Solution of a Conjecture on Skolem Mean Graph of Stars $K_{1, l} \bigcup K_{1, m} \bigcup K_{1, n}$

V.Balaji
(Department of Mathematics, Surya College of Engineering and Technology, Villupuram-605 652, India)

E-mail: pulibala70@gmail.com

Abstract

In this paper, we prove a conjecture that the three stars $K_{1, l} \cup K_{1, m} \bigcup K_{1, n}$ is a skolem mean graph if $|m-n|<4+l$ for integers $l, m \geq 1$ and $l \leq m<n$.

Key Words: Smarandachely edge m-labeling f_{S}^{*}, Smarandachely super m-mean graph, skolem mean labeling, Skolem mean graph, star.

AMS(2010): 05C78

§1. Introduction

All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary [4]. A vertex labeling of G is an assignment $f: V(G) \rightarrow\{1,2,3, \ldots, p+q\}$ be an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling f_{S}^{*} for an edge $e=u v$, an integer $m \geq 2$ is defined by $f_{S}^{*}(e)=\left\lceil\frac{f(u)+f(v)}{m}\right\rceil$. Then f is called a Smarandachely super m-mean labeling if $f(V(G)) \cup\left\{f^{*}(e): e \in E(G)\right\}=\{1,2,3, \ldots, p+q\}$. Particularly, in the case of $m=2$, we know that

$$
f^{*}(e)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}
$$

Such a labeling is usually called a mean labeling. A graph that admits a Smarandachely super mean m-labeling is called a Smarandachely super m-mean graph, particularly, a skolem mean graph if $m=2$ in [1]. It was proved that any path is a skolem mean graph, $K_{1, m}$ is not a skolem mean graphif $m \geq 4$, and the two stars $K_{1, m} \bigcup K_{1, n}$ is a skolem mean graph if and only if $|m-n| \leq 4$. In [2], it was proved that the three star $K_{1, l} \cup K_{1, m} \bigcup K_{1, n}$ is a skolem mean graph if $|m-n|=4+l$ for $l=1,2,3, \cdots, m=1,2,3, \cdots$ and $\leq m<n$. It is also shown in [2] that the three star $K_{1, l} \bigcup K_{1, m} \bigcup K_{1, n}$ is not a skolem mean graph if $|m-n|>4+l$ for $l=1,2,3, \cdots, m=1,2,3, \cdots, n \geq l+m+5$ and $l \leq m<n$, the four star $K_{1, l} \bigcup K_{1, l} \bigcup K_{1, m} \bigcup K_{1, n}$ is a skolem mean graph if $|m-n|=4+2 l$ for $l=2,3,4, \cdots$, $m=2,3,4, \cdots, n=2 l+m+4$ and $l \leq m<n$; the four star $K_{1, l} \cup K_{1, l} \cup K_{1, m} \cup K_{1, n}$ is not a skolem mean graph if $|m-n|>4+2 l$ for $l=2,3,4, \cdots, m=2,3,4, \cdots, n \geq 2 l+m+5$ and $l \leq m<n$; the four star $K_{1,1} \bigcup K_{1,1} \bigcup K_{1, m} \bigcup K_{1, n}$ is a skolem mean graph if $|m-n|=7$ for

[^0]$m=1,2,3, \cdots, n=m+7,1 \leq m<n$, and the four star $K_{1,1} \bigcup K_{1,1} \bigcup K_{1, m} \bigcup K_{1, n}$ is not a skolem mean graph if $|m-n|>7$ for $m=1,2,3, \cdots, n \geq m+8$ and $1 \leq m<n$. In [3], the condition for a graph to be skolem mean is that $p \geq q+1$.

§2. Main Theorem

Definition 2.1 The three star is the disjoint union of $K_{1, l}, K_{1, m}$ and $K_{1, n}$ for integers l, $m, n \geq$ 1. Such a graph is denoted by $K_{1, l} \bigcup K_{1, m} \bigcup K_{1, n}$.

Theorem 2.2 If $l \leq m<n$, the three star $K_{1, l} \bigcup K_{1, m} \bigcup K_{1, n}$ is a skolem mean graph if $|m-n|<4+l$ for integers $l, m \geq 1$.

Proof Consider the graph $G=K_{1, l} \bigcup K_{1, m} \bigcup K_{1, n}$. Let $\{u\} \bigcup\left\{u_{i}: 1 \leq i \leq l\right\},\{v\} \bigcup\left\{v_{j}\right.$: $1 \leq j \leq m\}$ and $\{w\} \bigcup\left\{w_{k}: 1 \leq k \leq n\right\}$ be the vertices of G. Then G has $l+m+n+3$ vertices and $l+m+n$ edges. We have $V(G)=\{u, v, w\} \bigcup\left\{u_{i}: 1 \leq i \leq l\right\} \bigcup\left\{v_{j}: 1 \leq j \leq m\right\} \bigcup\left\{w_{k}\right.$: $1 \leq k \leq n\}$. The proof id divided into four cases following.

Case 1 Let $l \leq m<n$ where $n=l+m+3$ for integers $l, m \geq 1$. We prove such graph G is a skolem mean graph. The required vertex labeling $f: V(G) \rightarrow\{1,2,3, \cdots, l+m+n+3\}$ is defined as follows:

$$
\begin{aligned}
& f(u)=1, \quad f(v)=3 \\
& f(w)=l+m+n+3 \\
& f\left(u_{i}\right)=2 i+3 \text { for } 1 \leq i \leq l \\
& f\left(v_{j}\right)=2 l+2 j+3 \text { for } 1 \leq j \leq m \\
& f\left(w_{k}\right)=2 k \text { for } 1 \leq k \leq n-1 \text { and } \\
& f\left(w_{n}\right)=l+m+n+2
\end{aligned}
$$

The corresponding edge labels are as follows:
The edge labels of $u u_{i}$ is $i+2$ for $1 \leq i \leq l, v v_{j}$ is $l+j+3$ for $1 \leq j \leq m$ and $w w_{k}$ is $\frac{2 k+l+m+n+3}{2}$ for $1 \leq k \leq n-1$. Also, the edge label of $w w_{n}$ is $l+m+n+3$. Therefore, the induced edge labels of G are distinct. Hence G is a skolem mean graph.

Case 2 Let $l \leq m<n$ where $n=l+m+2$ for integers $l, m \geq 1$. We prove that G is a skolem mean graph. The required vertex labeling $f: V(G) \rightarrow\{1,2,3, \cdots, l+m+n+3\}$ is defined as follows:

$$
\begin{aligned}
& f(u)=1 ; f(v)=2 ; f(w)=l+m+n+3 \\
& f\left(u_{i}\right)=2 i+2 \text { for } 1 \leq i \leq l \\
& f\left(v_{j}\right)=2 l+2 j+2 \text { for } 1 \leq j \leq m \\
& f\left(w_{k}\right)=2 k+1 \text { for } 1 \leq k \leq n-1 \text { and } \\
& f\left(w_{n}\right)=l+m+n+2
\end{aligned}
$$

The corresponding edge labels are as follows:

The edge labels of $u u_{i}$ is $i+2$ for $1 \leq i \leq l ; v v_{j}$ is $l+j+2$ for $1 \leq j \leq m$ and $w w_{k}$ is $\frac{2 k+l+m+n+4}{2}$ for $1 \leq k \leq n-1$. Also, the edge label of $w w_{n}$ is $l+m+n+3$. Therefore, the induced edge labels of G are distinct. Hence the graph G is a skolem mean graph.

Case 3 Let $l \leq m<n$ where $n=l+m+1$ for integers $l, m \geq 1$. In this case, the required vertex labeling $f: V(G) \rightarrow\{1,2,3, \cdots, l+m+n+3\}$ is defined as follows:

$$
\begin{aligned}
& f(u)=1 ; f(v)=2 ; f(w)=l+m+n+3 \\
& f\left(u_{i}\right)=2 i+1 \text { for } 1 \leq i \leq l \\
& f\left(v_{j}\right)=2 l+2 j+1 \text { for } 1 \leq j \leq m \\
& f\left(w_{k}\right)=2 k+2 \text { for } 1 \leq k \leq n-1 \text { and } \\
& f\left(w_{n}\right)=l+m+n+2
\end{aligned}
$$

The corresponding edge labels are as follows:
The edge labels of $u u_{i}$ is $i+1$ for $1 \leq i \leq l ; v v_{j}$ is $l+j+2$ for $1 \leq j \leq m$ and $w w_{k}$ is $\frac{2 k+l+m+n+5}{2}$ for $1 \leq k \leq n-1$. Also, the edge label of $w w_{n}$ is $l+m+n+3$. Therefore, the induced edge labels of G are distinct. Therefore, G is a skolem mean graph.

Case 4 Let $l \leq m<n$ where $n=l+m$ for integers $l, m \geq 1$. We prove such graph G is a skolem mean graph. In this case, the required vertex labeling $f: V(G) \rightarrow\{1,2,3, \cdots, l+m+n+3\}$ is defined as follows:

$$
\begin{aligned}
& f(u)=1 ; f(v)=3 ; f(w)=l+m+n+3 ; \\
& f\left(u_{i}\right)=2 i \text { for } 1 \leq i \leq l ; \\
& f\left(v_{j}\right)=2 l+2 j \text { for } 1 \leq j \leq m ; \\
& f\left(w_{k}\right)=2 k+3 \text { for } 1 \leq k \leq n-1 \text { and } \\
& f\left(w_{n}\right)=l+m+n+2 .
\end{aligned}
$$

Calculation shows the corresponding edge labels are as follows:
The edge labels of $u u_{i}$ is $i+1$ for $1 \leq i \leq l ; v v_{j}$ is $l+j+2$ for $1 \leq j \leq m$ and $w w_{k}$ is $\frac{2 k+l+m+n+6}{2}$ for $1 \leq k \leq n-1$. Also, the edge label of $w w_{n}$ is $l+m+n+3$. Therefore, the induced edge labels of G are distinct and G is a skolem mean graph.

Combining these discussions of Cases $1-4$, we know that G is a skolem mean graph.

References

[1] V.Balaji, D.S.T.Ramesh and A. Subramanian, Skolem mean labeling, Bulletin of Pure and Applied Sciences, 26E(2)(2007), 245-248.
[2] V.Balaji, D.S.T.Ramesh and A.Subramanian, Some Results on Skolem Mean Graphs, Bulletin of Pure and Applied Sciences, 27E(1)(2008), 67-74.
[3] J.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 16 (2009), \# DS6.
[4] F.Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.

[^0]: ${ }^{1}$ Received June 16, 2011. Accepted December 8, 2011.

