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Abstract For any positive integer n, the famous Pseudo Smarandache Square-free function

Zw(n) is defined as the smallest positive integer m such that mn is divisible by n. That

is, Zw(n) = min{m : n|mn, m ∈ N}, where N denotes the set of all positive integers. The

main purpose of this paper is using the elementary method to study the properties of Zw(n),

and give an inequality for it. At the same time, we also study the solvability of an equation

involving the Pseudo Smarandache Square-free function, and prove that it has infinity positive

integer solutions.
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§1. Introduction and results

For any positive integer n, the famous Pseudo Smarandache Square-free function Zw(n) is
defined as the smallest positive integer m such that mn is divisible by n. That is,

Zw(n) = min{m : n|mn, m ∈ N},

where N denotes the set of all positive integers. This function was proposed by Professor F.
Smarandache in reference [1], where he asked us to study the properties of Zw(n). From the
definition of Zw(n) we can easily get the following conclusions: If n = pα1

1 pα2
2 · · · pαr

r denotes
the factorization of n into prime powers, then Zw(n) = p1p2 · · · pr. From this we can get the
first few values of Zw(n) are: Zw(1) = 1, Zw(2) = 2, Zw(3) = 3, Zw(4) = 2, Zw(5) = 5,
Zw(6) = 6, Zw(7) = 7, Zw(8) = 2, Zw(9) = 3, Zw(10) = 10, · · · . About the elementary
properties of Zw(n), some authors had studied it, and obtained some interesting results, see
references [2], [3] and [4]. For example, Maohua Le [3] proved that

∞∑
n=1

1
(Zw(n))α

, αεR, α > 0

is divergence. Huaning Liu [4] proved that for any real numbers α > 0 and x ≥ 1, we have the
asymptotic formula

∑

n≤x

(Zw(n))α =
ζ(α + 1)xα+1

ζ(2)(α + 1)

∏
p

[
1− 1

pα(p + 1)

]
+ O

(
xα+ 1

2+ε
)

,
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where ζ(s) is the Riemann zeta-function.

Now, for any positive integer k > 1, we consider the relationship between Zw

(
k∏

i=1

mi

)

and
k∑

i=1

Zw(mi). In reference [2], Felice Russo suggested us to study the relationship between

them. For this problem, it seems that none had studied it yet, at least we have not seen such
a paper before. The main purpose of this paper is using the elementary method to study this
problem, and obtained some progress on it. That is, we shall prove the following:

Theorem 1. Let k > 1 be an integer, then for any positive integers m1, m2, · · · , mk, we
have the inequality

k

√√√√Zw

(
k∏

i=1

mi

)
<

k∑

i=1

Zw(mi)

k
≤ Zw

(
k∏

i=1

mi

)
,

and the equality holds if and only if all m1, m2, · · · , mk have the same prime divisors.
Theorem 2. For any positive integer k ≥ 1, the equation

k∑

i=1

Zw(mi) = Zw

(
k∑

i=1

mi

)

has infinity positive integer solutions (m1, m2, · · · , mk).

§2. Proof of the theorems

In this section, we shall prove our Theorems directly. First we prove Theorem 1. For any
positive integer k > 1, we consider the problem in two cases:

(a). If (mi, mj) = 1, i, j = 1, 2, · · · , k, and i 6= j, then from the multiplicative properties
of Zw(n), we have

Zw

(
k∏

i=1

mi

)
=

k∏

i=1

Zw(mi).

Therefore, we have

k

√√√√Zw

(
k∏

i=1

mi

)
= k

√√√√
k∏

i=1

Zw(mi) <

k∑

i=1

Zw(mi)

k
<

k∏

i=1

Zw(mi) = Zw

(
k∏

i=1

mi

)
.

(b). If (mi, mj) > 1, i, j = 1, 2, · · · , k, and i 6= j, then let mi = pαi1
1 pαi2

2 · · · pαir
r ,

αis ≥ 0, i = 1, 2, · · · , k; s = 1, 2, · · · , r. we have Zw(mi) = pβi1
1 pβi2

2 · · · pβir
r , where

βis =

{
0, if αis = 0 ;

1, if αis ≥ 1.
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Thus

k∑

i=1

Zw(mi)

k
=

pβ11
1 pβ12

2 · · · pβ1r
r + pβ21

1 pβ22
2 · · · pβ2r

r + · · ·+ pβk1
1 pβk2

2 · · · pβkr
r

k

≤ p1p2 · · · pr + p1p2 · · · pr + · · ·+ p1p2 · · · pr

k
= p1p2 · · · pr = Zw

(
k∏

i=1

mi

)
,

and equality holds if and only if αis ≥ 1, i = 1, 2, · · · , k, s = 1, 2, · · · , r.

k

√√√√Zw

(
k∏

i=1

mi

)
= k
√

p1p2 · · · pr ≤ k

√
pα1
1 pα2

2 · · · pαr
r

≤ pβ11
1 pβ12

2 · · · pβ1r
r + pβ21

1 pβ22
2 · · · pβ2r

r + · · ·+ pβk1
1 pβk2

2 · · · pβkr
r

k
=

k∑

i=1

Zw(mi)

k
,

where αs =
k∑

i=1

βis, s = 1, 2, · · · , r, but in this case, two equal sign in the above can’t be hold

in the same time.
So, we obtain

k

√√√√Zw

(
k∏

i=1

mi

)
<

k∑

i=1

Zw(mi)

k
.

From (a) and (b) we have

k

√√√√Zw

(
k∏

i=1

mi

)
<

k∑

i=1

Zw(mi)

k
≤ Zw

(
k∏

i=1

mi

)
,

and the equality holds if and only if all m1, m2, · · · , mk have the same prime divisors. This
proves Theorem 1.

To complete the proof of Theorem 2, we need the famous Vinogradov’s three-primes the-
orem, which was stated as follows:

Lemma 1. Every odd integer bigger than c can be expressed as a sum of three odd primes,
where c is a constant large enough.

Proof. (See reference [5]).
Lemma 2. Let k ≥ 3 be an odd integer, then any sufficiently large odd integer n can be

expressed as a sum of k odd primes

n = p1 + p2 + · · ·+ pk.

Proof. (See reference [6]).



24 Bin Cheng No.2

Now we use these two Lemmas to prove Theorem 2. From Lemma 2 we know that for any
odd integer k ≥ 3, every sufficient large prime p can be expressed as

p = p1 + p2 + · · ·+ pk.

By the definition of Zw(n) we know that Zw(p) = p. Thus,

Zw(p1) + Zw(p2) + · · ·+ Zw(pk) = p1 + p2 + · · ·+ pk = p = Zw(p)

= Zw(p1 + p2 + · · ·+ pk).

This means that Theorem 2 is true for odd integer k ≥ 3.
If k ≥ 4 is an even number, then for every sufficient large prime p, p−2 is an odd number,

and by Lemma 2 we have

p− 2 = p1 + p2 + · · ·+ pk−1 or p = 2 + p1 + p2 + · · ·+ pk−1.

Therefore,

Zw(2) + Zw(p1) + Zw(p2) + · · ·+ Zw(pk−1) = 2 + p1 + p2 + · · ·+ pk−1 = p

= Zw(p) = Zw(2 + p1 + p2 + · · ·+ pk−1).

This means that Theorem 2 is true for even integer k ≥ 4.
At last, for any prime p ≥ 3, we have

Zw(p) + Zw(p) = p + p = 2p = Zw(2p),

so Theorem 2 is also true for k = 2. This completes the proof of Theorem 2.
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