,x)$, for some $x,y\in Q$.

Proposition 6.1. Let $x, y \in Q$. Then

- (1) $A(x,1) \subseteq A(x,y)$;
- (2) if $A(x,1) \in F_Q(\mathfrak{X})$ and $y \in A(x,1)$, then $A(x,y) \subseteq A(x,1)$;
- (3) if there is $y \in Q$, such that $y \to z = 1$ or $y \leadsto z = 1$, for all $z \in Q$, then Q = A(x, y);
- (4) $A(x,1) = \bigcap_{y \in O} A(x,y)$.

Theorem 6.1. Let $\emptyset \neq F \subseteq Q$. Then $F \in F_Q(\mathfrak{X})$ if and only if $A(x,y) \subseteq F$, for all $x, y \in F$.

Proof. Assume that $F \in F_Q(\mathfrak{X})$ and $x, y \in F$. If $z \in A(x, y)$, then $x \to (y \leadsto z) = 1 \in F$. Since $F \in F_Q(\mathfrak{X})$ and $x, y \in F$, by (SF_2) , $y \leadsto z \in F$, and so by (SF_3) , $z \in F$. Hence $A(x, y) \subseteq F$.

Conversely, suppose $A(x,y) \subseteq F$, for all $x,y \in F$.

Since $x \to (y \leadsto 1) = x \to 1 = 1$, we get $1 \in A(x,y) \subseteq F$. Let $a, a \to b \in F$ and $a \leadsto c \in F$. Since $1 = (a \to b) \leadsto (a \to b) = a \to ((a \to b) \leadsto b)$ and $(a \leadsto c) \to (a \leadsto c) = 1$, we have $b \in A \subseteq F$ and $c \in A \subseteq F$. Hence $b, c \in F$. Thus, $F \in F_Q(\mathfrak{X})$.

Theorem 6.2. Let $a \in Q$. Then the set $A(a,1) \in F_Q(\mathfrak{X})$ if and only if the following hold, for all $x, y, z \in Q$:

- (1) $z \leq x \rightarrow y$ and $z \leq x$ imply $z \leq y$;
- (2) $z \leq x \rightsquigarrow y$ and $z \leq x$ imply $z \leq y$.

Proof. Assume that for each $a \in Q$, $A(a,1) \in F_Q(\mathfrak{X})$. Let $x,y,z \in Q$ be such that $z \leq x \to y$, $z \leq x \leadsto y$, and $z \leq x$. Then $x \to y \in A(z,1)$, $x \leadsto y \in A(z,1)$, and $x \in A(z,1)$. Since $A(z,1) \in F_Q(\mathfrak{X})$, we have $y \in A(z,1)$. Therefore, $z \leq y$.

Conversely, consider A(z,1), for $z \in Q$. Obviously, $1 \in A(z,1)$. Let $x \to y \in A(z,1)$, and $x \leadsto b \in A(z,1)$, for all $x \in A(z,1)$ (i.e. $z \preceq x \to y$, $z \preceq x \leadsto b$ and $z \preceq x$). Then from hypothesis, $z \preceq y$ and $z \preceq b$ (i.e. $y \in A(z,1)$ and $b \in A(z,1)$). Hence $A(z,1) \in F_Q(\mathfrak{X})$, for all $z \in Q$.

Theorem 6.3. Let $F \in F_Q(\mathfrak{X})$ and $F \subseteq Q$, then $F = \bigcup_{x \in F} A(x, 1)$.

Proof. Assume that $F \in F_Q(\mathfrak{X})$, $F \subseteq Q$ and $z \in F$. Since $z \in A(z,1)$, we have $F \subseteq \bigcup_{z \in F} A(z,1)$. Let $z \in \bigcup_{x \in F} A(x,1)$. Then there exists $a \in F$ such that $z \in A(a,1)$, and so $a \to z = a \to (1 \leadsto z) = 1 \in F$. Since $F \in F_Q(\mathfrak{X})$ and $a \in F$, we have $z \in F$. Thus, $\bigcup_{x \in F} A(x,1) \subseteq F$.

7. Conclusions and future work

In this paper we introduced the notion of Smarandache pseudo-CI algebras and we defined and studied some classes of Smarandache filters of Smarandache pseudo-CI algebras. This study could potentially lead to more results on Smarandache pseudo-CI algebras.

A. Borumand Saeid studied in [2] the notion of a *Smarandache weak BE-algebra*, as a BE-algebra X in which there exists a proper subset Q of X such that:

- $(S_1) \ 1 \in Q \ \text{and} \ |Q| \ge 2;$
- (S_2) Q is a CI-algebra under the operation of X.

Another topic of research could be to define and investigate the notion of a Smarandache weak pseudo-BE algebra.

A Smarandache strong n-structure on a set S means a structure W_0 on a set S such that there exists a chain of proper subsets $P_{n-1} < P_{n-2} < \cdots < P_2 < P_1 < S$, where < means P_i included P_{i-1} in whose corresponding structures verify the inverse chain $W_{n-1} > W_{n-2} > \cdots > W_2 > W_1 > W_0$, where > signifies strictly stronger (i.e. a structure satisfying more axioms) (see [5]).

A. Borumand Saeid and A. Rezaei introduced in [5] the notion of a Smarandache strong 3-structure of a CI-algebra X as a chain $X_1 > X_2 > X_3 > X_4$, where X_1 is a CI-algebra, X_2 is a BE-algebra, X_3 is a dual BCK-algebra, and X_4 is an implication algebra.

One could define and investigate the notion of a strong n-structure of a pseudo-CI algebra.

References

[1] S. Z. Alavi, R. A. Borzooei, M. A. Kologani, Filter theory of pseudo hoopalgebras, Ital. J. Pure Appl. Math. 37 (2017), 619-632.

- [2] A. Borumand Saeid, *Smarandache BE-algebras*, Education Publisher, Columbus, Ohio, USA, 2013.
- [3] A. Borumand Saeid, *Smarandache weak BE-algebras*, Commun. Korean Math. Soc., 27 (2012), 489-496.
- [4] A. Borumand Saeid, A. Namdar, *Smarandache BCH-algebras*, World Applied Sciences Journal, 7 (2009), 77-83.
- [5] A. Borumand Saeid, A. Rezaei, Smarandache n-structure on CI-algebras, Results. Math., 63 (2013), 209-219.
- [6] R. A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar, R. Ameri, On pseudo-BE algebras, Discussiones Mathematicae, General Algebra and Applications, 33 (2013), 95-108.
- [7] R. A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar, R. Ameri, *Distributive pseudo-BE algebras*, Fasciculi Mathematici, 54 (2015), 21-39.
- [8] L. C. Ciungu, Non-commutative multiple-valued logic algebras, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2014.
- [9] L. C. Ciungu, Commutative pseudo BE-algebras, Iran. J. Fuzzy Syst., 13 (2016), 131-144.
- [10] L. C. Ciungu, Fantastic deductive systems in probability theory on generalizations of fuzzy structures, Fuzzy Sets. Syst., 36 (2019), 113-137.
- [11] L. C. Ciungu, A Borumand Saeid, A. Rezaei, Modal operators on pseudo-BE algebras, Iran. J. Fuzzy Syst., 17 (2020), 175-191.
- [12] W. A. Dudek, Y. B. Jun, Pseudo-BCI algebras, East Asian Math. J., 24 (2008), 187-190.
- [13] G. Georgescu, A. Iorgulescu, Pseudo-BCK algebras: an extension of BCKalgebras, DMTCS01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114.
- [14] A. Iorgulescu, Classes of pseudo-BCK algebras Part I, J. Mult.-Valued Logic Soft Comput., 12 (2006), 71-130.
- [15] A. Iorgulescu, Algebras of logic as BCK-algebras, ASE Ed., Bucharest, 2008.
- [16] Y. B. Jun, Smarandache BCI-algebras, Sci. Math. Jpn., 62 (2005), 137-142.
- [17] Y. B. Jun, Smarandache structures on generalized BCK-algebras, Sci. Math. Jpn., 64 (2006), 607-612.
- [18] Y. B. Jun, Smarandache fantastic ideals of Smarandache BCI-algebras, Scientia Magna, 2 (2006), 40-44.

- [19] Y. B. Jun, Smarandache fresh and clean ideals of Smarandache BCI-algebras, Kyungpook Math. J., 46 (2006), 409-416.
- [20] H. S. Kim, Y. H. Kim, On BE-algebras, Sci. Math. Jpn., 66 (2007), 113-117.
- [21] J. Kühr, Pseudo-BCK semilattices, Demonstr. Math., 40 (2007), 495-516.
- [22] J. Kühr, Pseudo-BCK algebras and related structures, Habilitation thesis, Palacký University in Olomouc, 2007.
- [23] B. L. Meng, CI-algebras, Sci. Math. Jpn., 71 (2010), 11-17.
- [24] S. Motamed, M. Sadeghi KosarKhizi, n-Fold filters in Smarandache residuated lattices, part (I), U.P.B. Sci. Bull., Series A, 79 (2017), 119-130.
- [25] S. Motamed, M. Sadeghi KosarKhizi, n-Fold filters in Smarandache residuated lattices, part (II), U.P.B. Sci. Bull., Series A, 79 (2017), 21-30.
- [26] J. Rachůnek, D. Šalounová, Filter theory of bounded residuated lattice ordered monoids, J. Mult.-Valued Logic Soft Comput., 16 (2010), 449-465.
- [27] J. Rachůnek, D. Salounová, Ideals and involutive filters in generalizations of fuzzy structures, Fuzzy Sets Syst., 311 (2017), 70-85.
- [28] A. Rezaei, A. Borumand Saeid, A. Radfar, R. A. Borzooei, Congruence relations on pseudo-BE algebras, An. Univ. Craiova Math. Comp. Sci. Ser., 41 (2014), 166-176.
- [29] A. Rezaei, A. Borumand Saeid, K. Yousefi Sikari Saber, On pseudo-CI algebras, Soft Comput., 23 (2019), 4643-4654.
- [30] A. Rezaei, A. Borumand Saeid, A. Walendziak, Some results on pseudo-Q algebras, Ann. Univ. Paedagog. Crac. Stud. Math., 16 (2017), 61-72.

Accepted: February 3, 2021