Charles Ashbacher

Topics in Recreational Mathematics 3/2015

Topics in Recreational Mathematics 3/2015

Edited by Charles Ashbacher Interior artwork by Caytie Ribble

Introduction by Charles Ashbacher	4
Mathematical Cartoons drawn by Caytie Ribble	5
The Real Curse of the Bambino by Christopher J. Brown, Lyon Carter III and Paul M. Sommers	9
If MIDY Doesn't Work What Then? by David L. Emory	16
Magic Squares by Clarence A. Gipbsin	21
Smarandache's Orthic Theorem by Prof. Ion Patrascu	23
Exploring a Fascinating Integer Sequence by Jay L. Schiffman	27
An Analysis Of Multistate Lights Out On A Cube by John Antonelli and Crista Arangala	45
A Graphical Solution To The Montmort Matching Problem by Diego Castano	60
Behforooz Calendarical Magic Squares by Hossein Behforooz	69
Alphametics edited by Charles Ashbacher	80
Problems And Conjectures, That Would Have Appeared In "Journal Of Recreational Mathematics" 38(4) edited by Lamarr Widmer	82
Unfinished Business From "Journal Of Recreational Mathematics," Number 1 by Charles Ashbacher	. 85
Book Reviews	90

edited by Charles Ashbacher

Solutions To Problems And Conjectures From Journal Of Recreational Mathematics 37(4) edited by Lamarr Widmer	97
Solutions To Alphametics That Appeared In Journal Of Recreational Mathematics 37(4) edited by Steven Kahan	107
Journal of Recreational Mathematics Solver's List for 38(3) edited by Lamarr Widmer	111
Journal of Recreational Mathematics Solver's List for 38(4) edited by Lamarr Widmer	112
Solutions To Alphametics Appearing In This Issue edited by Charles Ashbacher	113
Errata	
Symmetry - the aesthetics of mathematics by Kate Jones	115
	116

SMARANDACHE'S ORTHIC THEOREM

Edited by Prof. Ion Patrascu

Fratii Buzesti College

Craiova, Romania

Abstract

We present the Smarandache's Orthic Theorem in the geometry of the triangle.

Smarandache's Orthic Theorem

Given a triangle ABC whose angles are all acute (acute triangle), we consider A'B'C', the triangle formed by the legs of its altitudes.

What are the conditions where the expression

$$\|A'B'\| \cdot \|B'C'\| + \|B'C'\| \cdot \|C'A'\| + \|C'A'\| \cdot \|A'B'\|$$

is maximum?

Solution:

We have

$$\Delta ABC \sim \Delta A'B'C' \sim \Delta AB'C \sim \Delta A'BC' \tag{1}$$

We note

$$||BA'|| = x$$
, $||CB'|| = y$, $||AC'|| = z$.

It follows that

$$||A'C|| = a - x$$
, $||B'A|| = b - y$, $||C'B|| = c - z$

$$\bigwedge_{BAC} \bigwedge_{B'A'C'} \bigwedge_{C} \bigwedge_{ABC} \bigwedge_{C'} \bigwedge_{ABC'} \bigwedge_{ABC'} \bigwedge_{C'} \bigwedge_{C$$

From these equalities we have the relation (1)

$$\Delta A'BC' \sim \Delta A'B'C \Rightarrow \frac{\|A'C'\|}{a-x} = \frac{x}{\|A'B'\|}$$
 (2)

$$\Delta A'B'C \sim \Delta AB'C' \Rightarrow \frac{\|A'C'\|}{z} = \frac{c-z}{\|B'C'\|}$$
(3)

$$\Delta AB'C' \sim \Delta A'B'C \Rightarrow \frac{\|B'C'\|}{y} = \frac{b-y}{\|A'B'\|}$$
(4)

From (2), (3) and (4) we observe that the sum of the products from the problem is equal to:

$$x(a-x)+y(b-y)+z(c-z) = \frac{1}{4}(a^2+b^2+c^2)-\left(x-\frac{a}{2}\right)^2-\left(y-\frac{b}{2}\right)^2-\left(z-\frac{c}{2}\right)^2$$

which will reach its maximum when $x = \frac{a}{2}$, $y = \frac{b}{2}$, $z = \frac{c}{2}$, that is when the altitudes' legs are in the middle of the sides, therefore when $\triangle ABC$ is equilateral. The maximum of the expression is

$$\frac{1}{4}(a^2+b^2+c^2).$$

Conclusion (Smarandache's Orthic Theorem)

If we note the lengths of the sides of the triangle $\triangle ABC$ by ||AB|| = c, ||BC|| = a, ||CA|| = b, and the lengths of the sides of its orthic triangle $\triangle A`B`C`$ by ||A`B`|| = c`, ||B`C`|| = a`, ||C`A`|| = b`, then we have proved that:

$$4(a'b'+b'c'+c'a') \le a^2+b^2+c^2$$

Open Problems related to Smarandache's Orthic Theorem:

- 1. Generalize this problem to polygons. Let A₁A₂...A_m be a polygon and P a point inside it. From P we draw perpendiculars on each side A_iA_{i+1} of the polygon and we note by Ai' the intersection between the perpendicular and the side A_iA_{i+1}. A pedal polygon A₁'A₂'...A_m' is formed. What properties does this pedal polygon have?
- 2. Generalize this problem to polyhedrons. Let A₁A₂...A_n be a poliyhedron and P a point inside it. From P we draw perpendiculars on each polyhedron face F_i and we note by Ai' the intersection between the perpendicular and the side F_i. A pedal polyhedron ...A₁'A₂'...A_p' is formed, where p is the number of polyhedron's faces. What properties does this pedal polyhedron have?

References

- 1. Cătălin Barbu, *Teorema lui Smarandache*, in his book "Teoreme fundamentale din geometria triunghiului", Chapter II (Teoreme fundamentale din geometria triunghiului), Section II.57, p. 337, Editura Unique, Bacău, 2008.
- 2. József Sándor, On Smarandache's Pedal Theorem, in his book Geometric Theorems, Diophantine Equations, and Arithmetic Functions, AR Press, pp. 9-10, Rehoboth, 2002.
- 3. Ion Pătrașcu, *Smarandache's Orthic Theorem*, http://www.scribd.com/doc/28311593/Smarandache-s-Orthic-Theorem
- 4. F. Smarandache, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org, Cornell University, NY, USA.
- 5. F. Smarandache, *Problèmes avec et sans... problèmes!*, Problem 5.41, p. 59, Somipress, Fés, Morocco, 1983.