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Abstract Charles Ashbacher [1] has posed a number of questions relating to the pseudo-smarandache

function Z(n). In this note we show that the ratio of consecutive values Z(n+1)/Z(n) and Z(n−1)/Z(n)

are unbounded; that Z(2n)/Z(n) is unbounded; that n/Z(n) takes every integer value infinitely often;

and that the
∑

n 1/Z(n)α is convergent for any α > 1.

§1. Introduction

We defined the m-th triangular number T (m) = m(m+1)
2 . Kashihara [2] has defined the

pseudo-Smarandache function Z(n) by

Z(n) = min{m : n|T (m)}.

Charles Ashbacher [1] has posed a number of questions relating to pseudo-Smarandache function
Z(n). In this note, we show that the ratio of consecutive values Z(n)/Z(n−1) and Z(n)/Z(n+1)
are unbounded; that Z(2n)/Z(n) is unbounded; and that n/Z(n) takes every integer value
infinitely often. He notes that the series

∑
n 1/Z(n)α is divergent for α = 1 and asks whether it

is convergent for α = 2. He further suggests that the least value α for which the series converges
“ may never be known ” . We resolve this problem by showing that the series converges for all
α > 1.

§2. Some Properties of t he Pseudo-Smarandache Function

We record some elementary properties of the funtion Z.
Lemma 1.(1) If n ≥ T (m), then Z(n) ≥ m,Z(T (m)) = m.
(2)For all n we have

√
n < Z(n).

(3)Z(n) ≤ 2n− 1, and if n is odd, then Z(n) ≤ n− 1.
(4)If p is an odd prime dividing n, then Z(n) ≥ p− 1.
(5)Z(2k) = 2k+1 − 1.
(6)If p is an odd prime, then Z(pk) = pk−1 and Z(2pk) = pk−1 or pk according as pk ≡ 1

or 3 mod 4.
We shall make use of Dirichlet’s Theorem on primes in arithmetic progression in the fol-

lowing form.
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Lemma 2. Let a, b be coprime integers. Then the arithmetic progression a + bt is prime
for infinitely many values of t.

§3. Successive Values of the Pseudo-Smarandache Function

Using the properties (3) and (5), Ashbacher observed that |Z(2k)−Z(2k− 1)| > 2k and so
the difference between the consecutive of Z is unbounded. He asks about the ratio of consecutive
values.

Theorem 1. For any given L > 0 there are infinitely many values of n such that Z(n +
1)/Z(n) > L, and there are infinitely many values of such that Z(n− 1)/Z(n) > L .

Proof. Choose k ≡ 3 mod 4, so that T (k) is even and (k + 1)|(m + 1). There are satisfied
if m ≡ k mod k(k + 1), that is , m = k + k(k + 1)t for some t. We have m(m + 1) =
k(1 + (k + 1)t)(k + 1)(1 + kt), so that if n = k(k + 1)(k + 1)(1 + kt)/2, we have n|T (m).
Now consider n + 1 = T (k) + 1 + kT (k)t. We have k|T (k), so T (k) + 1 is coprime to both k

and T (k). Thus the arithmetic progression T (k) + 1 + kT (k)t has initial term coprime to its
increment and by Dirichlet’s Theorem contains infinitely many primes. We find that there are
infinitely many values of t for which n + 1 is prime and so Z(n) ≤ m = k + k(k + 1)t and
Z(n + 1) = n = T (k)(1 + kt). Hence

Z(n + 1)
Z(n)

≥ n

m
=

T (k) + kT (k)t
k + 2T (k)t

>
k

3
.

A similar argument holds if we consider the arithmetic progression T (k)− 1+ kT (k)t. We then
find infinitely many values of t for which n− 1 is prime and

Z(n− 1)
Z(n)

≥ n− 2
m

=
T (k)− 2 + kT (k)t

k + 2T (k)t
>

k

4
.

The Theorem follows by taking k > 4L.

We note that this Theorem, combined with Lemma 1(2) , given another proof of the result
that the differences of consecutive values is unbounded.

§4. Divisibility of the Pseudo-Smarandache Function

Theorem 2. For any integer k ≥ 2 , the equation n/Z(n) = k has infinitely many solutions
n.

Proof. Fix an integer k ≥ 2. Let p be a prime ≡ −1 mod2k and put p + 1 = 2kt. Put
n = T (p)/t = p(p + 1)/2t = pk. Then n|T (p) so that Z(n) ≤ p . We have p|n, so Z(n) ≥ p− 1;
That is, Z(n) must be either p or p− 1. Suppose, if possible, that it is the latter. In this case
we have 2n|p(p+1) and 2n|(p−1)p, so 2n divides p(p+1)− (p−1) = 2p; but this is impossible
since k > 1 and so n > p. We conclude that Z(n) = p and n/Z(n) = k as required. Further,
for any given value of k there are infinitely many prime values of p satisfying the congruence
condition and infinitely many values of n = Y (p) such that Z/Z(n) = k.
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§5. Another Divisibility Question

Theorem 3. The ratio Z(2n)/Z(n) is not bounded above.
Proof. Fix an integer k, let p ≡ −1mod 2k be prime and put n = T (p). Then Z(n) = p.

Consider Z(2n) = m. We have 2kp|p(p + 1) = 2n and this divides m(m + 1)/2. We have m = ε

mod p and m ≡ δ mod 2k+1 where each of ε, δ can be either 0 or −1.
Let m = pt + ε. Then m ≡ ε− t ≡ δ mod 2k. This implies that either t = 1 or t ≥ 2k − 1.

Now if t = 1 then m ≤ p and T (m) ≤ T (p) = n, which is impossible since 2n ≤ T (m). Hence
t ≥ 2k − 1. Since Z(2n)/Z(n) = m/p > t/2, we see that the ratio Z(2n)/Z(n) can be made as
large as desired.

§6. Convergence of A Series

Ashbacher observes that the series
∑

n 1/Z(n)α diverges for α = 1 and asks whether it
converges for α = 2 .

Lemma 3.

log n ≤
n∑

m=1

1/Z(n)α ≤ 1 + log n;

1
2
(log n)2 − 0.257 ≤

n∑
m=1

log m

m
≤ 1

2
(log n)2 + 0.110,

for n ≥ 4.

Proof. For the first part, we have 1
m ≤ 1

t ≤ 1
m−1 for t ∈ [m− 1,m]. Integrating,

1
m
≤

∫ m

m−1

1
t
dt ≤ 1

m− 1

Summing,

n∑
2

1
m
≤

∫ n

1

1
t
dt ≤

n∑
2

1
m− 1

That is ,

n∑
1

1
m
≤ 1 + log n

and

log n ≤
n−1∑

1

1
m

The result follows.
For the second part, we similarly have log m/m ≤ log t/t ≤ log(m − 1)/(m − 1), for

t ∈ [m− 1,m] when m ≥ 4, since log x/x is monotonic decreasing for x ≥ e.
Integrating,

log m

m
≤

∫ m

m−1

log t

t
dt ≤ m− 1

m
.
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Summing,

n∑
4

log m

m
≤

∫ n

3

log t

t
dt ≤

n∑
4

m− 1
m

.

That is,

n∑
1

log m

m
− log 2

2
− log 3

3

≤ 1
2
(log n)2 − 1

2
(log 3)2

≤
n∑
1

log m

m
− log n

n
− log 2

2
.

We approximate the numerical values

log 2
2

+
log 3

3
− 1

2
(log 3)2 < 0.110

and
log 2

2
− 1

2
(log 3)2 > −0.257

to obtain the result.
Lemma 4. Let d(m) be the function which counts the divisors of m. For n ≥ 2 we have

n∑
m=1

d(m)/m < 7(log n)2.

Proof. We verify the assertion numerically for n ≤ 6. Now assume that n ≥ 8 > e2, we
have

n∑
m=1

d(m)
m

=
n∑

m=1

∑

de=m

1
m

=
∑

d≤n

∑

de≤n

1
de

=
∑

d≤n

1
d

∑

e<n/d

1
e
≤

∑

d≤n

1
d
(1 + log(n/d))

≤ (1 + log n)2 − 1
2
(log n)2 + 0.257

= 1.257 + 2 log n +
1
2
(log n)2

<
4
3
(
log n

2
)2 + 2 log n(

log n

2
) +

1
2
(log n)2

< 2(log n)2

Lemma 5. Fix an integer t ≥ 5. Let et > Y > e(t−1)/2. The number of integers n with
et−1 > n > et such that Z(n) ≤ Y is at most 196Y t2.

Proof. Consider such an n with m = Z(n) ≤ Y . Now n|m(m + 1), say k1n1 = m and
k2n2 = m + 1, with n = n1n2. Thus k = k1k2 = m(m + 1)/n and k1n1 ≤ Y . The value
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of k is bounded below by 2 and above by m(m + 1)/n ≤ 2Y 2/et−1 = K, say. Given a pair
(k1, k2), the possible values of n1 are bounded above by Y/k1 and must satisfy the congruence
condition k1n1 + 1 ≡ 0 modulo k2: there are therefore at most Y/k1k2 + 1 such values. Since
Y/k ≥ Y/K = et−1/2Y > 1/2e, we have Y/k + 1 < (2e + 1)Y/k < 7Y/k. Given values for
k1, k2 and n1, the value of n2 is fixed as n2 = (k1n1 + 1)/k2. There are thus at most

∑
d(k)

possible pairs (k1, k2) and hence at most
∑

7Y d(k)/k possible quadruples (k1, k2, n1, n2). We
have K > 2, so that the previous Lemma applies and we can deduce that the number of values
of n satisfying the given conditions is most 49Y (logK)2. Now K = 2Y 2/et−1 < 2et+1 so
log K < t + 1 + log 2 < 2t. This establishes the claimed upper bound of 196Y t2.

Theorem 4. Fix 1
2 < β < 1 and integer t ≥ 5. The number of integers n with et−1 < n <

et, such that Z(n) < nβ is at most 196t2eβt.

Proof. We apply the previous result with Y = eβt. The conditions of β ensure that the
previous Lemma is applicable and the upper bound on the number of such n is 196t2eβt as
claimed.

Theorem 5. The series
∞∑

n=1

1
Z(n)α

is convergent for any α >
√

2.

Proof. We note that if α > 2 then frac1Z(n)α < 1
nα and the series is convergent . So we

may assume
√

2 < α < 2 . Fix β with 1
α < β < α

2 . We have 1
2 < β <

√
1
2 < α

2 .

We split the positive integers n > e4 into two classes A and B. We let class A be the
union of the At where, for postive integer t ≥ 5 we put into class At those integers n such that
et−1 < n < et for integer t and Z(n) ≤ nβ . All values of n with Z(n) > nβ we put into class
B. We consider the sum of 1

Z(n)α over each of the two classes. Since all terms are positive, it is
sufficient to prove that each series separately is convergent.

Firstly we observe that for n ∈ B, we have 1
Z(n)α < 1

nαβ and since αβ > 1 the series
summed over the class B is convergent.

Consider the elements n of At : so for such n we have et−1 < n < et and Z(n) < nβ . By
the previous result, the number of values of n satisfying these conditions is at most 196t2eβt.
For n ∈ At, we have Z(n) >

√
n, so 1/Z(n)α ≤ 1/nα/2 < 1/eα(t−1)/2. Hence the sum of the

subseries
∑

n ∈ At
1

Z(n)α is at most 196t2eα/2e(β−α/2)t. Since β < α/2 for α >
√

2 , the sum
over all t of these terms is finite.

We conclude that
∑

1
Z(n)α is convergent for any α >

√
2.

Theorem 6. The series
∞∑

n=1

1
Z(n)α

is convergent for any α > 1.

proof. We fix β0 = 1 > β1 > · · · > βr = 1
2 with βj < αβj+1 for 0 ≤ j ≤ r− 1. We defined

a partition of the integers et−1 < n < et into classes Bt and Ct(j), 1 ≤ j ≤ r− 1. Into Bt place
those n with Z(n) > nβ1 . Into Ct(j) place those n with nβj+1 < Z(n) < nβj . Since βr = 1

2 we
see that every n with et−1 < n < et is placed into one of the classes.
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The number of elements in Ct(j) is at most 196t2eβjt and so

∑

n∈Ct(j)

1
Z(n)α

< 196t2eβjte−βjα(t−1) = 196t2eβj+1αe(βj−αβj+1)t.

For each j we have βj < αβj+1 so each sum over t converges.
The sum over the union of the Bt is bounded above by

∑
n

1
nαβ1

,

which is convergent since αβ1 > β0 = 1.
We conclude that

∑∞
n=1

1
Z(n)α is convergent.
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