Some Results on 4-Total Difference Cordial Graphs

R. Ponraj
(Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India)

S. Yesu Doss Philip and R. Kala
(Department of Mathematics, Manonmaniam Sundarnar University, Tirunelveli-627012, Tamilnadu, India)
E-mail: ponrajmaths@gmail.com, jesuphilip09@gmail.com, karthipyi91@yahoo.co.in

Abstract: Let G be a graph. Let $f: V(G) \rightarrow \{0, 1, 2, \cdots, k-1\}$ be a map where $k \in \mathbb{N}$ and $k > 1$. For each edge uv, assign the label $|f(u) - f(v)|$. f is called k-total difference cordial labeling of G if $|t_{df}(i) - t_{df}(j)| \leq 1$, $i,j \in \{0, 1, 2, \cdots, k-1\}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with x. A graph with admits a k-total difference cordial labeling is called k-total difference cordial graphs.

Key Words: Difference cordial labeling, Smarandachely difference cordial labeling, star, path, cycle, bistar, crown, comb.

AMS(2010): 05C78.

§1. Introduction

We consider here finite, simple and undirected graphs only. Ponraj et al., has been introduced the concept of k-total difference cordial graph in [4]. In [4,5], 3-total difference cordial labeling path, complete graph, comb, armed crown, crown, wheel, star etc have been investigate and also we prove that every graph is a subgraph of a connected k-total difference cordial graphs in .In this paper we investigate 4-total difference of cordial labeling of some graphs like star, path, cycle, bistar, crown, comb, etc.

§2. K-Total Difference Cordial Labeling

Definition 2.1 Let G be a graph. Let $f: V(G) \rightarrow \{0, 1, 2, \cdots, k-1\}$ be a function where $k \in \mathbb{N}$ and $k > 1$. For each edge uv, assign the label $|f(u) - f(v)|$. f is called k-total difference cordial labeling of G if $|t_{df}(i) - t_{df}(j)| \leq 1$, $i,j \in \{0, 1, 2, \cdots, k-1\}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labelled with x. A graph with a k-total difference cordial labeling is called k-total difference cordial graph. Otherwise, if there is a pair $\{i,j\} \subset \{0, 1, 2, \cdots, k-1\}$ such that $|t_{df}(i) - t_{df}(j)| > 1$, such a labeling is called a Smarandachely k-total difference cordial labeling of G.

Remark 2.2 ([6]) 2-total difference cordial graph is 2-total product cordial graph.

1Received July 13, 2019, Accepted March 16, 2020.
§3. Preliminaries

Definition 3.1 The corona of G_1 with $G_2, G_1 \odot G_2$ is the graph obtained by taking one copy of G_2 and p_i copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2.

Definition 3.2 Armed crown AC_n is the graph obtained from the cycle $C_n: u_1u_2 \cdots u_n u_1$ with $V(AC_n) = V(C_n) \cup \{v_i, w_i: 1 \leq i \leq n\}$ and $E(AC_n) = E(C_n) \cup \{u_iv_i, v_iw_i: 1 \leq i \leq n\}$.

Definition 3.3 An edge $x = uv$ of G is said to be subdivided if it is replaced by the edges uw and wv where w is a vertex not in $V(G)$. If every edge of G is subdivided, the resulting graph is called the subdivision graph $S(G)$.

Definition 3.4 Jelly fish graphs $J(m,n)$ obtained from a cycle $C_4: uxvyu$ by joining x and y with an edge and appending m pendent edges to u and n pendent edges to v.

Definition 3.5 Triangular snake T_n is obtained from the path $P_n : u_1u_2 \cdots u_n$ with $V(T_n) = V(P_n) \cup \{v_i: 1 \leq i \leq n-1\}$ and $E(T_n) = E(P_n) \cup \{u_iv_i, u_{i+1}v_i: 1 \leq i \leq n-1\}$.

Definition 3.6 Double Triangular snake $D(T_n)$ is obtained from the path $P_n : u_1u_2 \cdots u_n$ with $V(D(T_n)) = V(P_n) \cup \{v_i, w_i: 1 \leq i \leq n-1\}$ and $E(D(T_n)) = E(P_n) \cup \{u_iv_i, u_iw_i, 1 \leq i \leq n-1\} \cup \{w_{i+1}, v_{i+1}, u_{i+1}w_{i+1}: 1 \leq i \leq n-1\}$.

§4. Main Results

Theorem 4.1 Any star $K_{1,n}$ is 4-total difference cordial.

Proof Let $V(K_{1,n}) = \{u, u_i: 1 \leq i \leq n\}$ and $E(K_{1,n}) = \{uu_i: 1 \leq i \leq n\}$.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in N$. Assign the label 1 to the central vertex. Next assign the label 0 to the vertices u_1, u_2, \ldots, u_{2r} and assign the label 3 to the remaining vertices.

Case 2. $n \equiv 1 \pmod{4}$.

Let $n = 4r + 1, r \in N$. Assign the label 1 to the central vertex u. We now move to the pendent vertices. Assign the label 0 to the vertices u_1, u_2, \ldots, u_{2r} and assign the label 3 to the next remaining vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{4r}$ and u_{4r+1}.

Case 3. $n \equiv 2 \pmod{4}$.

Let $n = 4r + 2, r \in N$. In this case assign the label 0 to the vertices u_1, u_2, \ldots, u_{2r} and u_{2r+1}. Next assign the label 3 to the vertices $u_{2r+2}, u_{2r+3}, \ldots, u_{4r+2}$. Finally assign 1 to the central vertex u.

Case 4. $n \equiv 3 \pmod{4}$.

As in case (3) assign the label to $u, u_1, u_2, \ldots, u_{n-1}$. Next assign the label 3 to the vertex.
Some Results on 4-Total Difference Cordial Graphs

Table 1 given below establish that this vertex labeling pattern is a 4-total difference cordial labeling.

<table>
<thead>
<tr>
<th>Values of n</th>
<th>(t_{df}(0))</th>
<th>(t_{df}(1))</th>
<th>(t_{df}(2))</th>
<th>(t_{df}(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0 \pmod{4})</td>
<td>(2r)</td>
<td>(2r + 1)</td>
<td>(2r)</td>
<td>(2r)</td>
</tr>
<tr>
<td>(n \equiv 1 \pmod{4})</td>
<td>(2r)</td>
<td>(2r + 1)</td>
<td>(2r + 1)</td>
<td>(2r + 1)</td>
</tr>
<tr>
<td>(n \equiv 2 \pmod{4})</td>
<td>(2r + 1)</td>
<td>(2r + 2)</td>
<td>(2r + 1)</td>
<td>(2r + 1)</td>
</tr>
<tr>
<td>(n \equiv 3 \pmod{4})</td>
<td>(2r + 1)</td>
<td>(2r + 2)</td>
<td>(2r + 2)</td>
<td>(2r + 2)</td>
</tr>
</tbody>
</table>

Table 1

A 4-total difference cordial labeling of \(K_{1,n} (n = 1, 2, 3) \) is given in Table 2.

<table>
<thead>
<tr>
<th>Values of n</th>
<th>(u)</th>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(u_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2

This completes the proof. \(\square \)

Theorem 4.2 The path \(P_n \) is 4-total difference cordial for all values of \(n \).

Proof Let \(P_n \) be the path \(u_1, u_2, \ldots, u_n \).

Case 1. \(n \equiv 0 \pmod{4} \) \(n > 3 \).

Let \(n = 4r, r \in \mathbb{N} \), Assign the labels 3, 1, 1 and 3 respectively to the vertices \(u_1, u_2, u_3, u_4 \). Next assign the labels 3, 1, 1 and 3 to the next 4 vertices \(u_5, u_6, u_7, u_8 \) respectively. Proceeding like this until we reach the vertex \(u_n \). That is in this process the last 4 vertices \(u_{n-3}, u_{n-2}, u_{n-1} \) and \(u_n \) receive the labels 3, 1, 1 and 3.

Case 2. \(n \equiv 1 \pmod{4} \) \(n > 3 \).

Let \(n = 4r + 1, r \in \mathbb{N} \). As in Case 1, assign the label to the vertices \(u_1, u_2, \ldots, u_{n-1} \). Next assign the label 3 to the vertex \(u_n \).

Case 3. \(n \equiv 2 \pmod{4} \), \(n > 3 \).

Let \(n = 4r + 2, r \in \mathbb{N} \). Assign the label to the vertices \(u_1, u_2, \ldots, u_{n-1} \) as in Case 2. Next assign the label 1 to the vertices \(u_n \).

Case 4. \(n \equiv 3 \pmod{4} \), \(n > 3 \).

Let \(n = 4r + 3, r \in \mathbb{N} \). Assign the label to the vertices \(u_1, u_2, \ldots, u_{n-1} \) as in Case 3. Next assign the label 1 to the vertex \(u_n \). This vertex labels is a 4-total difference cordial labels follows from Table 3 for \(n > 3 \).
Values of n \hspace{1cm} $t_{df}(0)$ \hspace{1cm} $t_{df}(1)$ \hspace{1cm} $t_{df}(2)$ \hspace{1cm} $t_{df}(3)$
\hline
$n \equiv 0 \pmod{4}$ & $2r - 1$ & $2r$ & $2r$ & $2r$ \\
$n \equiv 1 \pmod{4}$ & $2r$ & $2r$ & $2r$ & $2r + 1$ \\
$n \equiv 2 \pmod{4}$ & $2r$ & $2r + 1$ & $2r + 1$ & $2r + 1$ \\
$n \equiv 3 \pmod{4}$ & $2r + 1$ & $2r + 2$ & $2r + 1$ & $2r + 1$ \\
\hline
\textbf{Table 3}

A 4-total difference cordial labeling of P_n ($n = 1, 2, 3$) is given in Table 4.

<table>
<thead>
<tr>
<th>Values of n</th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

\textbf{Table 4}

This completes the proof. \hfill \Box

\textbf{Theorem 4.3} The cycle C_n is 4-total difference cordial if $n \equiv 0, 1, 3 \pmod{4}$

\textbf{Proof} Let C_n be the cycle $u_1u_2 \cdots u_nu_1$. Assign the label to the vertices u_1, u_2, \cdots, u_n as in Theorem 4.2. Table 5 given below shows that this labeling of C_n is a 4-total difference cordial.

<table>
<thead>
<tr>
<th>Values of n</th>
<th>$t_{df}(0)$</th>
<th>$t_{df}(1)$</th>
<th>$t_{df}(2)$</th>
<th>$t_{df}(3)$</th>
</tr>
</thead>
</table>
| $n \equiv 0 \pmod{4}$ & $2r$ & $2r$ & $2r$ & $2r$ \\
| $n \equiv 1 \pmod{4}$ & $2r$ & $2r$ & $2r$ & $2r + 1$ \\
| $n \equiv 3 \pmod{4}$ & $2r + 1$ & $2r + 2$ & $2r + 1$ & $2r + 1$ \\

\textbf{Table 5}

This completes the proof. \hfill \Box

\textbf{Theorem 4.4} The bistar $B_{n,n}$ is 4-total different cordial for all n.

\textbf{Proof} Let $V(B_{n,n}) = \{u, v, u_i, v_i : 1 \leq i \leq n\}$ and $E(B_{n,n}) = \{uu_i, vv_i, uv: (1 \leq i \leq n)\}$. Clearly $B_{n,n}$ has $2n + 2$ vertices and $2n + 1$ edges. Assign the label 1 to the central vertices u and v. Assign the label 3 to the vertices u_1, u_2, \cdots, u_n and v_1. We now assign the label 1 to the vertices v_2, v_3, \cdots, v_n. Clearly $t_{df}(0) = n$, $t_{df}(1) = t_{df}(2) = t_{df}(3) = n + 1$. Therefore f is a 4-total difference cordial labeling. \hfill \Box

\textbf{Theorem 4.5} The crown $C_n \odot K_1$ is 4-total difference cordial labeling for all values of n.

\textbf{Proof} Let C_n be the cycle $u_1u_2 \cdots u_nu_1$. Let $V(C_n \odot K_1)V(C_n) \cup \{v_i : 1 \leq i \leq n\}$ and $E(C_n \odot K_1) = E(C_n) \cup \{v_iv_i : 1 \leq i \leq n\}$. Assign the label 1 to the cycle vertices u_1, u_2, \cdots, u_n. Next we move to the pendent vertices v_i. Assign the label 3 to all pendent vertices v_1, v_2, \cdots, v_n.

This completes the proof.
Some Results on 4-Total Difference Cordial Graphs

Clearly \(t_{df}(0) = t_{df}(1) = t_{df}(2) = t_{df}(3) = n \). Hence \(f \) is a 4-total difference cordial labeling. □

Corollary 4.1 All combs are 4-total difference cordial labeling.

Proof Clearly the vertex labeling in theorem 4.5 is also a 4-total difference cordial labeling of \(P_n \odot K_1 \). □

Theorem 4.6 The armed crown \(AC_n \) is 4-total difference cordial for all \(n \).

Proof Clearly \(AC_n \) has 3 vertices and \(3n \) edges. Let the vertex set and edge set as in Definition 3.2. Assign the label 1 to the all the cycle vertices \(u_1, u_2, \cdots, u_n \). Next we assign the label 3 to the vertices \(v_1, v_2, \cdots, v_n \).

Case 1. \(n \) is even.

In this case assign the label 3 to the pendent vertices \(w_1w_2 \cdots w_n \) and 1 to the remaining pendent vertices \(w_2+1, w_4+2, \cdots, w_n \).

Case 2. \(n \) is odd.

Assign the label 3 to the vertices \(w_1, w_2, \cdots, w_n \) and 1 to the vertices \(w_{n+2}, w_{n+5}, \cdots, w_n \). The table 6 given below establish that this vertex labeling pattern is a 4-total difference cordial labeling.

<table>
<thead>
<tr>
<th>Values of n</th>
<th>(t_{df}(0))</th>
<th>(t_{df}(1))</th>
<th>(t_{df}(2))</th>
<th>(t_{df}(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>n is even</td>
<td>(\frac{3n}{2})</td>
<td>(\frac{3n}{2})</td>
<td>(\frac{3n}{2})</td>
<td>(\frac{3n}{2})</td>
</tr>
<tr>
<td>n is odd</td>
<td>(\frac{3n+1}{2})</td>
<td>(\frac{3n-1}{2})</td>
<td>(\frac{3n-1}{2})</td>
<td>(\frac{3n+1}{2})</td>
</tr>
</tbody>
</table>

Table 6

This completes the proof. □

Theorem 4.7 The double triangular snake \(DT_n \) is 4-total difference cordial for all \(n \).

Proof Let the vertex set and edge set as in Definition 3.6.

Case 1. \(n \equiv 0 \) (mod 3).

Assign the labels 3, 2, 3 to the path vertices \(u_1, u_2, u_3 \). Next assign the labels 3, 2, 3 to the next 3 vertices \(u_4, u_5, u_6 \) respectively. Proceeding like this until we reach the vertices \(u_n \). That is in the process the last three vertices \(u_{n-2}, u_{n-1}, u_n \) receive the label 3, 2, 3. Next assign the label 0 to the vertices \(v_1, v_2, \cdots, v_n \) and assign the label 2 to the vertices \(w_1, w_2, \cdots, w_n \).

Case 2. \(n \equiv 1 \) (mod 3).

In this case assign the labels to the vertices \(u_i, (1 \leq i \leq n-1), v_i, w_i, (1 \leq i \leq n-1) \) as in Case 1. Next assign the labels 3, 0, 2 respectively to the vertices \(u_n, v_{n-1}, w_n \).

Case 3. \(n \equiv 2 \) (mod 3).

As in Case 2 assign the labels to the vertices \(u_1, u_2, \cdots, u_{n-1}, v_1, v_2, \cdots, v_{n-2} \) and \(w_1, w_2, \cdots, w_{n-2} \).
Finally assign the label 2, 0 and 2 to the vertices u_n, v_{n-1} and w_{n-1}. Table 7 given below establish that this labeling scheme is a 4-total difference cordial labeling of DT_n.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$t_{df}(0)$</th>
<th>$t_{df}(1)$</th>
<th>$t_{df}(2)$</th>
<th>$t_{df}(3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0 \pmod{3}$</td>
<td>$2n - 2$</td>
<td>$2n - 2$</td>
<td>$2n - 1$</td>
<td>$2n - 2$</td>
</tr>
<tr>
<td>$n \equiv 1 \pmod{3}$</td>
<td>$2n - 2$</td>
<td>$2n - 2$</td>
<td>$2n - 2$</td>
<td>$2n - 1$</td>
</tr>
<tr>
<td>$n \equiv 2 \pmod{3}$</td>
<td>$2n - 2$</td>
<td>$2n - 2$</td>
<td>$2n - 1$</td>
<td>$2n - 2$</td>
</tr>
</tbody>
</table>

Table 7

This completes the proof.

Example 4.1 A 4-total difference cordial labeling of $D(T_6)$ is shown in Figure 1.

Theorem 4.8 The jelly fish $J(n,n)$ is 4-total difference cordial for all n.

Proof Let C_4 be a cycle $uxvy$. Let $V(J(n,n)) = V(C_4) \cup \{u_i, v_i : 1 \leq i \leq n\}$ and $E(J(n,n)) = E(C_4) \cup \{xy, xu_i, yv_i : 1 \leq i \leq n\}$. Assign the label 1 to the all cycle vertices u,x,y,v. Next we move to the pendent vertices. Assign the label 3 to the vertices u_1, u_2, \ldots, u_n and v_1, v_2. Assign the label 1 to the v_3, v_4, \ldots, v_n. Since $t_{df}(0) = n + 3, t_{df}(1) = t_{df}(2) = t_{df}(3) = n + 2$. f is a 4-total difference cordial labeling.

Theorem 4.9 The subdivision of the bistar $B_{n,n}$, $S(B_{n,n})$ is 4-total different cordial for all n.

Proof Let $V(S(B_{n,n})) = \{u, w, v, u_i, v_i, x_i, y_i : 1 \leq i \leq n\}$ and $E(S(B_{n,n})) = \{uu_i, u_ix_i, uw, wv, vv_i, y_iw : 1 \leq i \leq n\}$. Assign the label 1 to the vertices u,w and v. Next assign the label 3 to the vertices $u_1, u_2, \ldots, u_i, x_1, x_2, \ldots, x_i$ and v_1. We now assign the label 2 to the vertices y_1, y_2, \ldots, y_n and v_2. Finally assign the label 1 to the vertices v_3, v_4, \ldots, v_n. Since $t_{df}(0) = t_{df}(1) = t_{df}(3) = 2n + 1, t_{df}(2) = 2n + 2$. The labeling f is a 4-total difference cordial labeling.

Theorem 4.10 $P_n \odot 2K_1$ is 4-total difference cordial for all n.

Some Results on 4-Total Difference Cordial Graphs

Proof Let P_n be the path u_1, u_2, \cdots, u_n. Let v_i, w_i be the pendent vertices adjacent to u_i $(1 \leq i \leq n)$. Assign the label 1 to the path vertices u_1, u_2, \cdots, u_n.

Case 1. n is even.

Assign the label 3 to all the vertices v_1, v_2, \cdots, v_n and $w_1, w_2, \cdots, w_{\frac{n}{2}}$. We now assign the label 1 to the vertices $w_{\frac{n}{2}+1}, w_{\frac{n}{2}+2}, \cdots, w_n$.

Case 2. n is odd.

As in Case 1 assign the label to the vertices u_i, v_i, w_i $(1 \leq i \leq n)$. Next assign the label 3 to the vertices v_i and assign the label 1 to the vertex w_n.

Table 8 given below establish that this vertex labeling pattern is a 4-total difference cordial labeling.

<table>
<thead>
<tr>
<th>Values of n</th>
<th>$t_{df}(0)$</th>
<th>$t_{df}(1)$</th>
<th>$t_{df}(2)$</th>
<th>$t_{df}(3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n is even</td>
<td>$\frac{3n}{2} - 1$</td>
<td>$\frac{3n}{2}$</td>
<td>$\frac{3n}{2}$</td>
<td>$\frac{3n}{2}$</td>
</tr>
<tr>
<td>n is odd</td>
<td>$\frac{3n-1}{2}$</td>
<td>$\frac{3n+1}{2}$</td>
<td>$\frac{3n-1}{2}$</td>
<td>$\frac{3n-1}{2}$</td>
</tr>
</tbody>
</table>

This completes the proof. \[\square \]

Theorem 4.11 $S(P_n \odot K_1)$ is 4-total difference cordial for all n.

Proof Let P_n be the path u_1, u_2, \cdots, u_n. Let $V(P_n \odot K_1) = V(P_n) \cup \{v_i : 1 \leq i \leq n\}$ and $E(P_n \odot K_1) = \{u_i : 1 \leq i \leq n\}$. Let x_i be the vertex which subdivide the edge $u_i u_{i+1}, (1 \leq i \leq n-1)$ and y_i be the vertex which subdivide $u_i v_i : (1 \leq i \leq n)$. Assign the label 3 to all the path vertices u_1, u_2, \cdots, u_n and x_1, x_2, \cdots, x_n and v_2. Next assign the label 1 to the vertices y_1, y_2, \cdots, y_n and v_1. Finally we assign the label 2 to the remaining vertices v_3, v_4, \cdots, v_n. Clearly $t_{df}(0) = t_{df}(1) = t_{df}(2) = 2n - 1, t_{df}(3) = 2n$. Therefore, f is a 4-total difference cordial labeling of $S(P_n \odot K_1)$. \[\square \]

Theorem 4.12 $S(C_n \odot K_1)$ is 4-total difference cordial for all values of n.

Proof Let $C_n : u_1 u_2 \cdots u_n u_1$ be the cycle. Let $V(C_n \odot K_1) = V(C_n) \cup \{v_i : 1 \leq i \leq n\}$ and $E(C_n \odot K_1) = E(C_n) \cup \{u_i v_i : 1 \leq i \leq n\}$. Let x_i, y_i be the vertices which subdivide the edges $u_i u_{i+1}, (1 \leq i \leq n-1)$, $u_i v_i (1 \leq i \leq n)$ respectively. First we assign the label 3 to the cycle vertices u_1, u_2, \cdots, u_n and x_1, x_2, \cdots, x_n. Next we assign the label 1 to the y_1, y_2, \cdots, y_n. Finally assign the label 2 to the all pendent vertices v_1, v_2, \cdots, v_n. Clearly $t_{df}(0) = t_{df}(1) = t_{df}(2) = t_{df}(3) = 2n$. Therefore f is a 4-total difference cordial labeling of $S(C_n \odot K_1)$. \[\square \]

Theorem 4.13 $S(AC_n)$ is 4-total difference cordial for all n.

Proof Let the vertex set and edge set of AC_n as in definition 3.2.let $x_i : (1 \leq i \leq n - 1), y_i : (1 \leq i \leq n - 1)$ and $z_i : (1 \leq i \leq n - 1)$ be the vertex which subdivide the edges $u_i u_{i+1}, (1 \leq i \leq n-1), u_i v_i : (1 \leq i \leq n-1)$ and $v_i w_i : (1 \leq i \leq n-1)$ respectively. Assign the label 3 to the vertices u_1, u_2, \cdots, u_n and x_1, x_2, \cdots, x_n and w_1, w_2, \cdots, w_n. Next assign
the label 1 to the vertices y_1, y_2, \cdots, y_n. Then assign the label 2 to the vertices v_1, v_2, \cdots, v_n and z_1, z_2, \cdots, z_n. Obviously $t_{df}(0) = t_{df}(1) = t_{df}(2) = t_{df}(3) = 3n$. Therefore f is a 4-total difference cordial labeling of $S(A C_n)$.

\[\square\]

Example 4.2 A 4-total difference cordial labeling of $S(A C_n)$ is shown in Figure 2.

![Figure 2](image)

Theorem 4.14 $S(T_n)$ is 4-total difference cordial.

Proof Let the vertex set and edge set of T_n as in Definition 3.7. Let x_i, y_i and z_i be the vertices which subdivide the edges $u_i u_{i+1}, u_i v_i$ and $u_i v_{i+1}$, $(1 \leq i \leq n)$.

Case 1. $n \equiv 0 \pmod{4}$.

Assign the label 3 to the vertices u_1, u_2, \cdots, u_n and $x_1, x_2, \cdots, x_{n-1}$. Assign the label 1 to the vertices $y_1, y_2, \cdots, y_{n-1}$. Next assign the label 2, 3, 1 and 3 to the vertices z_1, z_2, z_3, z_4 then assign the label 2, 3, 1 and 3 to the next 4 vertices z_5, z_6, z_7, z_8 respectively. Proceeding like this until we reach the vertices z_{n-1}. That is in the process the last four vertices are $z_{n-4}, z_{n-3}, z_{n-2}, z_{n-1}$ receive the label 2, 3, 1, 3. Next assign the label 2, 3, 1, 3 to the vertices u_1, v_2, v_3, v_4 then assign the label 1, 2, 3, 2 to the next 4 vertices v_5, v_6, v_7, v_8 respectively. Proceeding like this until we reach the vertices v_{n-1}. That is in the process the last 4 vertices $v_{n-4}, v_{n-3}, v_{n-2}, v_{n-1}$ receive the label 0, 2, 3, 2.

Case 2. $n \equiv 1 \pmod{4}$.

As in Case 1 assign the labels to the vertices $u_i, (1 \leq i \leq n-1), v_i, x_i, y_i, z_i, (1 \leq i \leq n-2)$. Next assign the labels 3, 0, 3, 1 and 2 respectively to the vertices $u_n, v_{n-1}, x_{n-1}, y_{n-1}$ and z_{n-1}.

Case 3. $n \equiv 2 \pmod{4}$.

In this case, as in Case 2 assign the labels to the vertices $u_i, (1 \leq i \leq n-1), v_i, x_i, y_i, z_i, (1 \leq i \leq n-2)$ as in Case 2. Finally assign the labels 3, 2, 3, 1 and 3 to the vertices $u_n, v_{n-1}, x_{n-1}, y_{n-1}$ and
Case 4. \(n \equiv 3 \pmod{4} \).

As in Case 3, assign the label to \(u_i, (1 \leq i \leq n-1), v_i, x_i, y_i, z_i, (1 \leq i \leq n-2) \). Next assign the labels 3, 3, 3, 1 and 1 to the vertices \(u_n, v_{n-1}, x_{n-1}, y_{n-1} \) and \(z_{n-1} \) respectively. Table 9 given below establish that this vertex labeling pattern is a 4-total difference cordial labeling.

<table>
<thead>
<tr>
<th>Nature of n (\pmod{4})</th>
<th>(t_{df}(0))</th>
<th>(t_{df}(1))</th>
<th>(t_{df}(2))</th>
<th>(t_{df}(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0 \pmod{4})</td>
<td>(\frac{11n-8}{4})</td>
<td>(\frac{11n-8}{4})</td>
<td>(\frac{11n-12}{4})</td>
<td>(\frac{11n-12}{4})</td>
</tr>
<tr>
<td>(n \equiv 1 \pmod{4})</td>
<td>(\frac{11n-9}{4})</td>
<td>(\frac{11n-9}{4})</td>
<td>(\frac{11n-5}{4})</td>
<td>(\frac{11n-9}{4})</td>
</tr>
<tr>
<td>(n \equiv 2 \pmod{4})</td>
<td>(\frac{11n-10}{4})</td>
<td>(\frac{11n-10}{4})</td>
<td>(\frac{11n-10}{4})</td>
<td>(\frac{11n-10}{4})</td>
</tr>
<tr>
<td>(n \equiv 3 \pmod{4})</td>
<td>(\frac{11n-9}{4})</td>
<td>(\frac{11n-9}{4})</td>
<td>(\frac{11n-9}{4})</td>
<td>(\frac{11n-13}{4})</td>
</tr>
</tbody>
</table>

This completes the proof. \(\square \)

References