Scientia Magna

Vol. 2 (2006), No. 2, 60-63

Some identities on k-power complement

Pei Zhang
Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

Abstract The main purpose of this paper is to calculate the value of the series

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n^{\alpha} \cdot a_{k}^{\beta}(n)}
$$

where $a_{k}(n)$ is the k-power complement number of any positive number n, and α, β are two complex numbers with $\operatorname{Re}(\alpha) \geq 1, \operatorname{Re}(\beta) \geq 1$. Several interesting identities are given.

Keywords k-power complement number, identities, Riemann zeta-function.

§1. Introduction

For any given natural number $k \geq 2$ and any positive integer n, we call $a_{k}(n)$ as a k power complement number if $a_{k}(n)$ denotes the smallest positive integer such that $n \cdot a_{k}(n)$ is a perfect k-power. Especially, we call $a_{2}(n), a_{3}(n), a_{4}(n)$ as the square complement number, cubic complement number, quartic complement number respectively. In reference [1], Professor F.Smarandache asked us to study the properties of the k-power complement number sequence. About this problem, there are many authors had studied it, and obtained many results. For example, in reference [2], Professor Wenpeng Zhang calculated the value of the series

$$
\sum_{n=1}^{+\infty} \frac{1}{\left(n \cdot a_{k}(n)\right)^{s}}
$$

where s is a complex number with $\operatorname{Re}(\alpha) \geq 1, k=2,3,4$. Maohua Le [3] discussed the convergence of the series

$$
s_{1}=\sum_{n=1}^{+\infty} \frac{1}{a_{2}^{m}(n)}
$$

and

$$
s_{2}=\sum_{n=2}^{+\infty} \frac{(-1)^{n}}{a_{2}(n)}
$$

where $m \leq 1$ is a positive number, and proved that they are both divergence.
But about the properties of the k-power complement number, we still know very little at present. This paper, as a note of [2], we shall give a general calculate formula for

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n^{\alpha} \cdot a_{k}^{\beta}(n)}
$$

That is, we shall prove the following:
Theorem 1. For any complex numbers α, β with $\operatorname{Re}(\alpha) \geq 1, \operatorname{Re}(\beta) \geq 1$, we have

$$
\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} \cdot a_{k}^{\beta}(n)}=\zeta(k \alpha) \prod_{p}\left(1+\frac{1-\frac{1}{p^{(k-1) \alpha+(k-1)^{2} \beta}}}{p^{\alpha+(k-1) \beta}-1}\right)
$$

where $\zeta(\alpha)$ is the Riemann zeta-function, \prod_{p} denotes the product over all prime p.
Theorem 2. For any complex numbers α, β with $\operatorname{Re}(\alpha) \geq 1, \operatorname{Re}(\beta) \geq 1$, we have

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n^{\alpha} \cdot a_{k}^{\beta}(n)}=\left(1-\frac{2\left(2^{k \alpha}-1\right)\left(2^{\alpha+(k+1) \beta}-1\right)}{2^{(k+1) \alpha+(k-1) \beta}-2^{\alpha-(k-1)^{2} \beta}}\right) \zeta(k \alpha) \prod_{p}\left(1+\frac{1-\frac{1}{p^{(k-1) \alpha+(k-1)^{2} \beta}}}{p^{\alpha+(k-1) \beta}-1}\right)
$$

Note that $\zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}$ and $\zeta(8)=\frac{\pi^{8}}{9450}$. From our Theorems we may immediately obtain the following two corollaries:

Corollary 1. Taking $\alpha=\beta, k=2$ in above Theorems, then we have

$$
\begin{gathered}
\sum_{n=1}^{+\infty} \frac{1}{\left(n \cdot a_{2}(n)\right)^{\alpha}}=\frac{\zeta^{2}(2 \alpha)}{\zeta(4 \alpha)} ; \\
\sum_{\substack{n=1 \\
2 \nmid n}}^{+\infty} \frac{1}{\left(n \cdot a_{2}(n)\right)^{\alpha}}=\frac{\zeta^{2}(2 \alpha)}{\zeta(4 \alpha)} \cdot \frac{4^{\alpha}-1}{4^{\alpha}+1} ; \\
\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{\left(n \cdot a_{2}(n)\right)^{\alpha}}=\frac{\zeta^{2}(2 \alpha)}{\zeta(4 \alpha)} \cdot \frac{3-4^{\alpha}}{1+4^{\alpha}} .
\end{gathered}
$$

Corollary 2. Taking $\alpha=\beta=1,2, k=2$ in Corollary 1, we have

$$
\begin{aligned}
& \sum_{n=1}^{+\infty} \frac{1}{n \cdot a_{2}(n)}=\frac{5}{2}, \quad \sum_{n=1}^{+\infty} \frac{1}{\left(n \cdot a_{2}(n)\right)^{2}}=\frac{7}{6} ; \\
& \sum_{\substack{n=1 \\
2 \nmid n}}^{+\infty} \frac{1}{n \cdot a_{2}(n)}=\frac{3}{2}, \quad \sum_{\substack{n=1 \\
2 \nmid n}}^{+\infty} \frac{1}{\left(n \cdot a_{2}(n)\right)^{2}}=\frac{35}{34} ; \\
& \sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n \cdot a_{2}(n)}=-\frac{1}{2}, \quad \sum_{n=1}^{+\infty} \frac{(-1)^{n}}{\left(n \cdot a_{2}(n)\right)^{2}}=-\frac{91}{102} .
\end{aligned}
$$

§2. Proof of the theorem

In this section, we will complete the proof of the theorems. For any positive integer n, we can write it as $n=m^{k} \cdot l$, where l is a k-free number, then from the definition of $a_{k}(n)$ we have

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} \cdot a_{k}^{\beta}(n)} & =\sum_{m=1}^{+\infty} \sum_{l=1}^{+\infty} \frac{\sum_{d^{k} \mid l} \mu(d)}{m^{k \alpha} l^{\alpha} l^{(k-1) \beta}} \\
& =\zeta(k \alpha) \sum_{l=1}^{+\infty} \frac{\sum_{d^{k} \mid l} \mu(d)}{l^{\alpha+(k-1) \beta}} \\
& =\zeta(k \alpha) \prod_{p}\left(1+\frac{1}{p^{\alpha+(k-1) \beta}}+\frac{1}{p^{2(\alpha+(k-1) \beta)}}+\cdots+\frac{1}{p^{(k-1)(\alpha+(k-1) \beta)}}\right) \\
& =\zeta(k \alpha) \prod_{p}\left(1+\frac{1}{p^{\alpha+(k-1) \beta}} \frac{1-\frac{1}{p^{(k-1)(\alpha+(k-1) \beta)}}}{1-\frac{1}{p^{\alpha+(k-1) \beta}}}\right) \\
& =\zeta(k \alpha) \prod_{p}\left(1+\frac{1-\frac{1}{p^{(k-1) \alpha+(k-1)^{2} \beta}}}{p^{\alpha+(k-1) \beta}-1}\right),
\end{aligned}
$$

where $\mu(n)$ denotes the Möbius function. This completes the proof of Theorem 1.
Now we come to prove Theorem 2. First we shall prove the following identity

$$
\begin{aligned}
\sum_{\substack{n=1 \\
2 \nmid n}}^{+\infty} \frac{1}{n^{\alpha} \cdot a_{k}^{\beta}(n)} & =\sum_{\substack{m=1 \\
2 \nmid m^{k} l}}^{+\infty} \sum_{l=1}^{+\infty} \frac{\sum_{d^{k} \mid l} \mu(d)}{m^{k \alpha} l^{\alpha} l^{(k-1)}} \\
& =\sum_{\substack{m=1 \\
2 \nmid m}}^{+\infty} \frac{1}{m^{k \alpha}} \sum_{\substack{l=1 \\
2 \nmid l}}^{+\infty} \frac{\sum^{k} \mid l}{l^{\alpha+(k-1)}} \mu(d) \\
& =\frac{2^{k \alpha}-1}{2^{k \alpha}} \cdot \frac{\zeta(k \alpha)\left(2^{\alpha+(k-1) \beta}-1\right)}{2^{\alpha+(k-1) \beta}-2^{(k-1)(\alpha+(k-1) \beta)}} \prod_{p}\left(1+\frac{1-\frac{1}{p^{(k-1) \alpha+(k-1)^{2} \beta}}}{p^{\alpha+(k-1) \beta}-1}\right) \\
& =\frac{\zeta(k \alpha)\left(2^{k^{\alpha}}-1\right)\left(2^{\alpha+(k-1) \beta}\right)}{2^{(k+1) \alpha+(k-1) \beta}-2^{\alpha-(k-1)^{2} \beta}} \prod_{p}\left(1+\frac{1-\frac{1}{p^{(k-1) \alpha+(k-1)^{2} \beta}}}{p^{\alpha+(k-1) \beta}-1}\right) .
\end{aligned}
$$

Then use this identity and Theorem 1 we have

$$
\begin{aligned}
& \sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n^{\alpha} \cdot a_{k}^{\beta}(n)} \\
= & \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} \cdot a_{k}^{\beta}(n)}-2 \sum_{\substack{n=1 \\
2 \nmid n}}^{+\infty} \frac{1}{n^{\alpha} \cdot a_{k}^{\beta}(n)} \\
= & \left(1-\frac{2\left(2^{k \alpha}-1\right)\left(2^{\alpha+(k-1) \beta}-1\right)}{2^{(k+1) \alpha+(k-1) \beta}-2^{(k-1)^{2} \beta-\alpha}}\right) \zeta(k \alpha) \prod_{p}\left(1+\frac{1-\frac{1}{p^{(k-1) \alpha+(k-1)^{2} \beta}}}{p^{\alpha+(k-1) \beta}-1}\right) .
\end{aligned}
$$

This completes the proof of Theorem 2.

References

[1] F.Smarandache, Only problems, Not solutions, Xiquan Publishing House, Chicago, 1993.
[2] Zhang Wengpeng, Research on Smarandache Problems in Number Theory, Hexis, 2004, 60-64.
[3] Maohua Le, Some Problems Concerning the Smarandache Square Complementary Function, Smarandache Notions Journal, 14(2004), 220-222.

