SPACES WITH M -STRUCTURES

Preprint · March 2023		
CITATIONS 0		READS 8
1 author:		
	Kallol Bhandhu Bagchi Kalipada Ghosh Tarai Mahavidyalaya 10 PUBLICATIONS 27 CITATIONS SEE PROFILE	
Some of the authors of this publication are also working on these related projects:		
Project	Applications of maximal, minimal and mean open sets in topological spaces View project	
Project	LOG Metric and Its Applications View project	

ISSN: 0025-5742

SPACES WITH M-STRUCTURES

KALLOL BHANDHU BAGCHI

(Received: 29 - 03 - 2021; Revised: 04 - 01 - 2022)

ABSTRACT. In this paper, we introduce the notion of \mathcal{M} -structures and study some properties of spaces endowed with \mathcal{M} -structures. We see that there is a \mathcal{M} -structure in every infinite set.

1. Introduction

Let X be a non-empty set. By a proper subset A of X we mean that A is a non-empty subset of X such that $A \neq X$ and in this case we write $A \subsetneq X$.

It is well known to us that $\{\emptyset\} \cup \{(a,b) : a,b \in \mathbb{R}, a \neq b\}$ forms a basis for the real number space \mathbb{R} . The collection $\mathscr{A} = \{(a,b) : a,b \in \mathbb{R}, a < b\}$ of proper subsets of \mathbb{R} admits a special character: for any $A \in \mathscr{A}$ there exist $B,C \in \mathscr{A}$ such that $B \subsetneq A \subsetneq C$. Furthermore, if X is a T_1 connected topological space, then $\{\emptyset\} \cup \mathscr{T}_{mo}$ forms a basis (Theorem 2.4) satisfying the condition that for any $B \in \mathscr{M}$ there exist $A,C \in \mathscr{M}$ such that $A \subsetneq B \subsetneq C$, where \mathscr{T}_{mo} is the collection of all mean open sets in X. Considering these facts, we develop a new kind of structure (resp., space) in nonempty sets namely \mathscr{M} -structures (resp., \mathscr{M} -space) (Definition 3.1). In recent years Smarandache multispace theory becomes a centre of attraction. Mao [3, 4, 5, 6] studied the Smarandache multispace theory, one can say that the study of \mathscr{M} -spaces is a particular case sudy of Smarandache multispaces.

2. Preliminaries

Firstly, we recall the following definitions and results:

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54D30 Key words and phrases: \mathcal{M} -structures, \mathcal{M} -spaces, \mathcal{M} -sets,

Definition 2.1 (Nakaoka and Oda [9, 10, 11]). A nonempty open set U of a topological space X is said to be a minimal open set if and only if any open set which is contained in U is \emptyset or U.

Definition 2.2 (Mukharjee and Bagchi [7]). An open set M of a topological space X is said to be a mean open if there exist two distinct proper open sets U, V such that $U \subseteq M \subseteq V$.

Definition 2.3 (Benchalli et al. [2]). A topological space X is said to be a T_{min} space if every proper open set of X is minimal open.

Theorem 2.4 (Nakaoka and Oda [9]). If U is a minimal open set and W is an open set of a topological space X, then either $U \cap W = \emptyset$ or $U \subset W$. If W is a minimal open set distinct from U, then $U \cap W = \emptyset$.

Theorem 2.5 (Bagchi and Mukherjee [1]). Let (X, \mathcal{T}) be a T_1 connected topological space and \mathcal{T}_{mo} denotes the family of all mean open sets in X. Then $\mathcal{B} = \{\emptyset\} \cup \mathcal{T}_{mo}$ forms a basis of the topology \mathcal{T} on X.

3. *M*-SPACES

Definition 3.1. Let X be a non-empty set. A collection \mathscr{A} of proper subsets of X is said to be an \mathscr{M} -structure on X if for any $A \in \mathscr{A}$ there exist $B, C \in \mathscr{A}$ such that $B \subsetneq A \subsetneq C$. The ordered pair (X, \mathscr{A}) is said to be an \mathscr{M} -space.

Example 3.2. Let all the proper open sets of a topological space (X, \mathcal{T}) be mean open. We write $\mathcal{M} = \mathcal{T} - \{\emptyset, X\}$. Then (X, \mathcal{M}) is an \mathcal{M} -space.

Remark 3.3. $\mathscr{A} = \{(a,b) : a,b \in \mathbb{R}, a,b\}\}$ and $\mathscr{B} = \{[a,b] : a,b \in \mathbb{R}, a < b\}$ are \mathscr{M} -structures on \mathbb{R} . Here $(1,2),(2,3) \in \mathscr{R}$ but $(1,2) \cup (2,3) \notin \mathscr{R}$. On the other hand $[1,2],[2,3] \in \mathscr{B}$ but $\{2\} = [1,2] \cap [2,3] \notin \mathscr{B}$. Therefore \mathscr{M} -structures may not closed under unions as well as intersections.

Theorem 3.4. Let (X, \mathcal{A}) be an \mathcal{M} -space. Then each member of the \mathcal{M} -structure \mathcal{A} is infinite.

Proof. Let $A \in \mathscr{A}$. If possible, let A be finite and $A = \{a_1, a_2, ..., a_n\}$, for some natural number $n \geq 1$. Then there is a $A_1 \in \mathscr{A}$ such that $A_1 \subseteq A$. So $A_1 \subseteq A - \{a_{j_1}\}$, for some $j_1 \in \{1, 2, ..., n\}$. Again there is a $A_2 \in \mathscr{A}$ such that $A_2 \subseteq A_1$. Thus $A_2 \subseteq A - \{a_{j_1}, a_{j_2}\}$, for some $j_2 \in \{1, 2, ..., n\}$ with $j_1 \neq j_2$. Continuing the process we can have $A_{n-1} \in \mathscr{A}$ such that $A_{n-1} \subseteq \mathscr{A}$

 $A - \{a_{j_1}, a_{j_2}, ..., a_{j_{n-1}}\}$, where $j_k \in \{1, 2, ..., n\}$ with $j_1 \neq j_2 \neq ... \neq j_{n-1}$ and k = 1, 2, ..., n - 1. Thus either A_{n-1} is a singleton set or $A_{n-1} = \emptyset$. Thus there is no $B \in \mathscr{A}$ such that $B \subsetneq A_{n-1}$, which contradicts $A_{n-1} \in \mathscr{A}$. So A is infinite. Since $A \in \mathscr{A}$ is arbitrary, each member of the \mathscr{M} -structure \mathscr{A} is infinite.

Theorem 3.5. Let (X, \mathscr{A}) be an \mathscr{M} -space. Then \mathscr{A} is an infinite collection of proper subsets of X.

Proof. If possible, let $\mathscr{A} = \{A_1, A_2, ..., A_n\}$ for some natural number $n \geq 1$. Since $A_1 \in \mathscr{A}$, there is a $B \in \mathscr{A} - \{A_1\}$ such that $A_1 \subsetneq B$. Now after some finite steps we can have a $C \in \mathscr{A} - \{A_1, B\}$ such that there is no $D \in \mathscr{A}$ such that $C \subsetneq D$. Thus \mathscr{A} is an infinite collection of proper subsets X. \square

Let (X, \mathcal{A}) be an \mathcal{M} -space. Then X is infinite.

Proof. The proof follows from the fact that X has infinite subsets. \square

Theorem 3.6. Let (X, \mathcal{A}) be a \mathcal{M} -space. There exist \mathcal{M} -structures \mathcal{B} and \mathcal{C} such that $\mathcal{A} \neq \mathcal{B} \neq \mathcal{C}$. In other words, an \mathcal{M} -space contains at least three \mathcal{M} -structures.

Proof. Let $\mathscr{B} = \{X - A : A \in \mathscr{A}\}$ and $B \in \mathscr{B}$. Then B = X - A for some $A \in \mathscr{A}$. There exists $A_1, A_2 \in \mathscr{A}$ such that $A_1 \subsetneq A \subsetneq A_2$. So $X - A_2 \subsetneq X - A \subsetneq X - A_1$, i.e, $X - A_2 \subsetneq B \subsetneq X - A_1$. Furthermore $X - A_1, X - A_2 \in \mathscr{B}$. Thus \mathscr{M} is an \mathscr{M} -structure on X different from \mathscr{A} . One can easily prove that $\mathscr{C} = \{A \subsetneq X : A \in \mathscr{A} \text{ or } A \in \mathscr{B}\}$ is an \mathscr{M} -structure on X which is different from \mathscr{A} as well as \mathscr{B} .

Remark 3.7. Let (X, \mathscr{A}) be an \mathscr{M} -space. An \mathscr{M} -structure \mathscr{B} on X is said to be conjugate to \mathscr{A} iff $\mathscr{B} = \{X - A : A \in \mathscr{A}\}$. In this case, we write $\mathscr{B} = \mathscr{A}^c$. Furthermore, the \mathscr{M} -structures \mathscr{A} and $\mathscr{B} = \mathscr{A}^c$ are said to be conjugate to each other.

Theorem 3.8. There exists \mathcal{M} -spaces.

Proof. Let X be an infinite set. We consider the collection $\mathscr{A} = \{A \subsetneq X : A \text{ and } X - A \text{ both are infinite}\}$. Now let $A \in \mathscr{A}$. Then both A and X - A are infinite proper subsets of X. There are points $x \in A$ and $y \in X - A$ such that $A - \{x\} \subsetneq A \subsetneq A \cup \{y\}$. By the definition of \mathscr{A} , $A - \{x\}$ and $A \cup \{y\}$ are members of \mathscr{A} . So \mathscr{A} is an \mathscr{M} -structure on X, i.e., (X,\mathscr{A}) is a \mathscr{M} -space.

The \mathcal{M} -structure \mathcal{A} defined on an infinite set X discussed on the previous theorem is said to be the trivial \mathcal{M} -structure and the \mathcal{M} -space (X, \mathcal{A}) is said to be the trivial \mathcal{M} -space.

Definition 3.9. Let (X, \mathscr{A}) be a \mathscr{M} -space and $M \subseteq X$. M is said to be an \mathscr{M} -set Of X if there exist $A, B \in \mathscr{A}$ such that $A \subseteq M \subseteq B$.

If M is an \mathscr{M} -set then $M \neq \emptyset, X$. Clearly if $A \in \mathscr{A}$ then A is an \mathscr{M} -set. We denote the collection of all \mathscr{M} -sets of X by \mathscr{M}^* . One can easily verify that \mathscr{M}^* is an \mathscr{M} structure on X. If $\bigcup_{A \in \mathscr{A}} A = X$, then \mathscr{M}^* is an s-refinement ([8]) of \mathscr{A} .

Example 3.10. Let us consider the \mathcal{M} -space $(\mathbb{R}, \mathcal{A})$, where $\mathcal{A} = \{(a, b) : a < b \text{ and } a, b \in \mathbb{R}\}$. If M is a countable subset of \mathbb{R} , then M is not a \mathcal{M} -set. Again for any $a, b \in \mathbb{R}$ with a < b, (a, b] and [a, b) are \mathcal{M} -sets.

Now let (X, \mathscr{A}) be a \mathscr{M} -space and M be a \mathscr{M} -set. Then $\{P \in \mathscr{A} : P \subsetneq A\}$ and $\{P \in \mathscr{A} : A \subsetneq P\}$ are nonempty collection of nonempty subsets of X. We write $M_L = \bigcup \{P \in \mathscr{A} : P \subsetneq A\}$ and $M_R = \bigcap \{P \in \mathscr{A} : A \subsetneq P\}$. Clearly $M_L \subseteq M \subseteq M_R$. We call M_L and M_R are the left variation and right variation of the \mathscr{M} -set M respectively and $M_R - M_L$ is said to be the variation of the \mathscr{M} -set M. We denote the variation of an \mathscr{M} -set M by v(M).

Let ρ be the relation on \mathcal{M}^* defined by: " $M\rho N$ if and only if v(A) = v(B), for any $M, N \in \mathcal{M}^*$ ". We can prove that ρ is an equivalence relation on \mathcal{M}^* .

Example 3.11. Let $X = \mathbb{R}^2$ and $\mathscr{A} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le n^2, n \in \mathbb{N}\} \bigcup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1/n^2, n \in \mathbb{N} - \{1\}\}$. Then \mathscr{A} is an \mathscr{M} -structure on \mathscr{R}^2 . Let $M = \{(x,y) \in \mathbb{R} : x^2 + y^2 = 1\}$. Then $M_L = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1/4\}$ and $M_R = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$.

Theorem 3.12. Let (X, \mathscr{A}) be an \mathscr{M} -space and $M, N \in \mathscr{A}$ be such that $M \subseteq N$. Then

- (i) $M_L \subseteq N_L$; and
- (ii) $M_R \subseteq N_R$.

Proof. (i) Let $x \in M_L$. Then $x \in P$ for some $P \in \mathscr{A}$ with $P \subsetneq M$. Since $M \subseteq N$, it follows that $P \subsetneq B$ and so $x \in B_L$. Thus $A_L \subseteq B_L$.

(ii) If $P \in \{P \in \mathscr{A} : N \subsetneq P\}$ then $P \in \{P \in \mathscr{A} : M \subsetneq P\}$, since $M \subseteq N$. Therefore $\{P \in \mathscr{A} : N \subsetneq P\}$ is a subcollection of $\{P \in \mathscr{A} : M \subsetneq P\}$ and thus $\bigcap \{P \in \mathscr{A} : M \subsetneq P\} \subseteq \bigcap \{P \in \mathscr{A} : N \subsetneq P\}$, i.e., $M_R \subseteq N_R$.

Theorem 3.13. Let (X, \mathcal{A}) be a \mathcal{M} -space and M be a \mathcal{M} . Then

- (i) $M \nsubseteq v(M)$;
- (ii) $v(M) \subsetneq M$ iff $M = M_R$.
- *Proof.* (i) $M \subseteq v(M) \Rightarrow M \subseteq M_R M_L \Rightarrow M \subseteq X M_L \Rightarrow M_L \subseteq X M_L$, which is a contradiction.
- (ii) $M = M_R \Rightarrow v(M) = M M_L \Rightarrow V(M) \subseteq A$. Using (i) we have $v(M) \subseteq M$.

Now $v(M) \subsetneq M \Rightarrow M_R \cap (X - M_L) \subsetneq M \Rightarrow M_L \cup [M_R \cap (X - M_L)] \subseteq M_L \cup M = M \Rightarrow (M_L \cup M_R) \cap [M_L \cup (X - M_L)] \subsetneq M \Rightarrow M_R \cap X \subsetneq M \Rightarrow M_R \subsetneq M \subseteq M_R \Rightarrow M = M_R.$

Theorem 3.14. Let (X, \mathcal{A}) be the trivial \mathcal{M} -space. Then:

- (i) $\mathscr{A} = \mathscr{M}^*$; and
- (ii) $v(M) = \emptyset$, for each $M \in \mathscr{A}$.
- Proof. (i) It is sufficient to prove that if $M \in \mathcal{M}^*$, then $M \in \mathcal{A}$ for each $M \in \mathcal{M}^*$. Let $M \in \mathcal{M}^*$. Then there exist $A, B \in \mathcal{A}$ such that $A \subsetneq M \subsetneq B$. As $A \subsetneq M$ and A is infinite, so M is also infinite. Now $M \subsetneq B \Rightarrow X B \subsetneq X M$. Since X B is infinite, it follows that X M is infinite. Thus $M \in \mathcal{A}$. Therefore $\mathcal{A} = \mathcal{M}^*$.
- (ii) Let $M \in \mathscr{A} = \mathscr{M}^*$. So M and X M are infinite proper subsets of X. We can choose distinct points $m, n \in M$ such that $M \{m\} \subseteq M_L$ and $M \{n\} \subseteq M_L$. Now $(M \{m\}) \cup (M \{n\}) = M$ and so $M = M_L$. On the other hand we can choose two distinct points $p, q \in X M$ such that $M_R \subseteq M \cup \{p\}$ as well as $M_R \subseteq M \cup \{q\}$. So $M = (M \cup \{p\}) \cap (M \cup \{q\})$ and thus $M = M_R$. Hence $v(M) = M_R M_L = M M = \emptyset$. Since $M \in \mathscr{A}$ is arbitrary, $v(M) = \emptyset$, for each $M \in \mathscr{A}$.

Definition 3.15. Let $M \subsetneq X$. M is said to be a common \mathcal{M} -set of X if M is an \mathcal{M} -set of X with respect to \mathcal{A} as well as an \mathcal{M} -set of X with respect to \mathcal{A}^c .

Theorem 3.16. Let (X, \mathcal{A}) be a \mathcal{M} -space. Then followings are equivalent:

- (i) M is a common \mathcal{M} -set of X.
- (ii) M and X M are \mathcal{M} -sets with respect to \mathcal{A} .
- (iii) M and X M are \mathcal{M} -sets with respect to \mathcal{A}^c .

Proof. $(i) \Rightarrow (ii)$:

There exist $A, B \in \mathscr{A}$ and $C, D \in \mathscr{A}^c$ such that $A \subsetneq M \subsetneq B$ and $C \subsetneq M \subsetneq D$. By the definition of \mathscr{A}^c , $C = X - A_1$ and $D = B_1$, for some $A_1, B_1 \in \mathscr{A}$. Then $B_1 \subsetneq X - M \subsetneq A_1$. Thus M and X - M are \mathscr{M} -sets with respect to \mathscr{A} .

 $(ii) \Rightarrow (iii)$:

There exist $A, B, C, D \in \mathscr{A}$ such that $A \subsetneq M \subsetneq B$ and $C \subsetneq X - M \subsetneq D$. Now $X - A, X - B \in \mathscr{A}^c$ and $X - B \subsetneq X - M \subsetneq X - A$. Also $X - C, X - D \in \mathscr{A}^c$ such that $X - D \subsetneq M \subsetneq X - C$. Thus M and X - M are \mathscr{M} -sets with respect to \mathscr{A}^c .

$$(iii) \Rightarrow (i)$$
:

There exist $A, B, C, D \in \mathcal{A}$ such that $X - A \subsetneq M \subsetneq X - B$ and $X - C \subsetneq X - M \subsetneq X - D$. Then $D \subsetneq M \subsetneq C$ and so M is a common \mathcal{M} -set of X.

Theorem 3.17. Let (X, \mathcal{A}) be a \mathcal{M} -space and M be a common \mathcal{M} -set of X. Then followings are true:

- (i) There exist $A, B \in \mathcal{A}$ such that $A \cap B = \emptyset$ and $A \cup B = X$.
- (ii) There exist $C, D \in \mathscr{A}^c$ such that $C \cap D = \emptyset$ and $C \cup D = X$.

Proof. $(i) \Rightarrow (ii)$:

By the previous Theorem, we choose A = M and B = X - M.

 $(ii) \Rightarrow (iii)$:

By the previous Theorem, we choose C = M and D = X - M.

4. Remark on T_{min} spaces

Let X be a T_{min} space. Then all the proper open sets of X are minimal open sets. By Theorem 2.4, all the proper open sets of X mutually disjoint. We claim that X can have at most two proper open sets. In fact, if X has more than two proper open sets then union of any two proper open sets must be a proper open set containing two proper open sets (since all the proper open sets are mutually disjoint). Consequently, X has a proper open set which is not a minimal open set, but this contradicts the fact that X

is a T_{min} space. On the other hand, if a topological space X has only one proper open set then X must be a T_{min} space. Further more, if a topological space X has only two disjonit proper open sets then the proper open sets must be minimal, i.e., X must be a T_{min} space.

References

- [1] Bagchi, K.B., Mukherjee, A., On maximal, minimal and mean open sets, *Afr. Mat.*, **30** (1-2) (2019), 291-296, DOI: 10.1007/s13370-018-0644-7.
- [2] Benchalli, S. S., Ittanagi, B. M., and Wali, R. S., On minimal open sets and maps in topological spaces, *J. Comp. and Math. Sci.*, **2** (2) (2011), 208-220.
- [3] Mao, L., Smarandache Multi-Space Theory(I)-Algebric multi-spaces, arXiv:Math/0604480v1 [math. GM], 2006.
- [4] Mao, L., Smarandache Multi-Space Theory(II)-Multi-spaces on graphs, arXiv:Math/0604481v1 [math. GM], 2006.
- [5] Mao, L., Smarandache Multi-Space Theory(III)-Map geometries and pseudo-plane geometries, arXiv:Math/0604482v1 [math.GM], 2006.
- [6] Mao, L., Smarandache Multi-Space Theory(IV)-Applications to theoretical physics, arXiv:Math/0604483v1 [math.GM], 2006.
- [7] Mukharjee, A., Bagchi, K.B.: On mean open and closed sets, Kyungpook Math. J., 56 (4) (2016), 1259–1265.
- [8] Mukharjee, A., Raut, S., and Bagchi, K. B., Compactness and regularity via maximal open and minimal closed sets in topological spaces, Sci. Stud. Res., Ser. Math. Inform., 28 (1) (2018), 53-60.
- [9] Nakaoka, F., Oda, N., Some applications of minimal open sets, Int. J. Math. Soc., 27 (8) (2001), 471–476.
- [10] Nakaoka, F., Oda, N., Some properties of maximal open sets, Int. J. Math. Soc., 21 (2003), 1331–1340.
- [11] Nakaoka, F., Oda, N., Minimal closed sets and Maximal closed sets, Int. J. Math. Soc., 2006, Article ID 18647, 8 pages, doi: 10.1155/IJMMS/2006/18647.

Kallol Bhandhu Bagchi Department of Mathematics Kalipada Ghosh Tarai Mahavidyalaya, 734 014, Siliguri, West Bengal, India.