See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/369013448

SPACES WITH M -STRUCTURES

Preprint • March 2023

CITATIONS	READS
0	8

1 author:
Kallol Bhandhu Bagchi
Kalipada Ghosh Tarai Mahavidyalaya
10 PUBLICATIONS 27 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Applications of maximal, minimal and mean open sets in topological spaces View project

Project LOG Metric and Its Applications View project

SPACES WITH \mathscr{M}-STRUCTURES

KALLOL BHANDHU BAGCHI

(Received : 29-03-2021; Revised: 04-01-2022)

Abstract

In this paper, we introduce the notion of \mathscr{M}-structures and study some properties of spaces endowed with \mathscr{M}-structures. We see that there is a \mathscr{M}-structure in every infinite set.

1. Introduction

Let X be a non-empty set. By a proper subset A of X we mean that A is a non-empty subset of X such that $A \neq X$ and in this case we write $A \varsubsetneqq X$.

It is well known to us that $\{\emptyset\} \cup\{(a, b): a, b \in \mathbb{R}, a \neq b\}$ forms a basis for the real number space \mathbb{R}. The collection $\mathscr{A}=\{(a, b): a, b \in$ $\mathbb{R}, a<b\}$ of proper subsets of \mathbb{R} admits a special character: for any $A \in \mathscr{A}$ there exist $B, C \in \mathscr{A}$ such that $B \nsubseteq A \nsubseteq C$. Furthermore, if X is a T_{1} connected topological space, then $\{\emptyset\} \cup \mathscr{T}_{m o}$ forms a basis (Theorem 2.4) satisfying the condition that for any $B \in \mathscr{M}$ there exist $A, C \in \mathscr{M}$ such that $A \varsubsetneqq B \varsubsetneqq C$, where $\mathscr{T}_{m o}$ is the collection of all mean open sets in X. Considering these facts, we develop a new kind of structure (resp., space) in nonempty sets namely \mathscr{M}-structures (resp., \mathscr{M}-space) (Definition 3.1). In recent years Smarandache multispace theory becomes a centre of attraction. Mao [3, 4, 5, 6] studied the Smarandache multispace theory significantly. Under the light of the Smarandache multispace theory, one can say that the study of \mathscr{M}-spaces is a particular case sudy of Smarandache multispaces.

2. Preliminaries

Firstly, we recall the following definitions and results:

2010 Mathematics Subject Classification: 54A05, 54D30
Key words and phrases: \mathscr{M}-structures, \mathscr{M}-spaces, \mathscr{M}-sets,
(C) Indian Mathematical Society, 2023.

Definition 2.1 (Nakaoka and Oda [9, 10, 11]). A nonempty open set U of a topological space X is said to be a minimal open set if and only if any open set which is contained in U is \emptyset or U.

Definition 2.2 (Mukharjee and Bagchi [7]). An open set M of a topological space X is said to be a mean open if there exist two distinct proper open sets U, V such that $U \subsetneq M \subsetneq V$.

Definition 2.3 (Benchalli et al. [2]). A topological space X is said to be a $T_{\min }$ space if every proper open set of X is minimal open.

Theorem 2.4 (Nakaoka and Oda [9]). If U is a minimal open set and W is an open set of a topological space X, then either $U \cap W=\emptyset$ or $U \subset W$. If W is a minimal open set distinct from U, then $U \cap W=\emptyset$.

Theorem 2.5 (Bagchi and Mukherjee [1]). Let (X, \mathscr{T}) be a T_{1} connected topological space and $\mathscr{T}_{\text {mo }}$ denotes the family of all mean open sets in X. Then $\mathscr{B}=\{\emptyset\} \cup \mathscr{T}_{\text {mo }}$ forms a basis of the topology \mathscr{T} on X.

3. \mathscr{M}-SPACES

Definition 3.1. Let X be a non-empty set. A collection \mathscr{A} of proper subsets of X is said to be an \mathscr{M}-structure on X if for any $A \in \mathscr{A}$ there exist $B, C \in \mathscr{A}$ such that $B \subsetneq A \subsetneq C$. The ordered pair (X, \mathscr{A}) is said to be an \mathscr{M}-space.

Example 3.2. Let all the proper open sets of a topological space (X, \mathscr{T} be mean open. We write $\mathscr{M}=\mathscr{T}-\{\emptyset, X\}$. Then (X, \mathscr{M}) is an \mathscr{M}-space.

Remark 3.3. $\mathscr{A}=\{(a, b): a, b \in \mathbb{R}, a, b\}\}$ and $\mathscr{B}=\{[a, b]: a, b \in \mathbb{R}, a<$ $b\}$ are \mathscr{M}-structures on \mathbb{R}. Here $(1,2),(2,3) \in \mathscr{R}$ but $(1,2) \cup(2,3) \notin \mathscr{R}$. On the other hand $[1,2],[2,3] \in \mathscr{B}$ but $\{2\}=[1,2] \cap[2,3] \notin \mathscr{B}$. Therefore \mathscr{M}-structures may not closed under unions as well as intersections.

Theorem 3.4. Let (X, \mathscr{A}) be an \mathscr{M}-space. Then each member of the \mathscr{M} structure \mathscr{A} is infinite.

Proof. Let $A \in \mathscr{A}$. If possible, let A be finite and $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, for some natural number $n \geq 1$. Then there is a $A_{1} \in \mathscr{A}$ such that $A_{1} \subsetneq A$. So $A_{1} \subseteq A-\left\{a_{j_{1}}\right\}$, for some $j_{1} \in\{1,2, \ldots, n\}$. Again there is a $A_{2} \in \mathscr{A}$ such that $A_{2} \subsetneq A_{1}$. Thus $A_{2} \subseteq A-\left\{a_{j_{1}}, a_{j_{2}}\right\}$, for some $j_{2} \in\{1,2, \ldots, n\}$ with $j_{1} \neq j_{2}$. Continuing the process we can have $A_{n-1} \in \mathscr{A}$ such that $A_{n-1} \subseteq$
$A-\left\{a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{n-1}}\right\}$, where $j_{k} \in\{1,2, \ldots, n\}$ with $j_{1} \neq j_{2} \neq \ldots \neq j_{n-1}$ and $k=1,2, \ldots, n-1$. Thus either A_{n-1} is a singleton set or $A_{n-1}=\emptyset$. Thus there is no $B \in \mathscr{A}$ such that $B \subsetneq A_{n-1}$, which contradicts $A_{n-1} \in \mathscr{A}$. So A is infinite. Since $A \in \mathscr{A}$ is arbitrary, each member of the \mathscr{M}-structure \mathscr{A} is infinite.

Theorem 3.5. Let (X, \mathscr{A}) be an \mathscr{M}-space. Then \mathscr{A} is an infinite collection of proper subsets of X.

Proof. If possible, let $\mathscr{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ for some natural number $n \geq 1$. Since $A_{1} \in \mathscr{A}$, there is a $B \in \mathscr{A}-\left\{A_{1}\right\}$ such that $A_{1} \subsetneq B$. Now after some finite steps we can have a $C \in \mathscr{A}-\left\{A_{1}, B\right\}$ such that there is no $D \in \mathscr{A}$ such that $C \subsetneq D$. Thus \mathscr{A} is an infinite collection of proper subsets X.

Let (X, \mathscr{A}) be an \mathscr{M}-space. Then X is infinite.
Proof. The proof follows from the fact that X has infinite subsets.
Theorem 3.6. Let (X, \mathscr{A}) be a \mathscr{M}-space. There exist \mathscr{M}-structures \mathscr{B} and \mathscr{C} such that $\mathscr{A} \neq \mathscr{B} \neq \mathscr{C}$. In other words, an \mathscr{M}-space contains at least three \mathscr{M}-structures.

Proof. Let $\mathscr{B}=\{X-A: A \in \mathscr{A}\}$ and $B \in \mathscr{B}$. Then $B=X-A$ for some $A \in \mathscr{A}$. There exists $A_{1}, A_{2} \in \mathscr{A}$ such that $A_{1} \subsetneq A \subsetneq A_{2}$. So $X-A_{2} \subsetneq X-A \subsetneq X-A_{1}$, i.e, $X-A_{2} \subsetneq B \subsetneq X-A_{1}$. Furthermore $X-A_{1}, X-A_{2} \in \mathscr{B}$. Thus \mathscr{M} is an \mathscr{M}-structure on X different from \mathscr{A}. One can easily prove that $\mathscr{C}=\{A \subsetneq X: A \in \mathscr{A}$ or $A \in \mathscr{B}\}$ is an \mathscr{M}-structure on X which is different from \mathscr{A} as well as \mathscr{B}.

Remark 3.7. Let (X, \mathscr{A}) be an \mathscr{M}-space. An \mathscr{M}-structure \mathscr{B} on X is said to be conjugate to \mathscr{A} iff $\mathscr{B}=\{X-A: A \in \mathscr{A}\}$. In this case, we write $\mathscr{B}=\mathscr{A}^{c}$. Furthermore, the \mathscr{M}-structures \mathscr{A} and $\mathscr{B}=\mathscr{A}^{c}$ are said to be conjugate to each other.

Theorem 3.8. There exists \mathscr{M}-spaces.
Proof. Let X be an infinite set. We consider the collection $\mathscr{A}=\{A \subsetneq X: A$ and $X-A$ both are infinite $\}$. Now let $A \in \mathscr{A}$. Then both A and $X-A$ are infinite proper subsets of X. There are points $x \in A$ and $y \in X-A$ such that $A-\{x\} \subsetneq A \subsetneq A \cup\{y\}$. By the definition of $\mathscr{A}, A-\{x\}$ and $A \cup\{y\}$ are members of \mathscr{A}. So \mathscr{A} is an \mathscr{M}-structure on X, i.e., (X, \mathscr{A}) is a \mathscr{M}-space.

The \mathscr{M}-structure \mathscr{A} defined on an infinite set X discussed on the previous theorem is said to be the trivial \mathscr{M}-structure and the \mathscr{M}-space (X, \mathscr{A}) is said to be the trivial \mathscr{M}-space.

Definition 3.9. Let (X, \mathscr{A}) be a \mathscr{M}-space and $M \subseteq X . M$ is said to be an \mathscr{M}-set Of X if there exist $A, B \in \mathscr{A}$ such that $A \subsetneq M \subsetneq B$.

If M is an \mathscr{M}-set then $M \neq \emptyset, X$. Clearly if $A \in \mathscr{A}$ then A is an \mathscr{M}-set.
We denote the collection of all \mathscr{M}-sets of X by \mathscr{M}^{*}. One can easily verify that \mathscr{M}^{*} is an \mathscr{M} structure on X. If $\bigcup_{A \in \mathscr{A}} A=X$, then \mathscr{M}^{*} is an s-refinement ([8]) of \mathscr{A}.

Example 3.10. Let us consider the \mathscr{M}-space $(\mathbb{R}, \mathscr{A})$, where $\mathscr{A}=\{(a, b)$: $a<b$ and $a, b \in \mathbb{R}\}$. If M is a countable subset of \mathbb{R}, then M is not a \mathscr{M}-set. Again for any $a, b \in \mathbb{R}$ with $a<b,(a, b]$ and $[a, b)$ are \mathscr{M}-sets.

Now let (X, \mathscr{A}) be a \mathscr{M}-space and M be a \mathscr{M}-set. Then $\{P \in \mathscr{A}: P \subsetneq$ $A\}$ and $\{P \in \mathscr{A}: A \subsetneq P\}$ are nonempty collection of nonempty subsets of X. We write $M_{L}=\bigcup\{P \in \mathscr{A}: P \subsetneq A\}$ and $M_{R}=\bigcap\{P \in \mathscr{A}: A \subsetneq P\}$. Clearly $M_{L} \subseteq M \subseteq M_{R}$. We call M_{L} and M_{R} are the left variation and right variation of the \mathscr{M}-set M respectively and $M_{R}-M_{L}$ is said to be the variation of the \mathscr{M}-set M. We denote the variation of an \mathscr{M}-set M by $v(M)$.

Let ρ be the relation on \mathscr{M}^{*} defined by: " $M \rho N$ if and only if $v(A)=$ $v(B)$, for any $M, N \in \mathscr{M}^{* \prime \prime}$. We can prove that ρ is an equivalence relation on \mathscr{M}^{*}.

Example 3.11. Let $X=\mathbb{R}^{2}$ and $\mathscr{A}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq n^{2}, n \in\right.$ $\mathbb{N}\} \bigcup\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1 / n^{2}, n \in \mathbb{N}-\{1\}\right\}$. Then \mathscr{A} is an \mathscr{M}-structure on \mathscr{R}^{2}. Let $M=\left\{(x, y) \in \mathbb{R}: x^{2}+y^{2}=1\right\}$. Then $M_{L}=\left\{(x, y) \in \mathbb{R}^{2}\right.$: $\left.x^{2}+y^{2} \leq 1 / 4\right\}$ and $M_{R}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 4\right\}$.

Theorem 3.12. Let (X, \mathscr{A}) be an \mathscr{M}-space and $M, N \in \mathscr{A}$ be such that $M \subseteq N$. Then
(i) $M_{L} \subseteq N_{L}$; and
(ii) $M_{R} \subseteq N_{R}$.

Proof. (i) Let $x \in M_{L}$. Then $x \in P$ for some $P \in \mathscr{A}$ with $P \subsetneq M$. Since $M \subseteq N$, it follows that $P \subsetneq B$ and so $x \in B_{L}$. Thus $A_{L} \subseteq B_{L}$.
(ii) If $P \in\{P \in \mathscr{A}: N \subsetneq P\}$ then $P \in\{P \in \mathscr{A}: M \subsetneq P\}$, since $M \subseteq N$. Therefore $\{P \in \mathscr{A}: N \subsetneq P\}$ is a subcollection of $\{P \in \mathscr{A}: M \subsetneq P\}$ and thus $\bigcap\{P \in \mathscr{A}: M \subsetneq P\} \subseteq \bigcap\{P \in \mathscr{A}: N \subsetneq P\}$, i.e., $M_{R} \subseteq N_{R}$.

Theorem 3.13. Let (X, \mathscr{A}) be a \mathscr{M}-space and M be a \mathscr{M}. Then
(i) $M \nsubseteq v(M)$;
(ii) $v(M) \subsetneq M$ iff $M=M_{R}$.

Proof. (i) $M \subseteq v(M) \Rightarrow M \subseteq M_{R}-M_{L} \Rightarrow M \subseteq X-M_{L} \Rightarrow M_{L} \subseteq$ $X-M_{L}$, which is a contradiction.
(ii) $M=M_{R} \Rightarrow v(M)=M-M_{L} \Rightarrow V(M) \subseteq A$. Using (i) we have $v(M) \subsetneq M$.

Now $v(M) \subsetneq M \Rightarrow M_{R} \cap\left(X-M_{L}\right) \subsetneq M \Rightarrow M_{L} \cup\left[M_{R} \cap\left(X-M_{L}\right)\right] \subseteq$ $M_{L} \cup M=M \Rightarrow\left(M_{L} \cup M_{R}\right) \cap\left[M_{L} \cup\left(X-M_{L}\right)\right] \subsetneq M \Rightarrow M_{R} \cap X \subsetneq$ $M \Rightarrow M_{R} \subsetneq M \subseteq M_{R} \Rightarrow M=M_{R}$.

Theorem 3.14. Let (X, \mathscr{A}) be the trivial \mathscr{M}-space. Then:
(i) $\mathscr{A}=\mathscr{M}^{*}$; and
(ii) $v(M)=\emptyset$, for each $M \in \mathscr{A}$.

Proof. (i) It is sufficient to prove that if $M \in \mathscr{M}^{*}$, then $M \in \mathscr{A}$ for each $M \in \mathscr{M}^{*}$. Let $M \in \mathscr{M}^{*}$. Then there exist $A, B \in \mathscr{A}$ such that $A \subsetneq M \subsetneq B$. As $A \subsetneq M$ and A is infinite, so M is also infinite. Now $M \subsetneq B \Rightarrow X-B \subsetneq X-M$. Since $X-B$ is infinite, it follows that $X-M$ is infinite. Thus $M \in \mathscr{A}$. Therefore $\mathscr{A}=\mathscr{M}^{*}$.
(ii) Let $M \in \mathscr{A}=\mathscr{M}^{*}$. So M and $X-M$ are infinite proper subsets of X. We can choose distinct points $m, n \in M$ such that $M-\{m\} \subseteq M_{L}$ and $M-\{n\} \subseteq M_{L}$. Now $(M-\{m\}) \cup(M-\{n\})=M$ and so $M=M_{L}$. On the other hand we can choose two distinct points $p, q \in X-M$ such that $M_{R} \subseteq M \cup\{p\}$ as well as $M_{R} \subseteq M \cup\{q\}$. So $M=(M \cup\{p\}) \cap(M \cup\{q\})$ and thus $M=M_{R}$. Hence $v(M)=$ $M_{R}-M_{L}=M-M=\emptyset$. Since $M \in \mathscr{A}$ is arbitrary, $v(M)=\emptyset$, for each $M \in \mathscr{A}$.

Definition 3.15. Let $M \subsetneq X . M$ is said to be a common \mathscr{M}-set of X if M is an \mathscr{M}-set of X with respect to \mathscr{A} as well as an \mathscr{M}-set of X with respect to \mathscr{A}^{c}.

Theorem 3.16. Let (X, \mathscr{A}) be a \mathscr{M}-space. Then followings are equivalent:
(i) M is a common \mathscr{M}-set of X.
(ii) M and $X-M$ are \mathscr{M}-sets with respect to \mathscr{A}.
(iii) M and $X-M$ are \mathscr{M}-sets with respect to \mathscr{A}^{c}.

Proof. (i) $\Rightarrow(i i)$:
There exist $A, B \in \mathscr{A}$ and $C, D \in \mathscr{A}^{c}$ such that $A \subsetneq M \subsetneq B$ and $C \subsetneq$ $M \subsetneq D$. By the definition of $\mathscr{A}^{c}, C=X-A_{1}$ and $D=B_{1}$, for some $A_{1}, B_{1} \in \mathscr{A}$. Then $B_{1} \subsetneq X-M \subsetneq A_{1}$. Thus M and $X-M$ are \mathscr{M}-sets with respect to \mathscr{A}.

$$
(i i) \Rightarrow(i i i):
$$

There exist $A, B, C, D \in \mathscr{A}$ such that $A \subsetneq M \subsetneq B$ and $C \subsetneq X-M \subsetneq$ D. Now $X-A, X-B \in \mathscr{A}^{c}$ and $X-B \subsetneq X-M \subsetneq X-A$. Also $X-C, X-D \in \mathscr{A}^{c}$ such that $X-D \subsetneq M \subsetneq X-C$. Thus M and $X-M$ are \mathscr{M}-sets with respect to \mathscr{A}^{c}.

$$
(i i i) \Rightarrow(i):
$$

There exist $A, B, C, D \in \mathscr{A}$ such that $X-A \subsetneq M \subsetneq X-B$ and $X-C \subsetneq$ $X-M \subsetneq X-D$. Then $D \subsetneq M \subsetneq C$ and so M is a common \mathscr{M}-set of X.

Theorem 3.17. Let (X, \mathscr{A}) be a \mathscr{M}-space and M be a common \mathscr{M}-set of X. Then followings are true:
(i) There exist $A, B \in \mathscr{A}$ such that $A \cap B=\emptyset$ and $A \cup B=X$.
(ii) There exist $C, D \in \mathscr{A}^{c}$ such that $C \cap D=\emptyset$ and $C \cup D=X$.

Proof. $(i) \Rightarrow(i i)$:
By the previous Theorem, we choose $A=M$ and $B=X-M$.
$(i i) \Rightarrow(i i i)$:
By the previous Theorem, we choose $C=M$ and $D=X-M$.

4. REmark on $T_{m i n}$ SPACES

Let X be a $T_{\min }$ space. Then all the proper open sets of X are minimal open sets. By Theorem 2.4, all the proper open sets of X mutually disjoint. We claim that X can have atmost two proper open sets. In fact, if X has more than two proper open sets then union of any two proper open sets must be a proper open set containing two proper open sets (since all the proper open sets are mutually disjoint). Consequently, X has a proper open set which is not a minimal open set, but this contradicts the fact that X
is a $T_{\min }$ space. On the other hand, if a topological space X has only one proper open set then X must be a $T_{\min }$ space. Further more, if a topological space X has only two disjonit proper open sets then the proper open sets must be minimal, i.e., X must be a $T_{\min }$ space.

References

[1] Bagchi, K.B., Mukherjee, A., On maximal, minimal and mean open sets, Afr. Mat., 30 (1-2) (2019), 291-296, DOI: 10.1007/s13370-018-0644-7.
[2] Benchalli, S. S., Ittanagi, B. M., and Wali, R. S., On minimal open sets and maps in topological spaces, J. Comp. and Math. Sci., 2 (2) (2011), 208-220.
[3] Mao, L., Smarandache Multi-Space Theory(I)-Algebric multi-spaces, arXiv:Math/0604480v1 [math.GM], 2006.
[4] Mao, L., Smarandache Multi-Space Theory(II)-Multi-spaces on graphs, arXiv:Math/0604481v1 [math.GM], 2006.
[5] Mao, L., Smarandache Multi-Space Theory(III)-Map geometries and pseudo-plane geometries, arXiv:Math/0604482v1 [math.GM], 2006.
[6] Mao, L., Smarandache Multi-Space Theory(IV)-Applications to theoretical physics, arXiv:Math/0604483v1 [math.GM], 2006.
[7] Mukharjee, A., Bagchi, K.B.: On mean open and closed sets, Kyungpook Math. J., 56 (4) (2016), 1259-1265.
[8] Mukharjee, A., Raut, S., and Bagchi, K. B., Compactness and regularity via maximal open and minimal closed sets in topological spaces, Sci. Stud. Res., Ser. Math. Inform., 28 (1) (2018), 53-60.
[9] Nakaoka, F., Oda, N., Some applications of minimal open sets, Int. J. Math. Soc., 27 (8) (2001), 471-476.
[10] Nakaoka, F., Oda, N., Some properties of maximal open sets, Int. J. Math. Soc., 21 (2003), 1331-1340.
[11] Nakaoka, F., Oda, N., Minimal closed sets and Maximal closed sets, Int. J. Math. Soc., 2006, Article ID 18647, 8 pages, doi: 10.1155/IJMMS/2006/18647.

Kallol Bhandhu Bagchi
Department of Mathematics
Kalipada Ghosh Tarai Mahavidyalaya, 734 014, Siliguri, West Bengal, India.
E-mail: kbagchi.789@gmail.com

