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KALLOL BHANDHU BAGCHI
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Abstract. In this paper, we introduce the notion of M -structures
and study some properties of spaces endowed with M -structures. We
see that there is a M -structure in every infinite set.

1. Introduction

Let X be a non-empty set. By a proper subset A of X we mean that
A is a non-empty subset of X such that A 6= X and in this case we write
A  X.

It is well known to us that {∅} ∪ {(a, b) : a, b ∈ R, a 6= b} forms a
basis for the real number space R. The collection A = {(a, b) : a, b ∈
R, a < b} of proper subsets of R admits a special character: for any A ∈ A

there exist B,C ∈ A such that B  A  C. Furthermore, if X is a T1
connected topological space, then {∅} ∪ Tmo forms a basis (Theorem 2.4)
satisfying the condition that for any B ∈ M there exist A,C ∈ M such
that A  B  C, where Tmo is the collection of all mean open sets in X.
Considering these facts, we develop a new kind of structure (resp., space) in
nonempty sets namely M -structures (resp., M -space) (Definition 3.1). In
recent years Smarandache multispace theory becomes a centre of attraction.
Mao [3, 4, 5, 6] studied the Smarandache multispace theory significantly.
Under the light of the Smarandache multispace theory, one can say that the
study of M -spaces is a particular case sudy of Smarandache multispaces.

2. Preliminaries

Firstly, we recall the following definitions and results:
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Definition 2.1 (Nakaoka and Oda [9, 10, 11]). A nonempty open set U of
a topological space X is said to be a minimal open set if and only if any
open set which is contained in U is ∅ or U .

Definition 2.2 (Mukharjee and Bagchi [7]). An open setM of a topological
space X is said to be a mean open if there exist two distinct proper open
sets U, V such that U (M ( V .

Definition 2.3 (Benchalli et al. [2]). A topological space X is said to be
a Tmin space if every proper open set of X is minimal open.

Theorem 2.4 (Nakaoka and Oda [9]). If U is a minimal open set and W
is an open set of a topological space X, then either U ∩W = ∅ or U ⊂ W .
If W is a minimal open set distinct from U , then U ∩W = ∅.

Theorem 2.5 (Bagchi and Mukherjee [1]). Let (X,T ) be a T1 connected
topological space and Tmo denotes the family of all mean open sets in X.
Then B = {∅} ∪Tmo forms a basis of the topology T on X.

3. M -spaces

Definition 3.1. Let X be a non-empty set. A collection A of proper
subsets of X is said to be an M -structure on X if for any A ∈ A there
exist B,C ∈ A such that B ( A ( C. The ordered pair (X,A ) is said to
be an M -space.

Example 3.2. Let all the proper open sets of a topological space (X,T

be mean open. We write M = T − {∅, X}. Then (X,M ) is an M -space.

Remark 3.3. A = {(a, b) : a, b ∈ R, a, b}} and B = {[a, b] : a, b ∈ R, a <
b} are M -structures on R. Here (1, 2), (2, 3) ∈ R but (1, 2) ∪ (2, 3) /∈ R.
On the other hand [1, 2], [2, 3] ∈ B but {2} = [1, 2] ∩ [2, 3] /∈ B. Therefore
M -structures may not closed under unions as well as intersections.

Theorem 3.4. Let (X,A ) be an M -space. Then each member of the M -
structure A is infinite.

Proof. Let A ∈ A . If possible, let A be finite and A = {a1, a2, ..., an}, for
some natural number n ≥ 1. Then there is a A1 ∈ A such that A1 ( A. So
A1 ⊆ A − {aj1}, for some j1 ∈ {1, 2, ..., n}. Again there is a A2 ∈ A such
that A2 ( A1. Thus A2 ⊆ A − {aj1 , aj2}, for some j2 ∈ {1, 2, ..., n} with
j1 6= j2. Continuing the process we can have An−1 ∈ A such that An−1 ⊆
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A − {aj1 , aj2 , ..., ajn−1}, where jk ∈ {1, 2, ..., n} with j1 6= j2 6= ... 6= jn−1

and k = 1, 2, ..., n − 1. Thus either An−1 is a singleton set or An−1 = ∅.
Thus there is no B ∈ A such that B ( An−1, which contradicts An−1 ∈ A .
So A is infinite. Since A ∈ A is arbitrary, each member of the M -structure
A is infinite. �

Theorem 3.5. Let (X,A ) be an M -space. Then A is an infinite collection
of proper subsets of X.

Proof. If possible, let A = {A1, A2, ..., An} for some natural number n ≥ 1.
Since A1 ∈ A , there is a B ∈ A −{A1} such that A1 ( B. Now after some
finite steps we can have a C ∈ A − {A1, B} such that there is no D ∈ A

such that C ( D. Thus A is an infinite collection of proper subsets X. �

Let (X,A ) be an M -space. Then X is infinite.

Proof. The proof follows from the fact that X has infinite subsets. �

Theorem 3.6. Let (X,A ) be a M -space. There exist M -structures B and
C such that A 6= B 6= C . In other words, an M -space contains at least
three M -structures.

Proof. Let B = {X − A : A ∈ A } and B ∈ B. Then B = X − A for
some A ∈ A . There exists A1, A2 ∈ A such that A1 ( A ( A2. So
X − A2 ( X − A ( X − A1, i.e, X − A2 ( B ( X − A1. Furthermore
X − A1, X − A2 ∈ B. Thus M is an M -structure on X different from
A . One can easily prove that C = {A ( X : A ∈ A orA ∈ B} is an
M -structure on X which is different from A as well as B. �

Remark 3.7. Let (X,A ) be an M -space. An M -structure B on X is
said to be conjugate to A iff B = {X −A : A ∈ A }. In this case, we write
B = A c. Furthermore, the M -structures A and B = A c are said to be
conjugate to each other.

Theorem 3.8. There exists M -spaces.

Proof. LetX be an infinite set. We consider the collection A = {A ( X : A

and X − A both are infinite}. Now let A ∈ A . Then both A and X − A
are infinite proper subsets of X. There are points x ∈ A and y ∈ X − A
such that A − {x} ( A ( A ∪ {y}. By the definition of A , A − {x} and
A ∪ {y} are members of A . So A is an M -structure on X, i.e., (X,A ) is
a M -space. �
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The M -structure A defined on an infinite set X discussed on the previ-
ous theorem is said to be the trivial M -structure and the M -space (X,A )

is said to be the trivial M -space.

Definition 3.9. Let (X,A ) be a M -space and M ⊆ X. M is said to be
an M -set Of X if there exist A,B ∈ A such that A (M ( B.

IfM is an M -set thenM 6= ∅, X. Clearly if A ∈ A then A is an M -set.
We denote the collection of all M -sets of X by M ∗. One can easily

verify that M ∗ is an M structure on X. If
⋃

A∈A A = X, then M ∗ is an
s-refinement ([8]) of A .

Example 3.10. Let us consider the M -space (R,A ), where A = {(a, b) :
a < b and a, b ∈ R}. If M is a countable subset of R, then M is not a
M -set. Again for any a, b ∈ R with a < b, (a, b] and [a, b) are M -sets.

Now let (X,A ) be a M−space andM be a M -set. Then {P ∈ A : P (
A} and {P ∈ A : A ( P} are nonempty collection of nonempty subsets of
X. We write ML =

⋃
{P ∈ A : P ( A} and MR =

⋂
{P ∈ A : A ( P}.

Clearly ML ⊆ M ⊆ MR. We call ML and MR are the left variation and
right variation of the M -set M respectively and MR −ML is said to be
the variation of the M -set M . We denote the variation of an M -set M by
v(M).

Let ρ be the relation on M ∗ defined by: “MρN if and only if v(A) =
v(B), for any M,N ∈M ∗". We can prove that ρ is an equivalence relation
on M ∗.

Example 3.11. Let X = R2 and A = {(x, y) ∈ R2 : x2 + y2 ≤ n2, n ∈
N}

⋃
{(x, y) ∈ R2 : x2+y2 ≤ 1/n2, n ∈ N−{1}}. Then A is an M -structure

on R2. Let M = {(x, y) ∈ R : x2 + y2 = 1}. Then ML = {(x, y) ∈ R2 :

x2 + y2 ≤ 1/4} and MR = {(x, y) ∈ R2 : x2 + y2 ≤ 4}.

Theorem 3.12. Let (X,A ) be an M -space and M,N ∈ A be such that
M ⊆ N . Then

(i) ML ⊆ NL; and
(ii) MR ⊆ NR.

Proof. (i) Let x ∈ML. Then x ∈ P for some P ∈ A with P (M . Since
M ⊆ N , it follows that P ( B and so x ∈ BL. Thus AL ⊆ BL.
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(ii) If P ∈ {P ∈ A : N ( P} then P ∈ {P ∈ A :M ( P}, since M ⊆ N .
Therefore {P ∈ A : N ( P} is a subcollection of {P ∈ A : M ( P}
and thus

⋂
{P ∈ A :M ( P} ⊆

⋂
{P ∈ A : N ( P}, i.e., MR ⊆ NR.

�

Theorem 3.13. Let (X,A ) be a M -space and M be a M . Then

(i) M * v(M);
(ii) v(M) (M iff M =MR.

Proof. (i) M ⊆ v(M) ⇒ M ⊆ MR −ML ⇒ M ⊆ X −ML ⇒ ML ⊆
X −ML, which is a contradiction.

(ii) M = MR ⇒ v(M) = M −ML ⇒ V (M) ⊆ A. Using (i) we have
v(M) (M .

Now v(M) (M ⇒MR∩(X−ML) (M ⇒ML∪[MR∩(X−ML)] ⊆
ML ∪M =M ⇒ (ML ∪MR) ∩ [ML ∪ (X −ML)] (M ⇒MR ∩X (
M ⇒MR (M ⊆MR ⇒M =MR.

�

Theorem 3.14. Let (X,A ) be the trivial M -space. Then:

(i) A = M ∗; and
(ii) v(M) = ∅, for each M ∈ A .

Proof. (i) It is sufficient to prove that if M ∈ M ∗, then M ∈ A for
each M ∈M ∗. Let M ∈M ∗. Then there exist A,B ∈ A such that
A ( M ( B. As A ( M and A is infinite, so M is also infinite. Now
M ( B ⇒ X − B ( X −M . Since X − B is infinite, it follows that
X −M is infinite. Thus M ∈ A . Therefore A = M ∗.

(ii) LetM ∈ A = M ∗. SoM and X−M are infinite proper subsets of X.
We can choose distinct points m,n ∈ M such that M − {m} ⊆ ML

and M − {n} ⊆ ML. Now (M − {m}) ∪ (M − {n}) = M and so
M = ML. On the other hand we can choose two distinct points
p, q ∈ X −M such that MR ⊆ M ∪ {p} as well as MR ⊆ M ∪ {q}.
So M = (M ∪ {p}) ∩ (M ∪ {q}) and thus M = MR. Hence v(M) =

MR −ML = M −M = ∅. Since M ∈ A is arbitrary, v(M) = ∅, for
each M ∈ A .

�

Definition 3.15. LetM ( X. M is said to be a common M -set of X ifM
is an M -set of X with respect to A as well as an M -set of X with respect
to A c.
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Theorem 3.16. Let (X,A ) be a M -space. Then followings are equivalent:

(i) M is a common M -set of X.
(ii) M and X −M are M -sets with respect to A .
(iii) M and X −M are M -sets with respect to A c.

Proof. (i)⇒ (ii):
There exist A,B ∈ A and C,D ∈ A c such that A ( M ( B and C (
M ( D. By the definition of A c, C = X − A1 and D = B1, for some
A1, B1 ∈ A . Then B1 ( X −M ( A1. Thus M and X −M are M -sets
with respect to A .

(ii)⇒ (iii):
There exist A,B,C,D ∈ A such that A ( M ( B and C ( X −M (
D. Now X − A,X − B ∈ A c and X − B ( X − M ( X − A. Also
X −C,X −D ∈ A c such that X −D (M ( X −C. Thus M and X −M
are M -sets with respect to A c.

(iii)⇒ (i):
There exist A,B,C,D ∈ A such that X −A (M ( X −B and X − C (
X −M ( X − D. Then D ( M ( C and so M is a common M -set of
X. �

Theorem 3.17. Let (X,A ) be a M -space and M be a common M -set of
X. Then followings are true:

(i) There exist A,B ∈ A such that A ∩B = ∅ and A ∪B = X.
(ii) There exist C,D ∈ A c such that C ∩D = ∅ and C ∪D = X.

Proof. (i)⇒ (ii):
By the previous Theorem, we choose A =M and B = X −M .

(ii)⇒ (iii):
By the previous Theorem, we choose C =M and D = X −M . �

4. Remark on Tmin spaces

Let X be a Tmin space. Then all the proper open sets of X are minimal
open sets. By Theorem 2.4, all the proper open sets of X mutually disjoint.
We claim that X can have atmost two proper open sets. In fact, if X has
more than two proper open sets then union of any two proper open sets
must be a proper open set containing two proper open sets (since all the
proper open sets are mutually disjoint). Consequently, X has a proper open
set which is not a minimal open set, but this contradicts the fact that X
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is a Tmin space. On the other hand, if a topological space X has only one
proper open set then X must be a Tmin space. Further more, if a topological
space X has only two disjonit proper open sets then the proper open sets
must be minimal, i.e., X must be a Tmin space.
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