On the property of the Smarandache-Riemann zeta sequence

Yanrong Xue
Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China

Abstract

In this paper, some elementary methods are used to study the property of the Smarandache-Riemann zeta sequence and obtain a general result.

Keywords Riemann zeta function, Smarandache-Riemann zeta sequence, positive integer.

§1. Introduction and result

For any complex number s, let

$$
\zeta(s)=\sum_{k=1}^{\infty} k^{-s}
$$

be the Riemann zeta function. For any positive integer n, let T_{n} be a positive real number such that

$$
\begin{equation*}
\zeta(2 n)=\frac{\pi^{2 n}}{T_{n}} \tag{1}
\end{equation*}
$$

where π is ratio of the circumference of a circle to its diameter. Then the sequence $T=\left\{T_{n}\right\}_{n=1}^{\infty}$ is called the Smarandache-Riemann zeta sequence. About the elementary properties of the Smarandache-Riemann zeta sequence, some scholars have studied it, and got some useful results. For example, in [2], Murthy believed that T_{n} is a sequence of integers. Meanwhile, he proposed the following conjecture:

Conjecture. No two terms of T_{n} are relatively prime.
In [3], Le Maohua proved some interesting results. That is, if

$$
\operatorname{ord}(2,(2 n)!)<2 n-2,
$$

where $\operatorname{ord}(2,(2 n)!)$ denotes the order of prime 2 in $(2 n)!$, then T_{n} is not an integer, and finally he defies Murthy's conjecture.

In reference [4], Li Jie proved that for any positive integer $n \geq 1$, we have the identity

$$
\operatorname{ord}(2,(2 n)!)=\alpha_{2}(2 n) \equiv \sum_{i=1}^{+\infty}\left[\frac{2 n}{2^{i}}\right]=2 n-a(2 n, 2)
$$

where $[x]$ denotes the greatest integer not exceeding x.
So if $2 n-a(2 n, 2)<2 n-2$, or $a(2 n, 2) \geq 3$, then T_{n} is not an integer.

In fact, there exist infinite positive integers n such that $a(2 n, 2) \geq 3$, and T_{n} is not an integer. From this, we know that Murthy's conjecture is not correct, because there exist infinite positive integers n such that T_{n} is not an integer.

In this paper, we use the elementary methods to study another property of the SmarandacheRiemann zeta sequence, and give a general result for it. That is, we shall prove the following conclusion:

Theorem. If T_{n} are positive integers, then 3 divides T_{n}, more generally, if $n=2 k$, then 5 divides T_{n}; If $n=3 k$, then 7 divides T_{n}, where $k \neq 0$ is an integer.

So from this Theorem we may immediately get the following
Corollary. For any positive integers m and $n(m \neq n)$, if T_{m} and T_{n} are integers, then

$$
\left(T_{m}, T_{n}\right) \geq 3, \quad\left(T_{2 m}, T_{2 n}\right) \geq 15, \quad\left(T_{3 m}, T_{3 n}\right) \geq 21
$$

§2. Proof of the theorem

In this section, we shall complete the proof of our theorem. First we need two simple Lemmas which we state as follows:

Lemma 1. If n is a positive integer, then we have

$$
\begin{equation*}
\zeta(2 n)=(-1)^{n+1} \frac{(2 \pi)^{2 n} B_{2 n}}{2(2 n)!}, \tag{2}
\end{equation*}
$$

where $B_{2 n}$ is the Bernoulli number.
Proof. See reference [1].
Lemma 2. For any positive integer n, we have

$$
\begin{equation*}
B_{2 n}=I_{n}-\sum_{p-1 \mid 2 n} \frac{1}{p}, \tag{3}
\end{equation*}
$$

where I_{n} is an integer and the sum is over all primes p such that $p-1$ divides $2 n$.
Proof. See reference [3].
Lemma 3. For any positive integer n, we have

$$
\begin{equation*}
T_{n}=\frac{(2 n)!b_{n}}{2^{2 n-1} a_{n}} \tag{4}
\end{equation*}
$$

where a_{n} and b_{n} are coprime positive integers satisfying $2\left|\left|b_{n}, 3\right| b_{n}, n \geq 1\right.$.
Proof. It is a fact that

$$
\begin{equation*}
\zeta(2 n)=(-1)^{n-1} \frac{2^{2 n-1} \pi^{2 n}}{(2 n)!} \cdot B_{2 n}, \quad n \geq 1, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{2 n}=(-1)^{n-1} \frac{a_{n}}{b_{n}}, \quad n \geq 1 \tag{6}
\end{equation*}
$$

Using (1), (5) and (6), we get (4).
Now we use above Lemmas to complete the proof of our theorem.

For any positive integer n, from (4) we can directly obtain that if T_{n} is an integer, then 3 divides T_{n}, since $\left(a_{n}, b_{n}\right)=1$.

From (1), (2) and (3) we have the following equality

$$
\zeta(2 n)=\frac{\pi^{2 n}}{T_{n}}=(-1)^{n+1} \frac{(2 \pi)^{2 n} B_{2 n}}{2(2 n)!}=(-1)^{n+1} \frac{(2 \pi)^{2 n}}{2(2 n)!} \cdot\left(I_{n}-\sum_{p-1 \mid 2 n} \frac{1}{p}\right)
$$

Let

$$
\prod_{p-1 \mid 2 n} p=p_{1} p_{2} \cdots p_{s}
$$

where $p_{i}(1 \leq i \leq s)$ is a prime number, and $p_{1}<p_{2} \cdots<p_{s}$.
Then from the above, we have

$$
\begin{align*}
T_{n} & =\frac{(-1)^{n+1} \cdot \pi^{2 n}}{\frac{(2 \pi)^{2 n}}{2(2 n)!} \cdot\left(I_{n}-\sum_{p-1 \mid 2 n} \frac{1}{p}\right)}=\frac{(-1)^{n+1} \cdot(2 n)!}{2^{2 n-1} \cdot\left(I_{n}-\sum_{p-1 \mid 2 n} \frac{1}{p}\right)} \tag{7}\\
& =\frac{(-1)^{n+1} \cdot(2 n)!\cdot \prod_{p-1 \mid 2 n} p}{2^{2 n-1} \cdot\left(I_{n} \cdot \prod_{p-1 \mid 2 n} p-\prod_{p-1 \mid 2 n} p \cdot \sum_{p-1 \mid 2 n} \frac{1}{p}\right)} \\
& =\frac{(-1)^{n+1} \cdot(2 n)!\cdot p_{1} p_{2} \cdots p_{s}}{2^{2 n-1} \cdot\left(I_{n} \cdot p_{1} p_{2} \cdots p_{s}-p_{1} p_{2} \cdots p_{s} \cdot\left(\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots \frac{1}{p_{s}}\right)\right)} \\
& =\frac{(-1)^{n+1} \cdot(2 n)!\cdot p_{1} p_{2} \cdots p_{s}}{2^{2 n-1} \cdot\left(I_{n} \cdot p_{1} p_{2} \cdots p_{s}-p_{2} p_{3} \cdots p_{s}-p_{1} p_{3} \cdots p_{s}-\cdots-p_{1} p_{2} \cdots p_{s-1}\right)}
\end{align*}
$$

Then we find that if $p_{i} \mid p_{1} p_{2} \cdots p_{s}, \quad 1 \leq i \leq s$, but

$$
p_{i} \dagger\left(I_{n} \cdot p_{1} p_{2} \cdots p_{s}-p_{2} p_{3} \cdots p_{s}-p_{1} p_{3} \cdots p_{s}-\cdots-p_{1} p_{2} \cdots p_{s-1}\right)
$$

So we can easily deduce that if T_{n} are integers, when $n=2 k, 5$ can divide T_{n}; While $n=3 k$, then 7 can divide T_{n}.

This completes the proof of Theorem.

References

[1] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
[2] A. Murthy, Some more conjectures on primes and divisors, Smarandache Notions Journal, 12 (2001), 311.
[3] Le Maohua, The Smarandache-Riemann zeta sequence, Smarandache Notions Journal, 14(2004), 346-347.
[4] Li Jie, On the Smarandache-Riemann zeta sequence, Research on Smarandache Problems in Number Theory, Hexis, Phoenix, AX, 2005, 29-31.

