# On the pseudo Smarandache square-free function 


#### Abstract

Bin Cheng

Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China Abstract For any positive integer $n$, the famous Pseudo Smarandache Square-free function $Z_{w}(n)$ is defined as the smallest positive integer $m$ such that $m^{n}$ is divisible by $n$. That is, $Z_{w}(n)=\min \left\{m: n \mid m^{n}, m \in N\right\}$, where $N$ denotes the set of all positive integers. The main purpose of this paper is using the elementary method to study the properties of $Z_{w}(n)$, and give an inequality for it. At the same time, we also study the solvability of an equation involving the Pseudo Smarandache Square-free function, and prove that it has infinity positive integer solutions.


Keywords The Pseudo Smarandache Square-free function, Vinogradov's three-primes theorem, inequality, equation, positive integer solution.

## §1. Introduction and results

For any positive integer $n$, the famous Pseudo Smarandache Square-free function $Z_{w}(n)$ is defined as the smallest positive integer $m$ such that $m^{n}$ is divisible by $n$. That is,

$$
Z_{w}(n)=\min \left\{m: n \mid m^{n}, m \in N\right\}
$$

where $N$ denotes the set of all positive integers. This function was proposed by Professor F. Smarandache in reference [1], where he asked us to study the properties of $Z_{w}(n)$. From the definition of $Z_{w}(n)$ we can easily get the following conclusions: If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ denotes the factorization of $n$ into prime powers, then $Z_{w}(n)=p_{1} p_{2} \cdots p_{r}$. From this we can get the first few values of $Z_{w}(n)$ are: $Z_{w}(1)=1, Z_{w}(2)=2, Z_{w}(3)=3, Z_{w}(4)=2, Z_{w}(5)=5$, $Z_{w}(6)=6, Z_{w}(7)=7, Z_{w}(8)=2, Z_{w}(9)=3, Z_{w}(10)=10, \cdots$. About the elementary properties of $Z_{w}(n)$, some authors had studied it, and obtained some interesting results, see references [2], [3] and [4]. For example, Maohua Le [3] proved that

$$
\sum_{n=1}^{\infty} \frac{1}{\left(Z_{w}(n)\right)^{\alpha}}, \alpha \epsilon R, \alpha>0
$$

is divergence. Huaning Liu [4] proved that for any real numbers $\alpha>0$ and $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x}\left(Z_{w}(n)\right)^{\alpha}=\frac{\zeta(\alpha+1) x^{\alpha+1}}{\zeta(2)(\alpha+1)} \prod_{p}\left[1-\frac{1}{p^{\alpha}(p+1)}\right]+O\left(x^{\alpha+\frac{1}{2}+\epsilon}\right)
$$

where $\zeta(s)$ is the Riemann zeta-function.
Now, for any positive integer $k>1$, we consider the relationship between $Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)$ and $\sum_{i=1}^{k} Z_{w}\left(m_{i}\right)$. In reference [2], Felice Russo suggested us to study the relationship between them. For this problem, it seems that none had studied it yet, at least we have not seen such a paper before. The main purpose of this paper is using the elementary method to study this problem, and obtained some progress on it. That is, we shall prove the following:

Theorem 1. Let $k>1$ be an integer, then for any positive integers $m_{1}, m_{2}, \cdots, m_{k}$, we have the inequality

$$
\sqrt[k]{Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)}<\frac{\sum_{i=1}^{k} Z_{w}\left(m_{i}\right)}{k} \leq Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)
$$

and the equality holds if and only if all $m_{1}, m_{2}, \cdots, m_{k}$ have the same prime divisors.
Theorem 2. For any positive integer $k \geq 1$, the equation

$$
\sum_{i=1}^{k} Z_{w}\left(m_{i}\right)=Z_{w}\left(\sum_{i=1}^{k} m_{i}\right)
$$

has infinity positive integer solutions $\left(m_{1}, m_{2}, \cdots, m_{k}\right)$.

## §2. Proof of the theorems

In this section, we shall prove our Theorems directly. First we prove Theorem 1. For any positive integer $k>1$, we consider the problem in two cases:
(a). If $\left(m_{i}, m_{j}\right)=1, i, j=1,2, \cdots, k$, and $i \neq j$, then from the multiplicative properties of $Z_{w}(n)$, we have

$$
Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)=\prod_{i=1}^{k} Z_{w}\left(m_{i}\right)
$$

Therefore, we have

$$
\sqrt[k]{Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)}=\sqrt[k]{\prod_{i=1}^{k} Z_{w}\left(m_{i}\right)}<\frac{\sum_{i=1}^{k} Z_{w}\left(m_{i}\right)}{k}<\prod_{i=1}^{k} Z_{w}\left(m_{i}\right)=Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)
$$

(b). If $\left(m_{i}, m_{j}\right)>1, i, j=1,2, \cdots, k$, and $i \neq j$, then let $m_{i}=p_{1}^{\alpha_{i 1}} p_{2}^{\alpha_{i 2}} \cdots p_{r}^{\alpha_{i r}}$, $\alpha_{i s} \geq 0, i=1,2, \cdots, k ; s=1,2, \cdots, r$. we have $Z_{w}\left(m_{i}\right)=p_{1}^{\beta_{i 1}} p_{2}^{\beta_{i 2}} \cdots p_{r}^{\beta_{i r}}$, where

$$
\beta_{i s}= \begin{cases}0, & \text { if } \quad \alpha_{i s}=0 \\ 1, & \text { if } \quad \alpha_{i s} \geq 1\end{cases}
$$

Thus

$$
\begin{aligned}
& \sum_{i=1}^{k} Z_{w}\left(m_{i}\right) \\
k & \frac{p_{1}^{\beta_{11}} p_{2}^{\beta_{12}} \cdots p_{r}^{\beta_{1 r}}+p_{1}^{\beta_{21}} p_{2}^{\beta_{22}} \cdots p_{r}^{\beta_{2 r}}+\cdots+p_{1}^{\beta_{k 1}} p_{2}^{\beta_{k 2}} \cdots p_{r}^{\beta_{k r}}}{k} \\
\leq & \frac{p_{1} p_{2} \cdots p_{r}+p_{1} p_{2} \cdots p_{r}+\cdots+p_{1} p_{2} \cdots p_{r}}{k}=p_{1} p_{2} \cdots p_{r}=Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)
\end{aligned}
$$

and equality holds if and only if $\alpha_{i s} \geq 1, i=1,2, \cdots, k, s=1,2, \cdots, r$.

$$
\begin{aligned}
& \sqrt[k]{Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)}=\sqrt[k]{p_{1} p_{2} \cdots p_{r}} \leq \sqrt[k]{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}} \\
\leq & \frac{p_{1}^{\beta_{11}} p_{2}^{\beta_{12}} \cdots p_{r}^{\beta_{1 r}}+p_{1}^{\beta_{21}} p_{2}^{\beta_{22} \cdots p_{r}^{\beta_{2 r}}+\cdots+p_{1}^{\beta_{k 1}} p_{2}^{\beta_{k 2}} \cdots p_{r}^{\beta_{k r}}}}{k}=\frac{\sum_{i=1}^{k} Z_{w}\left(m_{i}\right)}{k},
\end{aligned}
$$

where $\alpha_{s}=\sum_{i=1}^{k} \beta_{i s}, s=1,2, \cdots, r$, but in this case, two equal sign in the above can't be hold in the same time.

So, we obtain

$$
\sqrt[k]{Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)}<\frac{\sum_{i=1}^{k} Z_{w}\left(m_{i}\right)}{k}
$$

From (a) and (b) we have

$$
\sqrt[k]{Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)}<\frac{\sum_{i=1}^{k} Z_{w}\left(m_{i}\right)}{k} \leq Z_{w}\left(\prod_{i=1}^{k} m_{i}\right)
$$

and the equality holds if and only if all $m_{1}, m_{2}, \cdots, m_{k}$ have the same prime divisors. This proves Theorem 1.

To complete the proof of Theorem 2, we need the famous Vinogradov's three-primes theorem, which was stated as follows:

Lemma 1. Every odd integer bigger than $c$ can be expressed as a sum of three odd primes, where $c$ is a constant large enough.

Proof. (See reference [5]).
Lemma 2. Let $k \geq 3$ be an odd integer, then any sufficiently large odd integer $n$ can be expressed as a sum of $k$ odd primes

$$
n=p_{1}+p_{2}+\cdots+p_{k}
$$

Proof. (See reference [6]).

Now we use these two Lemmas to prove Theorem 2. From Lemma 2 we know that for any odd integer $k \geq 3$, every sufficient large prime $p$ can be expressed as

$$
p=p_{1}+p_{2}+\cdots+p_{k} .
$$

By the definition of $Z_{w}(n)$ we know that $Z_{w}(p)=p$. Thus,

$$
\begin{aligned}
& Z_{w}\left(p_{1}\right)+Z_{w}\left(p_{2}\right)+\cdots+Z_{w}\left(p_{k}\right)=p_{1}+p_{2}+\cdots+p_{k}=p=Z_{w}(p) \\
= & Z_{w}\left(p_{1}+p_{2}+\cdots+p_{k}\right) .
\end{aligned}
$$

This means that Theorem 2 is true for odd integer $k \geq 3$.
If $k \geq 4$ is an even number, then for every sufficient large prime $p, p-2$ is an odd number, and by Lemma 2 we have

$$
p-2=p_{1}+p_{2}+\cdots+p_{k-1} \text { or } p=2+p_{1}+p_{2}+\cdots+p_{k-1} .
$$

Therefore,

$$
\begin{aligned}
& Z_{w}(2)+Z_{w}\left(p_{1}\right)+Z_{w}\left(p_{2}\right)+\cdots+Z_{w}\left(p_{k-1}\right)=2+p_{1}+p_{2}+\cdots+p_{k-1}=p \\
= & Z_{w}(p)=Z_{w}\left(2+p_{1}+p_{2}+\cdots+p_{k-1}\right) .
\end{aligned}
$$

This means that Theorem 2 is true for even integer $k \geq 4$.
At last, for any prime $p \geq 3$, we have

$$
Z_{w}(p)+Z_{w}(p)=p+p=2 p=Z_{w}(2 p),
$$

so Theorem 2 is also true for $k=2$. This completes the proof of Theorem 2.

## References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[2] F. Russo, A set of new Smarandache functions, sequences and conjectures in number theory, American Research Press, USA, 2000
[3] Maohua Le, On the peseudo-Smarandache squarefree function, Smarandache Notions Journal, 13(2002), 229-236.
[4] Huaning Liu and Jing Gao, Research on Smarandache problems in number theory, Chicago, Xiquan Publishing House, 2004, 9-11.
[5] Chengdong Pan and Chengbiao Pan, Foundation of analytic number theory, Beijing: Science Press, 1997.
[6] Yaming Lu , On the solutions of an equation involving the Smarandache function, Scientia Magna, 2(2006), No.1, 76-79.
[7] Tom M. Apostol, Introduction to analytical number theory, Spring-Verlag, New York, 1976.
[8] Wenpeng Zhang, The elementary number theory, Shaanxi Normal University Press, Xi'an, 2007.

