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Abstract: A Smarandachely k-constrained labeling of a graph G(V, E) is a bijective map-

ping f : V ∪ E → {1, 2, .., |V | + |E|} with the additional conditions that |f(u) − f(v)| ≥ k

whenever uv ∈ E, |f(u)−f(uv)| ≥ k and |f(uv)−f(vw)| ≥ k whenever u 6= w, for an integer

k ≥ 2. A graph G which admits a such labeling is called a Smarandachely k-constrained

total graph, abbreviated as k−CTG. The minimum number of isolated vertices required for

a given graph G to make the resultant graph a k − CTG is called the k-constrained number

of the graph G and is denoted by tk(G). In this paper we settle the open problems 3.4 and

3.6 in [4] by showing that tk(Pn) = 0, if k ≤ k0; 2(k − k0), if k > k0 and 2n ≡ 1 or 2 (mod

3); 2(k − k0) − 1 if k > k0; 2n ≡ 0(mod 3) and tk(Cn) = 0, if k ≤ k0; 2(k − k0), if k > k0

and 2n ≡ 0 (mod 3); 3(k − k0) if k > k0 and 2n ≡ 1 or 2 (mod 3), where k0 = ⌊ 2n−1
3

⌋.

Key Words: Smarandachely k-constrained labeling, Smarandachely k-constrained total

graph, k-constrained number, minimal k-constrained total labeling.
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§1. Introduction

All the graphs considered in this paper are simple, finite and undirected. For standard termi-

nology and notations we refer [1], [3]. There are several types of graph labelings studied by

various authors. We refer [2] for the entire survey on graph labeling. In [4], one such labeling

called Smarandachely labeling is introduced. Let G = (V,E) be a graph. A bijective mapping

f : V ∪ E → {1, 2, ..., |V | + |E|} is called a Smarandachely k − constrained labeling of G if it

satisfies the following conditions for every u, v, w ∈ V and k ≥ 2;

1. |f(u) − f(v)| ≥ k

2. |f(u) − f(uv)| ≥ k,
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3. |f(uv) − f(vw)| ≥ k

whenever uv, vw ∈ E and u 6= w.

A graph G which admits a such labeling is called a Smarandachely k-constrained total

graph, abbreviated as k−CTG. The minimum number of isolated vertices to be included for a

graph G to make the resultant graph is a k−CTG is called k-constrained number of the graph

G and is denoted by tk(G), the corresponding labeling is called a minimal k-constrained total

labeling of G.

We recall the following open problems from [4], for immediate reference.

Problem 1.1 For any integers n, k ≥ 3, determine the value of tk(Pn).

Problem 1.2 For any integers n, k ≥ 3, determine the value of tk(Cn).

§2. k-Constrained Number of a Path

Let V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {vivi+1 | 1 ≤ i ≤ n − 1}. Designate the vertex vi

of Pn as 2i− 1 and the edge vjvj+1 as 2j, for each i, 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1.

Lemma 2.1 Let k0 = ⌊ 2n−1
3 ⌋ and Sl = {3l − 2, 3l − 1, 3l} for 1 ≤ l ≤ k0. Let f be a minimal

k-constrained total labeling of Pn. Then for each i, 1 ≤ i ≤ k0, there exist a l, 1 ≤ l ≤ k0 and a

x ∈ Sl such that f(x) = i.

Proof For 1 ≤ l ≤ k0, let Sl={l1, l2, l3}, where l1 = 3l − 2, l2 = 3l − 1, l3 = 3l. Let

S = {1, 2, 3, ..., k0} and f be a minimal k-constrained total labeling of Pn, 2n ≡ 0 (mod 3) and

k > k0, then by the definition of f it follows that |f(Si) ∩ S| ≤ 1, for each i, 1 ≤ i ≤ k0 + 1,

otherwise if f(li), f(lj) ∈ S for 1 ≤ i, j ≤ 3, i 6= j, then |f(li)− f(lj)| < k0 < k, a contradiction.

Further, if f(lj) 6= i for any l, j with 1 ≤ l ≤ k0, 1 ≤ j ≤ 3 for some i ∈ S, then i should be

assigned to an isolated vertex. So, span of f will increase, hence f can not be minimal. �

Lemma 2.2 Let Sl = {3l− 2, 3l− 1, 3l} and f be a minimal k-constrained total labeling of Pn.

Let f(x) = s1 and f(y) = s2 for some x ∈ Sl and y ∈ Sl+1 for some l, 1 ≤ l < m ≤ k0 and

1 ≤ s1, s2 ≤ k0, where k0 = ⌊ 2n−1
3 ⌋. Then y = x+ 3.

Proof Let x1, x2, x3 be the elements of Sl and x4, x5, x6 be that of Sl+1 (i.e. if x1 is a

vertex of Pn then x3, x5 are vertices and x2 is an edge x1x3 ; x4 is an edge x3x5 and x6 is

incident with x5 or if x1 is an edge, then x1 is incident with x2; x2, x4, x6 are vertices and x3

is an edge x2x4, x5 is an edge x4x6).

Let f be a minimal k-constrained total labeling of Pn and S1, S2, ..., Sk0 be the sets as

defined in the Lemma 2.1. Let Sα be the set of first k0 consecutive positive integers required

for labeling of exactly one element of Sl for each l, 1 ≤ l ≤ k0 as in Lemma 2.1. Then each set

Sl, 1 ≤ l ≤ k0 contains exactly two unassigned elements. Again by Lemma 2.1 exactly one of

these unassigned element can be assigned by the set Sβ containing next possible k0 consecutive

positive integers not in Sα. After labeling the elements of the set Sl, 1 ≤ l ≤ k0 by the labels in
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Sα ∪Sβ , each Sl contains exactly one element unassigned. Thus these elements can be assigned

as per Lemma 2.1 again by the set Sγ having next possible k0 consecutive positive integers not

in Sα ∪ Sβ .

Let us now consider two consecutive sets Sl, Sl+1 (Two sets Si and Sj are said to be

consecutive if they are disjoint and there exists x ∈ Si and y ∈ Sj such that xy is an edge). Let

α1, α2 ∈ Sα, xi ∈ Sl and xj ∈ Sl+1 such that f(xi) = α1 and f(xj) = α2 (such α1, α2, xi and

xj exist by Lemma 2.1). Then, as f is a minimal k-constrained total labeling of Pn, it follows

that |j − i| > 2 implies j ≥ i+ 3. Now we claim that j = i+ 3. We note that if i = 3, then the

claim is obvious. If i 6= 3, then we have the following cases.

Case 1 i = 1

If j 6= 4 then

Subcase 1 j = 5

By Lemma 2.1, there exists β1, β2 ∈ Sβ and xr ∈ Sl, xs ∈ Sl+1 such that f(xr) = β1

and f(xs) = β2. Now f(x1) = α1 , f(x5) = α2 implies r = 2 or r = 3 (i.e. f(x2) = β1 or

f(x3) = β1).

Subsubcase 1 r = 2 (i.e. f(x2) = β1)

In this case, f(x6) = β2 (since f(xi) = β1 and f(xj) = β2 implies |j − i| > 2 ) and hence

by Lemma 2.1 f(x3) = γ1 and f(x4) = γ2 for some γ1, γ2 ∈ Sγ which is inadmissible as x3 and

x4 are incident to each other and |γ1 − γ2| < k0 < k.

Subsubcase 2 r = 3 (i.e. f(x3) = β1)

Again in this case, f(x6) = β2. So f(x2) = γ1 and f(x4) = γ2 for some γ1, γ2 ∈ Sγ which

is contradiction as x2 and x4 are adjacent to each other and |γ1 − γ2| < k0 < k.

Subcase 2 j = 6

Now f(x1) = α1, f(x6) = α2 implies f(x2) = β1 or f(x3) = β1.

Subsubcase 1 f(x2) = β1

In this case, f(x5) = β2 and hence by Lemma 2.1 f(x3) = γ1 and f(x4) = γ2 for some

γ1, γ2 ∈ Sγ , which is a contradiction as x3 and x4 are incident to each other.

Subsubcase 2 f(x3) = β1

In this case, f(x4) = β2 or f(x5) = β2 none of them is possible.

Thus we conclude in Case 1 that if i = 1, then j = 4, so j = i+ 3.

Case 2 i = 2

In this case we have j ≥ i+ 3, so j ≥ 5. If j 6= 5 then j = 6. Now f(x2) = α1, f(x6) = α2

implies f(x1) = β1 or or f(x3) = β1.

Subcase 1: f(x1) = β1

But then f(x4) = β2 or f(x5) = β2.

Subsubcase 1 f(x4) = β2
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In this case, f(x4) = β2 and by Lemma 2.1 f(x3) = γ1, f(x5) = γ2, which is a contradiction

as x3 and x5 are adjacent to each other.

Subsubcase 2 f(x5) = β2

In this case, f(x5) = β2 and by Lemma 2.1 f(x3) = γ1 and f(x4) = γ2, which is not

possible as x3 and x4 are incident to each other.

Subcase 2 f(x3) = β1

In this case, f(x4) = β2 or f(x5) = β2 none of them is possible.

Thus in this case 2, we conclude that if i = 2, then j = 5, so j = i+ 3.

Thus, we conclude that the labels in Sα preserves the position in Sl. The similar argument

can be extended for the sets Sβ and Sγ also. �

Remark 2.3 Let k0 = ⌊ 2n−1
3 ⌋ and l be an integer such that 1 ≤ l ≤ k0. Let f be a minimal

k-constrained total labeling of a path Pn and Sα = {α, α + 1, α + 2, ..., α + k0 − 1}. Let Sl =

{3l− 2, 3l− 1, 3l} and f(x) = α+ i for some x ∈ Sl Then f(y) = α+ i+ k implies y ∈ Sl.

Proof After assigning the integers 1 to k0 one each for exactly one element of Sl, for each

l, 1 ≤ l ≤ k0, an unassigned element in the set containing the element labeled by 1 can be

labeled by k + 1. But no unassigned element of any other set can be labeled by k + 1. Thus,

if the label k + 1 is not assigned to an element of the set whose one of the element is labeled

by 1, then it should be excluded for the labeling of the elements of Pn and hence the number

of isolated vertices required to make Pn a k-constrained graph will increase. Therefore, every

minimal k-constrained total labeling should include label k+ 1 for an element of the set whose

one of the element is labeled by 1. After including k + 1, by continuing the same argument for

k + 2, k + 3, · · · , k + k0 one by one we can conclude that the label k + i (and then 2k + i) can

be labeled only for the element of the set whose one of the element is labeled by i. �

Remark 2.4 If 1 ∈ f(S1), then from the above Lemmas 2.1, 2.2 and Remark 2.3, it is clear

that l, l+ k, l + 2k ∈ f(Sl) for every l, 1 ≤ l ≤ k0, where k0 = ⌊ 2n−1
3 ⌋.

Lemma 2.5 Let Si = {3i − 2, 3i − 1, 3i} and f be a minimal k-constrained total labeling of

Pn such that f(x) = s for some x ∈ Si for some i, 1 ≤ i ≤ k0, where k0 = ⌊ 2n−1
3 ⌋. Then

f(y) = s+ 1 implies y ∈ Sl+1 or y ∈ Sl−1 and hence by Lemma 2.2 we have |x− y| = 3.

Proof Suppose the contrary that y ∈ Sj for some j where |j − i| > 1 and 1 ≤ j ≤ k0.

Without loss of generality, we now assume that j > i+1 (otherwise relabel the set Sm as Sk0−m

for each l, 1 ≤ m ≤ k0). Now by repeated application of Lemma 2.1 we get the sequence of

consecutive sets Si, Si+1, Si+2, ..., Sj and the sequence of elements s = s0, s1 = s+1, . . . , sj−i =

s + 1 where st ∈ Si+t for each t, 0 ≤ t ≤ j. As j > i+ 1, this sequence of elements (labels) is

neither an increasing nor a decreasing sequence. So, there exists a positive integer l such that

sl−1 < sl and sl+1 < sl. Also, Remark 2.4 sl+k, sl+2k ∈ f(Si+l), sl+1+k, sl+1+2k ∈ f(Si+l+1)

and sl−1+k, sl−1+2k ∈ f(Si+l−1). Let l1 = 3(i+ l) − 2, l2 = 3(i+ l) − 1, l3 = 3(i+ l) . We now

discuss the following 3! cases.

Case 1 f(l1) = sl, f(l2) = sl + k, f(l3) = sl + 2k.
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In this case by Lemma 2.2 it follows that f(l1 − 3) = sl−1, f(l2 − 3) = sl−1 + k, f(l3 − 3) =

sl−1 +2k and f(l1 +3) = sl+1, f(l2+3) = sl+1 +k, f(l3+3) = sl+1 +2k. So, |f(l1−2)−f(l1)| ≥
k ⇒ |sl−1 + k − sl| ≥ k ⇒ |k − (sl − sl−1)| ≥ k ⇒ sl − sl−1 ≤ 0 ⇒ sl ≤ sl−1, a contradiction.

Case 2 f(l1) = sl, f(l2) = sl + 2k, f(l3) = sl + k.

In this case by Lemma 2.2 it follows that f(l1−3) = sl−1, f(l2−3) = sl−1 +2k, f(l3−3) =

sl−1 +k and f(l1 +3) = sl+1, f(l2 +3) = sl+1 +2k, f(l3 +3) = sl+1 +k. So, |f(l1−1)−f(l1)| ≥
k ⇒ |sl−1 + k − sl| ≥ k ⇒ |k − (sl − sl−1)| ≥ k ⇒ sl − sl−1 ≤ 0 ⇒ sl ≤ sl−1, a contradiction.

Case 3 f(l1) = sl + k, f(l2) = sl, f(l3) = sl + 2k.

In this case by Lemma 2.2 it follows that f(l1 − 3) = sl−1 + k, f(l2 − 3) = sl−1, f(l3 − 3) =

sl−1 +2k and f(l1 +3) = sl+1 +k, f(l2+3) = sl+1, f(l3+3) = sl+1 +2k. So, |f(l1−1)−f(l1)| ≥
k ⇒ |(sl−1 + 2k) − (sl + k)| ≥ k ⇒ |k − (sl − sl−1)| ≥ k ⇒ sl − sl−1 ≤ 0 ⇒ sl ≤ sl−1, a

contradiction.

Case 4 f(l1) = sl + 2k, f(l2) = sl, f(l3) = sl + k.

In this case by Lemma 2.2 it follows that f(l1−3) = sl−1 +2k, f(l2−3) = sl−1, f(l3−3) =

sl−1 +k and f(l1 +3) = sl+1 +2k, f(l2 +3) = sl+1, f(l3 +3) = sl+1 +k. So, |f(l1−1)−f(l2)| ≥
k ⇒ |(sl−1 + k)− sl)| ≥ k ⇒ |k− (sl − sl−1)| ≥ k ⇒ sl − sl−1 ≤ 0 ⇒ sl ≤ sl−1, a contradiction.

Case 5 f(l1) = sl + k, f(l2) = sl + 2k, f(l3) = sl.

In this case by Lemma 2.2 it follows that f(l1−3) = sl−1+k, f(l2−3) = sl−1+2k, f(l3−3) =

sl−1 and f(l1 + 3) = sl+1 + k, f(l2 + 3) = sl+1 + 2k, f(l3 + 3) = sl+1. So, |f(l3 + 1) − f(l3)| ≥
k ⇒ |(sl+1 + k)− sl)| ≥ k ⇒ |k− (sl − sl+1)| ≥ k ⇒ sl − sl+1 ≤ 0 ⇒ sl ≤ sl+1, a contradiction.

Case 6 f(l1) = sl + 2k, f(l2) = sl + k, f(l3) = sl.

In this case by Lemma 2.2 it follows that f(l1−3) = sl−1+2k, f(l2−3) = sl−1+k, f(l3−3) =

sl−1 and f(l1 + 3) = sl+1 + 2k, f(l2 + 3) = sl+1 + k, f(l3 + 3) = sl+1. So, |f(l3 + 1) − f(l2)| ≥
k ⇒ |(sl+1 + 2k) − (sl + k))| ≥ k ⇒ |k − (sl − sl+1)| ≥ k ⇒ sl − sl+1 ≤ 0 ⇒ sl ≤ sl+1, a

contradiction. �

Lemma 2.6 Let Pn be a path on n vertices and k0 = ⌊ 2n−1
3 ⌋. Then tk(Pn) ≥ 2(k − k0) − 1

whenever 2n ≡ 0(mod3) and k > k0.

Proof For 1 ≤ l ≤ k0, let Sl={l1, l2, l3}, where l1 = 3l − 2, l2 = 3l − 1, l3 = 3l. Let

Sk0+1 = {2n − 2, 2n − 1} and T = {1, 2, 3, ..., k0}. Let f be a minimal k-constrained total

labeling of Pn, 2n ≡ 0 (mod 3) and k > k0, then by Lemma 2.1, we have |f(Si) ∩ T | = 1 for

each i (i.e. exactly one element of Si mapped to distinct element of T for each i, 1 ≤ i ≤ k0)

and f(lj) = m ∈ T for some j, 1 ≤ j ≤ 3, then for other element li of Sl, i 6= j, we have

|f(li) − f(lj)| ≥ k implies f(li) ≥ k + m. Thus f excludes the elements of the set T1 =

{k0 + 1, k0 + 2, ..., k} for the next assignments of the elements of Sl, l 6= k0 + 1.

Let f(li) = t for some t ∈ T , where li ∈ Sl. Then for the minimum spanf , by Remark 2.3

f(lj) = k + t for i 6= j and lj ∈ Sl.

Again by Lemma 2.3, we get |f(Si)∩T ′| = 1, for each i, 1 ≤ i ≤ k0, where T ′ = {k+1, k+
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2, ..., k+k0}. Further, if f assigns each element of S to exactly one element of Sl, 1 ≤ l ≤ k0, for

the next assignments, f should leaves all the elements of the set T2 = {k+k0+1, k+k0+2, ..., 2k}.
The above arguments show that while assigning the labels for the elements of Pn not in Sk0+1,

f leaves at least 2(k − k0) elements which are in the set T1 ∪ T2.

In view of Lemma 2.2, there are only two possibilities for the assignments of elements of

Sk0+1 depending upon whether f assigns an element of T1 to an element of Sk0+1 or not.

Let us now consider the first case. Let x ∈ Sk0+1 such that f(x) = t for some t ∈ T1.

Claim x = 2n− 1

If not, f(2n − 2) = t, but then f(2n − 3) 6∈ T ∪ T1 and f(2n − 4) 6∈ T ∪ T1. Then by

Lemma 2.2 f(2n − 5) ∈ T ∪ T1 and by Lemma 2.5 f(2n − 5) = t − 1. Then again as above

f(2n − 8) = t − 2. Continuing this argument, we conclude that f(1) = 1 and f(4) = 2. But

then, by above argument, we get f(x) = k + 1 and f(x + 3) = k + 2 for some x ∈ S1 and

x ∈ {2, 3}. So, |f(x)− f(4)| = |k+1−2| 6≥ k and |4−x| ≤ 2, a contradiction. Hence the claim.

By the above claim we get f(2n− 1) ∈ T1. We now suppose that f(2n− 2) 6∈ T2(note that

f(2n−2) 6∈ T∪T1), then by above argument for the minimality of f we have f(2n−2) = k+k0+1

and hence f(1) = k + 1 and f(2) = 1. So, by Lemma 2.5, f(4) = k + 2 and f(5) = 2. So,

f(3) 6= 2k + 1 (Since |f(3)− f(4)| = |2k + 1− (k + 2)| 6≥ k, which is inadmissible). This shows

that f includes either at most one element of T1 ∪ T2 to label the elements of Sk0+1 or leaves

one more element namely 2k + 1 to label the elements of Pn (Since the label 2k + 1 is possible

only for the element in S1. Thus f leaves at least 2(k − k0) − 1 elements.

If the second case follows then the result is immediate because f leaves (k − k0) elements

in the first round of assignment and uses exactly one element of T2 in the second round. �

Remark 2.7 In the above Lemma 2.6 if 2n 6≡ 0(mod 3) , then tk(Pn) ≥ 2(k − k0).

Proof If the hypothesis hold, then Sk0+1 = ∅ or Sk0+1 = {2n − 1}. In the first case,

if Sk0+1 = ∅, then by the proof of the Lemma we see that any minimal k-constrained total

labeling f should leave exactly 2(k − k0) integers for the labeling of the elements of the path

Pn. In the second case when Sk0+1 = 2n− 1, by Lemma 2.5 f(2n−1) = k0 +1 (we can assume

that f(1) ∈ f(S1) because only other possibility by Lemma 2.5 is that the labeling of elements

of Pn is in the reverse order, in such a case relabel the sets Sl as Sk0−l). But then, again by

Lemma 2.2 and Lemma 2.5 it forces to take f(1) = 1 and f(4) = 2 hence by Remark 2.4,

f(x) = k + 1 only if x = 2 or x = 3. In either of the cases |f(4) − f(x)| 6≥ k, a contradiction.

Hence neither k0 + 1 nor k + 1 can be assigned. Further, if k0 + 1 is not assigned, then in the

similar way we can argue that either k + k0 + 1 or 2k + 1 can not be assigned while assigning

the second elements of each of the sets Sl, 1 ≤ l ≤ k0. Thus, in both the cases f should leave

at least 2(k − k0) integers for the assignment of Pn, whenever 2n 6≡ 0 (mod 3). �

Theorem 2.8 Let Pn be a path on n vertices and k0 = ⌊ 2n−1
3 ⌋. Then

tk(Pn)=





0 if k ≤ k0,

2(k − k0) − 1 if k > k0 and 2n ≡ 0(mod 3),

2(k − k0) if k > k0 and 2n ≡ 1 or 2(mod 3).
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Proof If k ≤ k0, then the result follows by Theorem 3.3 of [4]. Consider the case k > k0.

Case i 2n ≡ 0 (mod 3)

By Lemma 2.6 we have tk(Pn) ≥ 2(k − k0) − 1. Now, the function f : V (Pn) ∪ E(Pn) ∪
K2(k−k0)−1 → {1, 2, . . . , 2(n + k − k0) − 2} defined by f(1) = 2k + 1, f(2) = k + 1, f(3) = 1

and f(i) = f(i− 3) + 1 for all i, 4 ≤ i ≤ 2n− 3, f(2n− 2) = 2k+ 1 + k0, f(2n− 1) = k+ 1 + k0

and the vertices of K2(k−k0)−1 to the remaining, is a Smarandachely k-constrained labeling of

the graph Pn ∪K2(k−k0)−1. Hence tk(Pn) ≤ 2(k − k0) − 1.

Case ii 2n 6≡ 0 (mod 3)

By Remark 2.7 we have tk(Pn) ≥ 2(k − k0). On the other hand, the function f : V (Pn) ∪
E(Pn)∪K2(k−k0) → {1, 2, . . . , 2(n+k−k0)−1} defined by f(1) = 2k+1, f(2) = k+1, f(3) = 1,

f(i) = f(i− 3) + 1 for all i, 4 ≤ i ≤ 2n− 1 and the vertices of K2(k−k0) to the remaining, is a

Smarandachely k-constrained labeling of the graph Pn ∪K2(k−k0). Hence tk(Pn) ≤ 2(k− k0).�

S2S1

1
k+1

2k+1 k+2
2k+2 2

k+k0

2k+k0

2k +k0+1

k0

0k
S 10 +k

S

10 +k 20 +k k 10 ++ kk 20 ++ kk k2

1

2

3

4

5

6

2n-1

2n-2

2n-3

2n-4

Figure 1: A k-constrained total labeling of the path Pn ∪K2(k−k0), where 2n ≡ 2(mod 3).

§3. k-Constrained Number of a Cycle

Let V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {vivi+1 | 1 ≤ i ≤ n − 1} ∪ {vnv1}. Due to the

symmetry in Cn, without loss of generality, we assume that the integer 1 is labeled to the

vertex v1 of Cn. Define Sα = {α1, α2, α3}, for all α ∈ Z+, 1 ≤ α ≤ k0, where k0 = ⌊ 2n−1
3 ⌋

and α1 = v 3α−1
2
, α2 = v 3α−1

2
v 3α+1

2
, α3 = v 3α+1

2
for all odd α and if α is even, then and α1 =

v 3α
2 −1v 3α

2
, α2 = v 3α

2
, α3 = v 3α

2
v 3α

2 +1.

Case 1 2n ≡ 0 (mod 3)

In this case set of elements (edges and vertices) of Cn is S1 ∪S2 ∪ · · · ∪Sk0 ∪Sk0+1, where

Sk0+1 = {vn−1vn, vn, vnv1}.
We now assume the contrary that tk(Cn) < 2(k − k0). Then there exists a minimal k-

constrained labeling f such that span f is less that k0 + 2k + 3 (since span f = number of

vertices + edges + tk(Cn) < 3(k0 + 1) + 2(k − k0)). Now our proof is based on the following

observations.

Observation 3.1 Let L1 be the set of first possible consecutive integers (labels) that can be

assigned for the elements of Cn. Then exactly one element of each set Sα, 1 ≤ α ≤ k0 + 1, can
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receive one distinct label in L1 and for the minimum span all the labels in L1 to be assigned.

Thus |L1| = k0 + 1.

Observation 3.2 The labels in L1 can be assigned only for the elements of Sα in identical

places (i.e. αi ∈ Sα receives f(αi) ∈ L1 and βj ∈ Sβ receives f(βj) ∈ L1 if and only if i = j

for all α, β). In fact, since α1 = 1, when α = 1, we get f(β1) ∈ L1, where β = k0 + 1, hence

f(γ1) ∈ L1, where γ = k0, and so on · · ·.

Observation 3.3 The observation 3.2 holds for next labelings for the remaining unlabeled

elements also.

Observation 3.4 Since the smallest label in L1 is 1, by observation 3.1, it follows that the

largest label in L1 is k0 + 1 and next minimum possible integer(label) in the set L2, consisting

of consecutive integers used for the labeling of elements unassigned by the set L1, is k + 2 (we

observe that k + i, for k0 − k + 1 < i < 1 can not be used for the labeling of any element in

the set Sα, 1 ≤ α ≤ k0 + 1 (since an element of each of Sα has already received a label x in

L1, 1 ≤ x ≤ k0 + 1 and (k + i) − (x) = k + (i − x) < k. Also if k + 1 is assigned, then k + 1

is assigned only to 2nd or 3rd element (viz α2 or α3, where α = 1) of S1, but then difference

of labels of first element of S2 labeled by an integer in L1 (which is greater than 1) with k + 1

differs by at most by k − 1).

Observation 3.5 By observation 3.4 it follows that the minimum integer label in L2 is k + 2,

so the maximum integer label is k + k0 + 2.

Observation 3.6 Let L3 be the set of next consecutive integers which can be used for the

labeling of the elements not assigned by L1 ∪ L2. Then, as span is less than k0 + 2k + 3, the

maximum label in L3 is at most k0 + 2k + 2 and hence the minimum is at most 2k + 2.

We now suppose that f(αi) ∈ L3 and f(αi) = min L3, for some α, 1 ≤ α ≤ k0+1. Then, as

f(αi) = min L3, f(αi) = 2k+ j for some j ≤ 2. Further, as f(αi) 6∈ L2, we have k0 +2− k ≤ j.

Combining these two we get k0 + 2 − k ≤ j ≤ 2.

Subcase 1 i = 2

In this case f(α2) ∈ L3 and already f(α1) ∈ L1, so f(α3) ∈ L2 and hence f(β3) ∈ L2 (by

Observation 3.2), where β = α − 1 (or β = k0 + 1 if α = 1). Thus, f(β3) = k + l for some

l, 2 ≤ l ≤ k + 2 + k0

Now |f(α2) − f(β3)| = |(2k + j) − (k + l)| = |k + (j − l)| ≥ k implies that j − l ≥ 0 hence

j ≥ l. But j ≤ 2 ≤ l implies j = l = 2. Therefore, f(α2) = 2k + 2 and f(β3) = k + l = k + 2=

min L2

In this case f(α3) ∈ L2 implies that f(α3) = k+m, for some m > 2. So, |f(α2)− f(α3)| =

|(2k + 2) − (k +m)| = |k + (2 −m)| < k as m > 2, which is a contradiction.

Subcase 2 i = 3

In this case f(α3) ∈ L3 and already f(α1) ∈ L1, so f(α2) ∈ L2 and hence f(β2) ∈ L2 (by

Observation 3.2), where β = α − 1 (or β = 1 if α = k0 + 1). Thus, f(β2) = k + l for some

l, 2 ≤ l ≤ k + 2 + k0.

Now |f(α3) − f(β2)| = |(2k + j) − (k + l)| = |k + (j − l)| ≥ k implies that j − l ≥ 0 hence
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j ≥ l. But j ≤ 2 ≤ l implies j = l = 2. Therefore, f(α3) = 2k + 2 and f(β2) = k + l = k + 2=

min L2.

In this case f(α2) ∈ L2 implies that f(α2) = k+m, for some m > 2. So, |f(α3)− f(α2)| =

|(2k + 2) − (k +m)| = |k + (2 −m)| < k as m > 2, which is a contradiction.

Hence in either of the cases we get tk(Cn) ≥ 2(k − k0).

Case 2 2n 6≡ 0 (mod 3)

Let f be a minimal k-constrained total labeling of Cn. Let L1, L2, L3 be the sets as defined

as in Observations 3.1, 3.4 and 3.6 above. Let L4 be the set of possible consecutive integers

used for labeling the elements of Cn which are not assigned by the set L1 ∪ L2 ∪ L3.

We first take the case 2n ≡ 1 (mod 3). If possible we now again assume the contrary that

tk(Cn) < 3(k − k0). Then it follows that span f is less than 3k + 1.

Observation 3.7 Since minimum label in L1 is 1 and f is a minimal k-constrained labeling,

we have f(x) ≥ k + 1 for all x such that f(x) ∈ L2.

We have f(α1) = 1 for α = 1. Let β be the smallest index such that f(β1) ∈ L1 and

f(γ1) 6∈ L1, where γ = β + 1 (such index β exists because f(α1) = 1 for α = 1 and γ exists

because 2n 6≡ 0 (mod 3), the elements labeled by L1 differ by it position by exactly multiples

of 3 apart on either sides of the element labeled by 1). Now consider the set S = {β2, β3, γ1}.
None of the elements of S can be labeled by any the label in L1 and no two of them receive

the label for a single set Li, for any i, 2 ≤ i ≤ 4. Let s1, s2, s3 be the elements of S arranged

accordingly f(s1) ∈ L2, f(s2) ∈ L3, f(s3) ∈ L4.

Since span f ≤ 3k, we have f(s3) ≤ 3k, so f(s2) ≤ 2k and hence f(s1) ≤ k, which is a

contradiction (follows by Observation 3.7). Hence for any minimal k-constrained labeling f we

get tk(Cn) ≥ 3(k − k0) whenever 2n ≡ 1 (mod 3).

We now take the case 2n ≡ 2 (mod 3). If possible we now again assume the contrary that

tk(Cn) < 3(k − k0). Then it follows that span f is less than or equal to 3k + 1. The element

of Cn is the set S1 ∪ S2 ∪ · · · ∪ Sk0 ∪ Sk0+1, where Sk0+1 = {vn, vnv1}. We now claim that the

label of the first element namely α1 of the set Sα is in the set L1 for all α, 1 ≤ α ≤ k0 if and

only if k0 > 2.

Suppose that α is the least positive index such that f(α1) 6∈ L1 and 1 < α ≤ k0. Then

for all β such that 1 ≤ β < α, f(β1) ∈ L1. Let β = α − 1. Consider the set S = {β2, β3, α1}.
Let s1, s2, s3 be the rearrangements of the elements in the set S such that f(s1) ∈ L2, f(s2) ∈
L3, f(s3) ∈ L4 respectively.

Since f(s3) ∈ L4 and span f is less than or equal to 3k + 1 it follows that f(s3) ≤ 3k + 1 and

hence f(s2) ≤ 2k + 1, f(s1) ≤ k + 1. But, the least element in L1 is 1 implies that the least

element in L2 is greater than or equal to k + 1, so f(s1) ≥ k + 1. Therefore, f(s1) = k + 1, so

that f(s2) = 2k+ 1 and f(s3) = 3k+ 1. There are two possible cases depending on s3 ∈ Sα or

not. Before considering these cases we make the the following observations.

Observation 3.8 Since f(α1) ∈ L4, we find f(α1) = 3k+ 1 for any α > 1. Suppose for any δ,

δ > α, if f(δ1) ∈ L1, then for any γ, γ > δ, we find f(γ1) ∈ L1. In fact, for γ > δ, if f(γ1) 6∈ L1

and f(η1) ∈ L1 for η = γ− 1, then sequence s1, s2, s3 of the elements of the set S = {η2, η3, γ1}
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taken accordingly as f(s1) ∈ L2, f(s2) ∈ L3, f(s3) ∈ L4 as above, we get f(s3) ≤ 3k (since

3k + 1 is already assigned). Therefore, f(s2) ≤ 2k and hence f(s1) ≤ k, which is imposable

(since f(s1 6∈ L1).

This shows that if f(δ1) ∈ L1, where δ = α+1, we arrive at the situation that f(η1) ∈ L1,

where η = k0.

Now taking the set {η2, η3, vn} and rearranging these elements as s1, s2, s3 such that f(s1) ∈
L2, f(s2) ∈ L3, f(s3) ∈ L4, we get f(s1) ≤ k which is again a contradiction.

Observation 3.9 Observation 3.8 shows that f(δ1) 6∈ L1 for any δ, α < δ ≤ k0.

Observation 3.10 Starting from the vertex v1, consider the sets Ś1 = {v1, v1vn, vn}, Ś2 = Sk0 ,

Ś3 = Sk0−1, . . . , Śk0−δ+2 = Sδ. By taking these sets, we arrive at the conclusion, as in

Observation 3.8, that f(δ3) ∈ L1 for every δ > α.

We now continue the main proof for the first case s3 ∈ Sα. In this case s3 = α1, therefore

s1 ∈ Sβ. But f(s3) ∈ L4 implies that f(s3) ≤ 3k+1, so f(s2) ≤ 2k+1 and hence f(s1) ≤ k+1.

On the other hand f(β1) ∈ L1 implies that f(β2) or f(β3) is greater than or equal to k + 1

(since min L1 = 1), that is, f(s1) ≥ k+1. Thus, f(s1) = k+1. This yields f(β1) = 1, so β = 1

and α = 2. Also f(s2) = 2k + 1 and f(s3) = 3k + 1.

Let us now suppose that α < k0. Then there exists an index δ such that δ = α+ 1 ≤ k0.

If f(β2) = 2k+1, f(β3) = k+1, then f(α2) ≥ 2k+1 (since f(β3) = k+1) and f(α2) ≤ 2k+1

(since f(α1) = 3k + 1). So, f(α2) = 2k + 1 and hence f(α2) = f(β2) which is not possible

(since α 6= β).

If f(β2) = k + 1, f(β3) = 2k + 1, then f(α2) ≤ k + 1 implies f(α2) ∈ L1 (since f(α2) 6=
k+ 1 = f(β2)). Further by Observation 3.10, we have f(δ3) ∈ L1. Consider the set {α3, δ1, δ2}
(we note that none of the elements of this set is labeled by the set L1) and let s1, s2, s3 be the

elements of this set taken in order such that f(s1) ∈ L2, f(s2) ∈ L3, f(s3) ∈ L4. Since 3k + 1

is already assigned we get f(s3) ≤ 3k and hence as above f(s1) ≤ k, which is a contradiction

to the fact f(s1) 6∈ L1.

We now continue the main proof for the second case s3 6∈ Sα. In this case s3 ∈ Sβ . Now by

assumption we have f(α3) ∈ L1 and k+1 is already labeled for an element of Sβ = S1, therefore,

f(α1) = 2k + 1. Now by Observation 3.10, f(δ3) ∈ L1, where δ = α + 1. If f(α2) ∈ L1, then

by taking the set {α3, δ1, δ2} and arranging as above we can show that one of these elements

must be labeled by an element of the set L4 and hence that label should be at most 3k, so the

smallest label of the element of the set is less than or equal k, a contradiction to the fact that

the smallest label is not in L1. Thus, f(α2) 6∈ L1.

If f(β3) = 3k+1, then f(α2) ∈ L2, and hence f(α2) ≥ k+2, which is not possible because

f(α1) = 2k + 1. Therefore, f(β2) = 3k + 1 and f(β3) = k + 1. But then, only possibility is

that f(α2) ∈ L4 implies that f(α2) ≤ 3k, which is impossible because f(α1) = 2k + 1. Hence

the claim.

By the above claim we have either first element of all the sets S1, S2, . . . Sk0 are labeled

by the elements of the set L1 or the graph is the cycle C4. For the graph C4, it is easy to

observe that no three consecutive integers can be used for the labeling and hence each of the

sets L1, L2, L3 and L4 should have at most two elements. Thus, span f ≥ 3k+ 2. The equality
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holds by the following Figure 2.

2k+2

k+2

k+1

3k+1

2k+1 3k+2

1

2

3 4 k k+3 k+4 2k 2k+3 3k

Figure 2: A k-constrained total labeling of the graph C4 ∪K3k−6

If the graph is not C4, then consider the set T = {vn1 , vn−1vn, vn, vnv1}. Since f(vn−2vn−1) ∈
L1 (follows by Observation 3.10) and f(v1) = 1 ∈ L1 (follows by the assumption) none of the

elements of the set T is labeled by the set L1 and exactly two elements namely vn−1 and vnv1

are labeled by same set.

If f(vn−1) and f(vnv1) are in L2, then either f(vn−1vn) and f(vn) is in L4. Suppose

f(vn−1vn) (similarly f(vn) ∈ L4), then f(vn) ∈ L3 (f(vn−1vn) ∈ L3), so f(vn−1vn) ≤ 3k + 1

and hence f(vn) ≤ 2k + 1. Therefore both f(vn−1) and f(vnv1) must be less than or equal to

k + 1, which is not possible because minimum of L2 is k + 1.

If f(vn−1) and f(vnv1) are in L3, then f(vn) ∈ L4 (or f(vn−1vn) ∈ L4) so f(vnv1) ≤ 2k+1

and f(vn−1) ≤ 2k + 1 (since f(vn) ≤ 3k + 1). Therefore, at least one of f(vnv1) or f(vn−1) is

less than or equal to 2k, which yields that f(vn−1vn) ≤ k (f(vn) ≤ k). Thus, either f(vn−1vn)

or f(vn) are in L1, a contradiction.

If f(vn−1) and f(vnv1) are in L4, then at least one of them must be less than 3k+1. Hence

either f(vn) or f(vn−1vn) is less than or equal to k (as above), which is again a contradiction.

Thus, we conclude

Lemma 3.11 Let Cn be a cycle on n vertices and k0 = ⌊ 2n−1
3 ⌋. Then

tk(Cn) ≥





0 if k ≤ k0,

2(k − k0) if k > k0 and 2n ≡ 0 (mod 3),

3(k − k0) if k > k0 and 2n ≡ 1 or 2(mod 3).

Now to prove the reverse inequality, designate the vertex vi of Cn as 2i− 1 and the edge

vjvj+1 as 2j, vnv1 as 2n. For each i, 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1 and for the case 2n ≡ 0

(mod 3), define a function f : V (Cn) ∪ E(Cn) ∪ V (K2(k−k0)) → {1, 2, 3, . . . , 2k + k0 + 3} by

f(1) = 1, f(2) = k + 2, f(3) = 2k + 3, f(i) = f(i− 3) + 1, for 4 ≤ i ≤ 2n and the vertices of

K2(k−k0) to the remaining.
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The function f serves as a Smarandachely k-constrained labeling of the graphCn∪K2(k−k0).

Hence tk(Cn) ≤ 2(k − k0).
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15 16

Figure 3: A 7-constrained total labeling of the graph C9 ∪K2(k−k0)

For the case 2n ≡ 1 (mod 3), define a function f : V (Cn) ∪ V (Cn) ∪ V (K3(k−k0)) →
{1, 2, 3, . . . , 3k + 1} by f(1) = 1, f(2) = 2k + 2, f(3) = k + 2, f(i) = f(i − 3) + 1 for

4 ≤ i ≤ 2n− 4, f(2n− 3) = k0, f(2n− 2) = 3k+ 1, f(2n− 1) = 2k+ 1, f(2n) = k+ 1 and the

vertices of K3(k−k0) to the remaining.

The function f serves as a Smarandachely k-constrained labeling of the graphCn∪K3(k−k0).

Hence tk(Cn) ≤ 3(k − k0).

For the case 2n ≡ 2 (mod 3), define a function f : V (Cn) ∪ V (Cn) ∪ V (K3(k−k0)) →
{1, 2, 3, . . . , 3k + 2} by f(1) = 1, f(2) = k + 2, f(3) = 2k + 3 , f(i) = f(i − 3) + 1, for

4 ≤ i ≤ 2n− 6, f(2n− 5) = 3k + 1, f(2n− 4) = k0, f(2n− 3) = 2k + 1, f(2n− 2) = 3k + 2,

f(2n− 1) = k + 1, f(2n) = 2k + 2 the vertices of K3(k−k0) to the remaining.

The function f serves as a Smarandachely k-constrained labeling of the graphCn∪K3(k−k0).

Hence tk(Cn) ≤ 3(k − k0).

Hence, in view of Lemma 3.11, we get

Theorem 3.12 Let Cn be a cycle on n vertices and k0 = ⌊ 2n−1
3 ⌋. Then

tk(Cn) =





0 if k ≤ k0,

2(k − k0) if k > k0 and 2n ≡ 0 (mod 3),

3(k − k0) if k > k0 and 2n ≡ 1 or 2(mod 3).
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