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Abstract: The aim of this paper is to study the neutrosophic complex finite rings 

𝐶(𝑍𝑛) 𝑎𝑛𝑑 𝐶(< 𝑍𝑛 ∪ 𝐼 >), and to give a classification theorem of these rings. Also, this work 

introduces full solutions for 12 Kandasamy-Smarandache open problems concerning these 

structures of generalized rings modulo integers. Also, a necessary and sufficient condition 

of invertibility in 𝐶(𝑍𝑛) 𝑎𝑛𝑑 𝐶(< 𝑍𝑛 ∪ 𝐼 >) is presented as a partial solution of the famous 

group of units problem.  

Keywords: Neutrosophic complex number, neutrosophic finite complex number, 
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Introduction. 

Neutrosophy as a new kind of generalized logic deals with indeterminacy in nature, reality, 

and ideas found its way into algebraic studies. A lot of neutrosophic algebraic structures 

were defined and studied in a wide range. See [1-11]. 

In the literature, many generalizations appeared such as refined neutrosophic rings, 

n-refined neutrosophic rings, n-refined neutrosophic groups, and n-refined neutrosophic 

vector spaces and modules. Recently, algebraic equations and Diophantine linear equations 

were solved in neutrosophic rings and refined neutrosophic rings. See [5-18]. 

In [20], Smarandache and Kandasamy introduced the neutrosophic complex numbers 

modulo integers as an interesting generalized structure. Their work suggests a new 
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approach to the concept of classical complex numbers, and they proposed 150 open 

problems concerning substructures and factorization properties in these complex 

neutrosophic structures modulo integers (some of these problems were solved in [17]). In 

this paper, we aim to continue their efforts and to suggest a classification of neutrosophic 

complex finite rings modulo integers. Also, we suggest solutions for 12 problems of 

Kandasamy-Smarandache problems introduced in [20]. 

Main results 

We start our discussion by some easy Kandasamy-Smarandache problems about finite 

neutrosophic complex rings. 

Problem (56): Does every 𝐶(𝑍𝑛) contain a zero divisor?. 

The answer is no. If n is a prime and there are 𝑎, 𝑏 ∈ 𝑍𝑛; 𝑎2 + 𝑏2 ≡ 0(𝑚𝑜𝑑 𝑛), then 𝐶(𝑍𝑛) is 

a field according to Theorem , and then it has no zero divisors. 

Problem (58): Is every element in C(𝑍7) invertible?. 

The answer is yes, since C(𝑍7) is a field, thus all elements different from zero are invertible. 

Problem (57): Can every C(𝑍𝑛) be a field?. 

The answer is no, since C(𝑍5) is just a ring but not a field. 

Problem (53): Find a subring S in C(𝑍𝑛)  so that S is not an ideal. 

We take 𝑆 = 𝑍𝑛 which is a subring of C(𝑍𝑛) , but it is not an ideal, that is because 1∈ 𝑍𝑛 

and 𝑖𝐹 ∈ C(𝑍𝑛) , where1. 𝑖𝐹 = 𝑖𝐹, which is not in S. Thus S is not an ideal. 

Problem (26): Can C(〈𝑍12 ∪ I〉) be a S-ring? Justify. 

The answer is yes. That is because the set 𝑀 = {0,9,3} is a field under multiplication with 9 

acts as the identity. 

Problem (25): Prove C(〈𝑍25 ∪ I〉) can only be a ring. 

It is sufficient to prove that C(〈𝑍25 ∪ I〉) has zero divisors. We take 5 + 5𝐼 ∈  C(〈𝑍25  ∪  I〉), 

and 

(5 + 5𝐼). (5 + 5𝐼) = 25(1 + 𝐼)(1 + 𝐼) = 0. 

Definition: 
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(a) Let R be any commutative ring, 𝑚 be any element (not from R) which is a root of a 

polynomial 𝑝(𝑥) ∈ 𝑅[𝑥]. Then if there is no root of 𝑝(𝑥) in R, we call R(m) an algebraic 

extension. For example the ring Z(i) is an algebraic extension of the ring Z, since i is a root 

of the polynomial 𝑝(𝑥) = 𝑥2 + 1 ∈ 𝑍[𝑥], and p(x) has no roots in Z. (The concept of classical 

algebraic extension). 

(b) Let R be any commutative ring, 𝑚 be any element (not from R) which is a root of a 

polynomial 𝑝(𝑥) ∈ 𝑅[𝑥]. Then if there is a root of 𝑝(𝑥)  in R, we call R(m) a logical 

extension. 

 For example the neutrosophic ring Z(I) is a logical extension of the ring Z, since I is a root 

of the polynomial 𝑝(𝑥) = 𝑥2 − 𝑥 ∈ 𝑍[𝑥], and p(x) has roots {0,1} in Z.  

The following theorem realizes the algebraic structure of 𝐶(𝑍𝑛). 

Theorem: 

Let 𝐶(𝑍𝑛) be the ring of complex numbers modulo n, we have the following: 

(a) If n=p is a prime and 𝑝(𝑥) = 𝑥2 + 1 is irreducible over 𝑍𝑝, then 𝐶(𝑍𝑝) is an algebraic 

extension field of the field 𝑍𝑝 with degree two. 

(b) If n=p is a prime and 𝑝(𝑥) = 𝑥2 + 1 is reducible over 𝑍𝑝, then 𝐶(𝑍𝑝) is just a ring 

(logical extension). 

(c) If n is not a prime and 𝑝(𝑥) = 𝑥2 + 1 is irreducible over 𝑍𝑛, then 𝐶(𝑍𝑛) is an algebraic 

extension ring of the ring 𝑍𝑛 with degree two. 

(d) If n is not a prime and 𝑝(𝑥) = 𝑥2 + 1 is reducible over 𝑍𝑛, then 𝐶(𝑍𝑛) is a logical 

extension of the ring 𝑍𝑛. 

 Proof: 

(a) Suppose that 𝑝(𝑥) = 𝑥2 + 1 is irreducible over 𝑍𝑝, then it has no roots in 𝑍𝑝, thus 𝑖𝐹 is 

an algebraic element over 𝑍𝑝, and by classical algebraic result, we get that C(𝑍𝑝) is an 

algebraic extension field of the field 𝑍𝑝 with degree equal to deg(p) which is two. 

(b) 𝑖𝐹 is a root of 𝑝(𝑥) = 𝑥2 + 1, but p(x) has a root in 𝑍𝑝, because it is reducible, hence 

𝐶(𝑍𝑝) is just a ring (logical extension). [𝐶(𝑍𝑝) is not a field because there are 𝑎, 𝑏 ∈ 𝑍𝑝 such 

that 𝑎2 + 𝑏2 ≡ 0(𝑚𝑜𝑑 𝑝), where 𝑏 = 1 𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑝(𝑥)𝑖𝑛 𝑍𝑝]. 
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(c) It holds by a similar argument of section (a). 

(d) It holds by a similar argument of (b). 

The following theorem suggests a classification of the ring 𝐶(< 𝑍𝑛 ∪ 𝐼 >). 

Theorem: 

Let 𝐶(< 𝑍𝑛 ∪ 𝐼 >) be the neutrosophic complex modulo integers ring. Then 

𝐶(< 𝑍𝑛 ∪ 𝐼 >) ≅ C(Zn) × C(Zn). 

Proof: 

Firstly, we prove that 𝐶(< 𝑍𝑛 ∪ 𝐼 >) = [C(Zn)](I), where [C(Zn)](I) is the neutrosophic 

ring generated by I and C(Zn). 

Let 𝑥 = 𝑎 + 𝑏𝑖 + 𝑐𝐼 + 𝑑𝑖𝐼 ∈ 𝐶(< 𝑍𝑛 ∪ 𝐼 >), then 𝑥 = (𝑎 + 𝑏𝑖) + 𝐼(𝑐 + 𝑑𝑖) ∈ [C(Zn)](I), hence  

𝐶(< 𝑍𝑛 ∪ 𝐼 >) ≤ [C(Zn)](I). Conversely, let 𝑥 = (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖)𝐼 ∈ [C(Zn)](I). It is clear 

that 

𝑥 ∈ 𝐶(< 𝑍𝑛 ∪ 𝐼 >). This implies that 𝐶(< 𝑍𝑛 ∪ 𝐼 >) = [C(Zn)](I). 

By the classification theorem of neutrosophic rings in [5], we find that  𝐶(< 𝑍𝑛 ∪ 𝐼 >) =

[C(Zn)](I) ≅ C(Zn) × C(Zn). 

Problem (24): Is 𝐶(< 𝑍19 ∪ 𝐼 >) a field?. 

The answer is no, since I is not invertible. 

The group of units problem and other open questions 

In this section, we determine the necessary and sufficient condition for the invertibility of 

neutrosophic complex numbers modulo integers. 

First of all, we characterize the algebraic structure of 𝐶(𝑍𝑛) as an isomorphic image of a 

matrices subring of size 2 × 2. 

Theorem: 

Let 𝐶(𝑍𝑛) be the ring of neutrosophic complex numbers modulo integers. Then 𝐶(𝑍𝑛) is 

isomorphic to a sub ring of 𝑀2×2(𝑍𝑛) = {(
𝑎 𝑏
𝑐 𝑑

) ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍𝑛}. 

Proof: 
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Let 𝑆 = {(
𝑎 𝑏

−𝑏 𝑎
) ; 𝑎, 𝑏 ∈ 𝑍𝑛} be a subring of 𝑀2×2(𝑍𝑛), we define 

𝑓: 𝐶(𝑍𝑛) → 𝑆; 𝑓(𝑎 + 𝑏𝑖𝐹) = (
𝑎 𝑏

−𝑏 𝑎
), it is easy to see that 𝑓 is a well defined bijective map. 

Let 𝑥 = 𝑎 + 𝑏𝑖𝐹 , 𝑦 = 𝑐 + 𝑑𝑖𝐹 be two arbitrary elements in 𝐶(𝑍𝑛), we have 

𝑓(𝑥 + 𝑦) = (
𝑎 + 𝑐 𝑏 + 𝑑

−𝑏 − 𝑑 𝑎 + 𝑐
) = (

𝑎 𝑏
−𝑏 𝑏

) + (
𝑐 𝑑

−𝑑 𝑐
) = 𝑓(𝑥) + 𝑓(𝑦). 

𝑓(𝑥. 𝑦) = (
𝑎𝑐 − 𝑏𝑑 𝑎𝑑 + 𝑏𝑐

−𝑎𝑑 − 𝑏𝑐 𝑎𝑐 − 𝑏𝑑
) = (

𝑎 𝑏
−𝑏 𝑎

) . (
𝑐 𝑑

−𝑑 𝑐
) = 𝑓(𝑥). 𝑓(𝑦) . Thus 𝑓  is a ring 

isomorphism. 

Now, we can find the condition of invertibility, as an easy result from Theorem. 

Theorem: 

Let 𝐶(𝑍𝑛) be the ring of neutrosophic complex numbers modulo integers, 𝑥 = 𝑎 + 𝑏𝑖𝐹 be 

an arbitrary elements in 𝐶(𝑍𝑛). Then x is invertible if and only if 𝑎2 + 𝑏2 ≠ 0 𝑎𝑛𝑑 𝑎2 + 𝑏2 

is invertible in 𝑍𝑛. 

Proof: 

Since 𝐶(𝑍𝑛) ≅ 𝑆, then 𝑥 is invertible in 𝐶(𝑍𝑛) if and only if 𝑓(𝑥) = (
𝑎 𝑏

−𝑏 𝑎
) is invertible 

in S. 

It is well known that the matrix (
𝑎 𝑏

−𝑏 𝑎
) is invertible if and only if its inverse matrix is an 

element from S. Hence we have the following 

(a) det [(
𝑎 𝑏

−𝑏 𝑎
)] = 𝑎2 + 𝑏2 ≠ 0. 

(b) det [(
𝑎 𝑏

−𝑏 𝑎
)] = 𝑎2 + 𝑏2 is invertible in 𝑍𝑛, so the inverse matrix can be defined. 

Thus, our proof is complete. 
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The condition (b) is sufficient, that is because if 𝑎2 + 𝑏2 is invertible in 𝑍𝑛, then 𝑎2 + 𝑏2 ≠

0.  

Example: 

Consider the ring 𝐶(𝑍5) = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝑍5}. The group of units in 𝐶(𝑍5) is equal to 

𝑈 = {1,2,3,4, 𝑖𝐹 , 2𝑖𝐹 , 3𝑖𝐹 , 4𝑖𝐹 , 1 + 𝑖𝐹 , 1 + 4𝑖𝐹 , 2 + 2𝑖𝐹 , 2 + 3𝑖𝐹 , 3 + 2𝑖𝐹 , 3 + 3𝑖𝐹 , 4 + 𝑖𝐹 , 4 + 4𝑖𝐹}. 

Example : 

Consider the ring 𝐶(𝑍4) = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝑍4}. The group of units in 𝐶(𝑍4) is equal to 

𝑈 = {1,3, 𝑖𝐹 , 3𝑖𝐹 , 1 + 2𝑖𝐹 , 2 + 𝑖𝐹 , 2 + 3𝑖𝐹 , 3 + 2𝑖𝐹}. 

Example: 

Consider the ring 𝐶(𝑍6) = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝑍6}. The group of units in 𝐶(𝑍6) is equal to 

𝑈 = {1,5, 𝑖𝐹 , 5𝑖𝐹 , 1 + 2𝑖𝐹 , 1 + 4𝑖𝐹 , 2 + 𝑖𝐹 , 2 + 3𝑖𝐹 , 2 + 5𝑖𝐹 , 3 + 2𝑖𝐹 , 3 + 4𝑖𝐹 , 4 + 𝑖𝐹 , 4 + 3𝑖𝐹 , 4 +

5𝑖𝐹 , 5 + 2𝑖𝐹 , 5 + 4𝑖𝐹}. 

Now, we introduce the algebraic structure of the group of units in the ring 𝐶(< 𝑍𝑛 ∪ 𝐼 >). 

Theorem: 

The group of units in the ring 𝐶(< 𝑍𝑛 ∪ 𝐼 >), has the following property 

𝑈(𝐶(< 𝑍𝑛 ∪ 𝐼 >)) ≅ 𝑈(𝐶(𝑍𝑛)) × 𝑈(𝐶(𝑍𝑛)). 

The proof holds directly from the fact that 𝐶(< 𝑍𝑛 ∪ 𝐼 >) ≅ C(Zn) × C(Zn).  

Remark: 

A very interesting and hard problem is still open. This problem can be summarized as 

follows: 
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Describe the algebraic structure of the group of units in the ring 𝐶(𝑍𝑛).  

Although we have found the necessary and sufficient condition of any element in 𝐶(𝑍𝑛) to 

be a unit, but the classification of this group as a direct product of cyclic groups is still 

unknown. 

Remark: 

As a result of Theorem 4.2, we can find zero divisors in 𝐶(𝑍𝑛). Every element 𝑥 = 𝑎 +

𝑏𝑖𝐹 ∈ 𝐶(𝑍𝑛) is a zero divisor if and only if its isomorphic image 𝑓(𝑥) = (
𝑎 𝑏

−𝑏 𝑎
) is a zero 

divisor in the ring S. 

Any matrix with form (
𝑎 𝑏

−𝑏 𝑎
) is a zero divisor if and only if its determinant is a zero 

divisor in 𝑍𝑛, thus the necessary and sufficient condition for any element 𝑥 = 𝑎 + 𝑏𝑖𝐹 ∈

𝐶(𝑍𝑛) to be a zero divisor is 𝑎2 + 𝑏2is a zero divisor in 𝑍𝑛. Now, we are able to solve 

another open problem.  

Problem (50): Find Zero divisors and units in 𝐶(𝑍24). 

To solve the problem we shall determine the zero divisors in 𝑍24 firstly. 

We have 3,8,6,4,12,2 are zero divisors, that is because 3.8 = 6.4 = 12.2 = 0. And 

−3 = 21, −8 = 16, −6 = 18, −4 = 20, −2 = 22 are zero divisors clearly. Also, the product of 

any two zero divisors is a zero divisor. 

According to our discussion, zero divisors in 𝐶(𝑍24) are 

3,8,4,6,12,2,21,16,18,20,22, 15. The rest of zero divisors in 𝐶(𝑍24) are elements with form 

𝑎 + 𝑏𝑖𝐹, where 𝑎2 + 𝑏2 ∈ {3,8,4,6,12,2,21,16,18,20,22,15}. 

To determine the units in 𝐶(𝑍24), we shall determine units in 𝑍24. We have 

𝑈(𝑍24) = {1,5,7,11,13,17,19,23}. The other units in 𝐶(𝑍24) are the elements with form 

𝑥 = 𝑎 + 𝑏𝑖𝐹;  𝑎2 + 𝑏2 ∈ 𝑈(𝑍24). 

The following theorems helps us in finding ideals of the ring 𝐶(𝑍𝑛), and 𝐶(< 𝑍𝑛 ∪ 𝐼 >). 

Theorem:  
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Let 𝐶(𝑍𝑛) be a neutrosophic complex modulo integers ring, 𝑆 = {(
𝑎 𝑏

−𝑏 𝑎
) ; 𝑎, 𝑏 ∈ 𝑍𝑛} be 

its corresponding isomorphic subring. Let 𝐼𝐻𝑗
= {(

𝑎 𝑏
−𝑏 𝑎

) ; 𝑎, 𝑏 ∈ 𝐻𝑗}, where (𝐻𝑗, +) is a 

subgroup of 𝑍𝑛. We have  

(a) Ideals of 𝐶(𝑍𝑛) are exactly the isomorphic image of the sets 𝐼𝐻𝑗
. 

(b) If (𝐻𝑗, +, . ) is a maximal ideal in  (𝑍𝑛, +, . ), then 𝐼𝐻𝑗
 is a maximal ideal in  𝐶(𝑍𝑛). 

Proof: 

Firstly, we shall determine the structure of additive subgroups in S. Let A,B be two subsets 

of 𝑍𝑛, and 𝑀 = {(
𝑎 𝑏

−𝑏 𝑎
) ; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Let 𝑥 = (

𝑎 𝑏
−𝑏 𝑎

) , 𝑦 = (
𝑐 𝑑

−𝑑 𝑐
) be two arbitrary 

elements in M. 

(M,+) is a subgroup of S if and only if 𝑥 − 𝑦 ∈ 𝑀, which is equivalent to 𝑎 − 𝑏 ∈ 𝐴, 𝑐 − 𝑑 ∈

𝐵, hence A,B are subgroups of 𝑍𝑛. 

Now, we prove that M is an ideal in S if and only if 𝐴 = 𝐵. 

Since A,B are subgroups of 𝑍𝑛 , we find that (𝐴. +, . ), (𝐵, +, . )  are ideals in the ring 

(𝑍𝑛, +, . ). 

Firstly, we assume that A=B. Let 𝑥 = (
𝑎 𝑏

−𝑏 𝑎
) ∈ 𝑀 𝑎𝑛𝑑 𝑟 = (

𝑐 𝑑
−𝑑 𝑐

) ∈ 𝑆, we have 

𝑥. 𝑟 = (
𝑎𝑐 − 𝑏𝑑 𝑎𝑑 + 𝑏𝑐

−𝑎𝑑 − 𝑏𝑐 𝑎𝑐 − 𝑏𝑑
). We have 

𝑎𝑐 − 𝑏𝑑 ∈ 𝐴 , that is because 𝑎𝑐 ∈ 𝐴 (𝐴 𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑎𝑙 𝑖𝑛 𝑍𝑛)  and 𝑏𝑑 ∈

𝐴 (𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑟𝑒𝑎𝑠𝑜𝑛). This implies that 𝑥. 𝑟 ∈ 𝑀 and M is an ideal in S. Conversely, we 

suppose that 𝑀 is an ideal in S, hence for any two elements Let 𝑥 = (
𝑎 𝑏

−𝑏 𝑎
) ∈ 𝑀 𝑎𝑛𝑑 𝑟 =

(
𝑐 𝑑

−𝑑 𝑐
) ∈ 𝑆, we have 

𝑥. 𝑟 = (
𝑎𝑐 − 𝑏𝑑 𝑎𝑑 + 𝑏𝑐

−𝑎𝑑 − 𝑏𝑐 𝑎𝑐 − 𝑏𝑑
) ∈ 𝑀, this implies that 𝑎𝑐 − 𝑏𝑑 ∈ 𝐴 and 𝑎𝑑 + 𝑏𝑐 ∈ 𝐵. 

We know that A,B are ideals in 𝑍𝑛 , hence 𝑎𝑐 ∈ 𝐴 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑎 ∈ 𝐴, 𝑐 ∈ 𝑍𝑛)  and 𝑏𝑐 ∈

𝐵(𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑏 ∈ 𝐵 𝑎𝑛𝑑 𝑐 ∈ 𝑍𝑛) . This means that  −𝑏𝑑 ∈ 𝐴  and 𝑎𝑑 ∈ 𝐵  for all 𝑏 ∈ 𝐵, 𝑎 ∈

𝐴, 𝑑 ∈ 𝑍𝑛, we put 𝑑 = 1 to find that 𝑎 ∈ 𝐵 𝑎𝑛𝑑 𝑏 ∈ 𝐴. Thus 𝐴 = 𝐵. 
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According to Theorem , we have 𝐶(𝑍𝑛) ≅ 𝑆, hence all ideals in 𝐶(𝑍𝑛) are exactly the 

isomorphic image of the ideals in S. hence the proof is complete. 

(b) Suppose that  𝐼𝐻𝑗
= {(

𝑎 𝑏
−𝑏 𝑎

) ; 𝑎, 𝑏 ∈ 𝐻𝑗} is a maximal ideal in S, hence it is easy to see 

that 𝐻𝑗 is a maximal ideal in 𝑍𝑛. 

Remark: 

Every ideal in 𝐶(𝑍𝑛) has the form 𝑓−1 (𝐼𝐻𝑗
) = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐻𝑗}, where 𝐻𝑗 is a subgroup 

of 𝑍𝑛. 

Theorem: 

Ideals in 𝐶(< 𝑍𝑛 ∪ 𝐼 >) are equal to the isomorphic image of the set 𝐽 = {𝐼𝐻𝑗
× 𝐼𝐻𝑠

;  𝐻𝑗, 𝐻𝑠 ≤

𝑍𝑛}. Also, maximal ideals in 𝐶(< 𝑍𝑛 ∪ 𝐼 >) are equal to the isomorphic image of the set 

𝐽 = {𝐼𝐻𝑗
× 𝐼𝐻𝑠

;  𝐻𝑗, 𝐻𝑠 ≤ 𝑍𝑛 𝑎𝑛𝑑 𝐼𝐻𝑗
, 𝐼𝐻𝑠

 𝑎𝑟𝑒 𝑚𝑎𝑥𝑖𝑚𝑎𝑙}. 

Proof: 

According to Theorem , we have 𝐶(< 𝑍𝑛 ∪ 𝐼 >) ≅ C(Zn) × C(Zn). the isomorphism between 

them is defined in [5] as follows: 

𝑓: 𝐶(< 𝑍𝑛 ∪ 𝐼 >) → C(Zn) × C(Zn) ; 𝑓(𝑎 + 𝑏𝐼) = (𝑎, 𝑎 + 𝑏); 𝑎, 𝑏 ∈ 𝐶(𝑍𝑛) . The inverse 

isomorphism is 𝑓−1: 𝐶(𝑍𝑛) × 𝐶(𝑍𝑛) → 𝐶(< 𝑍𝑛 ∪ 𝐼 >); 𝑓−1(𝑎, 𝑏) = 𝑎 + (𝑏 − 𝑎)𝐼; 𝑎, 𝑏 ∈

𝐶(𝑍𝑛). 

According to Remark 4.11, ideals in 𝐶(𝑍𝑛) has the form {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐻𝑗}, where 𝐻𝑗 is a 

subgroup of 𝑍𝑛, hence ideals in C(Zn) × C(Zn) has the form 𝐼 = {(𝑎 + 𝑏𝑖𝐹 , 𝑐 + 𝑑𝑖𝐹); 𝑎, 𝑏 ∈

𝐻𝑗 𝑎𝑛𝑑 𝑐, 𝑑 ∈ 𝐻𝑠}, where 𝐻𝑗, 𝐻𝑠 are two subgroups of 𝑍𝑛. Thus ideals in 𝐶(< 𝑍𝑛 ∪ 𝐼 >) has 

the form 

𝑓−1(𝐼) = {(𝑎 + 𝑏𝑖𝐹) + [(𝑐 + 𝑑𝑖𝐹) − (𝑎 + 𝑏𝑖𝐹)]𝐼; 𝑎, 𝑏 ∈ 𝐻𝑗 𝑎𝑛𝑑 𝑐, 𝑑 ∈ 𝐻𝑠} = IHj
+ (IHs

−

IHj
) I, where 𝐻𝑗, 𝐻𝑠 are two subgroups of 𝑍𝑛. 

Also, maximal ideals in 𝐶(< 𝑍𝑛 ∪ 𝐼 >)  has the form 𝑓−1(𝐼) = {(𝑎 + 𝑏𝑖𝐹) + [(𝑐 + 𝑑𝑖𝐹) −

(𝑎 + 𝑏𝑖𝐹)]𝐼; 𝑎, 𝑏 ∈ 𝐻𝑗 𝑎𝑛𝑑 𝑐, 𝑑 ∈ 𝐻𝑠}, where 𝐻𝑗, 𝐻𝑠 are two maximal ideals of 𝑍𝑛 . 

Problem (28): Find ideals in C(〈𝑍6 ∪ I〉). 
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 Subgroups (Ideals) of 𝑍6 are 𝐴 = {0}, 𝐵 = {0,2,4}, 𝐶 = {0,3}, 𝐷 = {0,1,2,3,4,5}. 

Ideals of C(𝑍6) are 𝑋 = 𝐼𝐴 = {0}, 𝑌 = 𝐼𝐵 = {0,2,4,2𝑖𝐹 , 4𝑖𝐹 , 2 + 2𝑖𝐹 , 2 + 4𝑖𝐹 , 4 + 4𝑖𝐹 , 4 + 2𝑖𝐹}, 

𝑍 = 𝐼𝐶 = {0,3,3𝑖𝐹 , 3 + 3𝑖𝐹}, 𝑇 = 𝐼𝐷 = C(𝑍6). 

Ideals of C(〈𝑍6 ∪ I〉) are the sets with form 𝑀 + (𝑁 − 𝑀)𝐼; 𝑀, 𝑁 ∈ {𝑋, 𝑌, 𝑍, 𝑇}.  

Problem (29): Find maximum ideals of C(〈𝑍18 ∪ I〉).  

First of all, we shall find maximum ideals in 𝑍18. They are 𝐴 = {0,2,4,6,8,10,12,14,16}, 

𝐵 = {0,3,6,9,12,15}, 𝐶 = 𝑍18. 

Maximal ideals in 𝐶(𝑍18) are 𝐼𝐴 = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐴}, 𝐼𝐵 = {𝑐 + 𝑑𝑖𝐹; 𝑐, 𝑑 ∈ 𝐵), 𝐼𝐶 = 𝐶(𝑍18). 

Hence, maximal ideals in C(〈𝑍18 ∪ I〉) are P= 𝐼𝐴 + (𝐼𝐵 − 𝐼𝐴)𝐼 = 𝐼𝐴 + 𝐼𝐶𝐼, 𝑄 = 𝐼𝐵 + (𝐼𝐴 − 𝐼𝐵)𝐼 =

𝐼𝐵 + 𝐼𝐶𝐼, 

𝑅 = 𝐼𝐶 + (𝐼𝐴 − 𝐼𝐶)𝐼 = 𝐼𝐶 + (𝐼𝐵 − 𝐼𝐶)𝐼 = 𝐼𝐶 + 𝐼𝐶𝐼 = C(〈𝑍18  ∪  I〉). 

Find an ideal I in C(𝑍128 ) so that C(𝑍128 )/I is a field..Problem (51): 

We have 𝐽 =< 2 > is a maximal ideal in 𝑍128. Hence 𝐼𝐽 = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐽} is a maximal 

ideal in C(𝑍128 ), thus C(𝑍128 )/𝐼𝐽 is a field with order 4.    

Problem (52): Does there exist an ideal I in C(𝑍49) so that C(𝑍49)/I is a field?. 

It is sufficient to find a maximal ideal in 𝑍49. We have 𝐽 =< 7 > is maximal in 𝑍49, hence 

𝐼𝐽 = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐽} is maximal in C(𝑍49), and C(𝑍49)/ 𝐼𝐽 is a field with order 49. 

Problem (55): Find a necessary and sufficient condition for a complex modulo integers ring 

𝑆 = 𝐶(𝑍𝑛) to have ideal I such that 
𝐶(𝑍𝑛)

𝐼⁄  is never a field. 

The answer is depending on finding a non maximal ideal in 𝐶(𝑍𝑛), since if I is a maximal 

ideal in 𝐶(𝑍𝑛), we get a field 
𝐶(𝑍𝑛)

𝐼⁄ . 

We have the following cases: 

(a) If n is a prime and 𝑃(𝑥) = 𝑥2 + 1 is irreducible over 𝑍𝑛, then  𝐶(𝑍𝑛) is a field and it 

has no proper ideals. (The only maximal ideal is I={0}). Thus the problem is not solvable in 

this case. 

(b) If n is a prime and 𝑃(𝑥) = 𝑥2 + 1 is reducible over 𝑍𝑛, then 𝐶(𝑍𝑛) is a finite ring with 

𝑛2 elements. Thus every proper ideal I in 𝐶(𝑍𝑛) has exactly n elements (because I is a 
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subgroup under addition and then its order divides the order of 𝐶(𝑍𝑛)  by classical 

Lagrange's theorem). 

Now, 
𝐶(𝑍𝑛)

𝐼
⁄  is a ring with n elements (n is a prime), thus it is a field. Hence the problem 

is not solvable in this case. 

(c) If n is  not a prime and there is an integer s with property 𝑠 ≠ 𝑔𝑐𝑑(𝑠, 𝑛) = 𝑎 ≥ 2 , we 

define the following principal ideal 𝐼 =< 𝑠 >, where s is an integer with property 𝑠 ≠

𝑔𝑐𝑑(𝑠, 𝑛) = 𝑎 ≥ 2 . It is clear that 𝐼 < 𝐽 =< 𝑎 >≠ 𝐶(𝑍𝑛) , hence I is not maximal and  

𝐶(𝑍𝑛)
𝐼

⁄  is never a field. 

(d) If n is not a prime, but a prime power 𝑛 = 𝑝𝑛. For 𝑛 = 2, there is < 𝑝 > as the unique 

proper ideal and it is a maximal ideal in 𝑍𝑛 , hence 𝐼<𝑝> = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈< 𝑝 >}  is 

maximal in 𝐶(𝑍𝑛), hence 
𝐶(𝑍𝑛)

𝐼⁄  is a field and the problem is not solvable in this case. 

For 𝑛 ≥ 3, there is a non maximal ideal < 𝑝2 > in 𝑍𝑛 , hence 𝐼<𝑝2> = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈<

𝑝2 >} is non maximal in 𝐶(𝑍𝑛), hence 
𝐶(𝑍𝑛)

𝐼⁄  is never a field. 

(e) If n is not a prime and not a prime power, and there is not any integer s with property 

𝑠 ≠ 𝑔𝑐𝑑(𝑠, 𝑛) = 𝑎 ≥ 2 , then < 𝑠 > is maximal in 𝑍𝑛, , hence 𝐼<𝑠> = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈< 𝑠 >} 

is maximal in 𝐶(𝑍𝑛), hence 
𝐶(𝑍𝑛)

𝐼⁄  is a field, and the problem is not solvable in this case. 

(All ideals are maximal in this case).  

Conclusion 

In this paper, we have classified the ring of finite neutrosophic complex numbers as irect 

product of two rings. On the other hand, we have presented solutions for 12 open problems 

suggested by Smarandache and Kandasamy in [20]. 

As a future research direction, we aim to solve all Smarandache-Kandasamy open 

problems.  
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