On Smarandache's Sphere

Edited by Prof. Mihaly Bencze
Áprily Lajos College
Brașov, Romania

Through one of the intersecting points of two circles we draw a line that intersects a second time the circles in the points M_{1} and M_{2} respectively. Then the geometric locus of the point M which divides the segment $M_{1} M_{2}$ in a ratio k (i.e. $M_{1} M=k \cdot M M_{2}$) is the circle of center O (where O is the point that divides the segment of line that connects the two circle centers O_{1} and respectively O_{2} into the ratio k, i.e. $\mathrm{O}_{1} \mathrm{O}=k \cdot \mathrm{OO}_{2}$) and radius OA , without the points A and B.

Proof

Let $O_{1} E \perp M_{1} M_{2}$ and $O_{2} F \perp M_{1} M_{2}$. Let $O \in O_{1} O_{2}$ such that $O_{1} O=k \cdot O O_{2}$ and $M \in M_{1} M_{2}$, where $M_{1} M=k \cdot M M_{2}$.

Fig. 1.

We construct $O G \perp M_{1} M_{2}$ and we make the notations: $M_{1} E \equiv E A=x$ and $A F \equiv F M_{2}=y$.
Then, $A G \equiv G M$, because

$$
A G=E G-E A=\frac{k}{k+1}(x+y)-x=\frac{-x+k y}{k+1}
$$

and

$$
G M=M_{1} M-M_{1} A-A G=\frac{k}{k+1}(2 x+2 y)-2 x-\frac{-x+k y}{k+1}=\frac{-x+k y}{k+1} .
$$

Therefore we also have $O M \equiv O A$.

The geometric locus is a circle of center O and radius $O A$, without the points A and B (the red circle in Fig. 1).

Conversely.
If $M \in(G O, O A) \backslash\{A, B\}$, the line $A M$ intersects the two circles in M_{1} and M_{2} respectively.

We consider the projections of the points O_{1}, O_{2}, O on the line $M_{1} M_{2}$ in E, F, G respectively. Because $\mathrm{O}_{1} \mathrm{O}=k \cdot \mathrm{OO}_{2}$ it results that $\mathrm{EG}=k \cdot G F$.

Making the notations: $M_{1} E \equiv E A=x$ and $A F \equiv F M_{2}=y$ we obtain that

$$
\begin{aligned}
& M_{1} M=M_{1} A+A M=M_{1} A+2 A G=2 x+2(E G-E A)= \\
& =\left[2 x+2 \frac{k}{k+1}(x+y)-x\right]=\frac{k}{k+1}(2 x+2 y)=\frac{k}{k+1} M_{1} M .
\end{aligned}
$$

For $k=2$ we find the Problem IV from [1].

Generalizations.

1) The same problem if instead of two circles one considers two ellipses, or one ellipse and one circle.
2) The same problem in $3 D$, considering instead of two circles two spheres (their surfaces) whose intersection is a circle C. Drawing a line passing through the circumference of C, it will intersect the two spherical surfaces in other two points M_{1} and respectively M_{2}. Conjecture: The geometric locus of the point M which divides the segment $M_{1} M_{2}$ in a ratio k (i.e. $M_{1} M=k \cdot M M_{2}$) includes the spherical surface of center O (where O is the point that divides the segment of line that connects the two sphere centers O_{1} and respectively O_{2} into the ratio k, i.e. $\mathrm{O}_{1} \mathrm{O}=\mathrm{k} \cdot \mathrm{OO}_{2}$) and radius OA , without the intersection circle C [Smarandache's Sphere].
A partial proof is this: if the line $M_{1} M_{2}$ which intersect the two spheres is the same plane as the line $O_{1} O_{2}$ then the $3 D$ problem is reduce to a $2 D$ problem and the locus is a circle of radius $O A$ and center O defined as in the original problem, where the point A belongs to the circumference of \mathcal{C} (except two points). If we consider all such cases (infinitely many actually), we get a sphere of radius $O A$ (from which we exclude the intersection circle C) and centered in O (A can be any point on the circumference of intersection circle $($).
The locus has to be investigated for the case when $M_{1} M_{2}$ and $O_{1} O_{2}$ are in different planes.
3) What about if instead of two spheres we have two ellipsoids, or a sphere and an ellipsoid?

References:

[1] The Admission Test at the Polytechnic Institute, Problem IV, 1987, Romania.
[2] Florentin Smarandache, Proposed Problems of Mathematics (Vol. II), University of Kishinev Press, Kishinev, Problem 58, pp. 38-39, 1997.
[3] F. Smarandache, Nine Solved and Nine Open Problems in Elementary Geometry, in arXiv.org.

