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Abstract: In this paper, we investigate the structures of cycle bases with extremal prop-

erties which are related with map geometries, i.e., Smarandache 2-dimensional manifolds.

We first study the long cycle base structures in a cycle space of a graph. Our results show

that much information about long cycles is contained in a longest cycle base. (1)Any two

longest cycle bases have the same structure, i.e., there is a 1-1 correspondence between any

two longest cycle bases such that the corresponding cycles have the same length; (2)Any

group of linearly independent longest cycles must be contained in a longest cycle base which

implies that any two sets of linearly independent longest cycles with maximum cardinal num-

ber is equivalent; (3)If consider the range of embedded graphs, a longest cycle base must

contain some long cycles with special properties. As applications, we find explicit formulae

for computing longest cycles bases of several class of embedded graphs. As for an embedded

graph on non-orientable surfaces, we obtain several interpolation results for one-sided cycles

in distinct cycle bases. Similar results for shortest cycle bases may be deduced. For instance,

we show that in a strongly embedded graph, there is a cycle base consisting of surface in-

duced non-separating cycles and all of such bases have the same structure provided that

their length is of shortest(subject to induced non-separating cycles). These extend Tutte’s

result [7](which states that in a 3–connected graph the set of induced(graph) non-separating

cycles generate the cycle space).
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§1. Introduction

Here in this paper we consider connected graphs without loops. Concepts and terminologies

used without definition may be found in [1]. A spanning subgraph H of G is called an E-

subgraph iff each vertex has even degree in H . It is well known that the set of E-subgraphs of G

forms a linear space C (G) called the cycle space of G. Here, the operation between vectors(i.e.,

E-subgraphs) is the symmetric difference between edge-sets of E-subgraphs. It is clear that the

rank, defined by β(G) (the Betti number of G), of C (G) is |E(G)| − |V (G)| + 1 and any set

of β(G) linearly independence vectors form a base of C (G). The length l(B) of a cycle base B
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is the sum of length of vectors in it. In particular, the length of an E-subgraph is the sum of

length of edge-disjoint cycles in it. Throughout this paper, we only consider the vectors with

only one cycle. So, the bases considered are all formed by cycles. By a longest base B we mean

l(B) is the length of a maximum cycle base.

Cycle space theory rooted in early research works of Kirchoff’s circuits theory. In the-

ory, Matroid theory is one of motivations of it [10-12], also related with map geometries, i.e.,

Smarandache 2-dimensional manifolds ([5]-[6]). In particular, cycle bases with minimum length

have many applications in structural analysis [2], chemical storage theory [3], as well as fields

such bioscience [4]. In history, classical works concentrated on minimum cycle bases(i.e., MCB).

On the other direction, results for cycle spaces theory on long cycles are seldom to be seen.

What can we say about longest cycle bases? In intuition, a longest cycle base should contain

information about long cycles(especially the longest cycles). Here, in this paper we investigate

the structure of longest cycle bases. Based on a Hall type theorem for base transformation, we

present a condition for a cycle base to be longest.

Theorem A Let B be a cycle base(i.e., vectors of B are all cycles) of G. Then B is longest

if and only if for every cycle C of G:

∀α ∈ Int(C) =⇒ |α | ≥ |C | (1)

where Int(C) is the set of cycles in B which span C.

Note: (1) This condition says that for a longest base B, any cycle can’t be generated by shorter

cycles of B;

(2) One may see that such Hall type theorem is very useful in studies of cycle bases with

particular extremal properties.

The following result shows that any group of linearly independent longest cycles are con-

tained in a longest cycle base. In particular, any longest cycle is contained in a longest cycle

base.

Theorem B Let C1, C2, . . . , Cs be a set of linearly independent longest cycles of graph G.

Then there is a longest cycle base B containing Ci, 1 ≤ i ≤ s.

If consider the cycles passing through an edge, then after using Theorem A we may see that

for every edge e of a graph G, every longest cycle base must contain a cycle which is longest

among cycles passing through e.

Corollary 1 Any longest cycle of a graph must be contained in a longest cycle base.

Based on Theorem A, we obtain the following unique structure of longest cycle bases.

Theorem C Let B1 and B2 be a pair of two longest cycle bases of a graph G. Then there is

a 1-1 correspondence ϕ between B1 and B2 such that for each cycle α ∈ B1, |ϕ(α)| = |α|.

Corollary 2 A graph G’s any two longest cycle bases must contain the same number of

k-cycles, for k = 3, 4, . . . ,n.

Since the condition (1) of Theorem A implies that a cycle can’t be generated by shorter
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cycles in a longest cycle base, we have the following

Corollary 3 Let B1 and B2 be a pair of two longest cycle bases of a graph G. Then the two

subgroups of B1 and B2 which contain longest cycles are linearly equivalent.

Corollary 4 Let B1 and B2 be a pair of two longest cycle bases of a graph G and Ak, A
′

k be

the sets of k-cycles of B1 and B2, resp. Then
n⋃

k=p

Ak is equivalent to
n⋃

k=p

A
′

k, for each p = 3, 4,

. . . ,n.

As applications of Theorems A-C, we will compute the length of longest cycle bases in

several types of graphs. But what surprises us most is that those results are also very useful in

computing cycle bases with particular extremal properties. In particular, we have the following

Theorem D Let G be an embedded graph with B1 and B2 to be a pair of its longest(shortest)

cycles bases. If B1 and B2 contain, resp., s and t distinct one-sided cycles, then there is

a longest(shortest) cycle base B with exactly k distinct one-sided cycles for every integer k

between s and t.

Since our results may be applied to any pair of bases, we have

Theorem D
′

Let G be an embedded graph, and B1,B2 be a pair of cycle bases containing,

resp., m and n one-sided cycles. Then G has a cycle base containing exactly k distinct one-sided

cycles for any natural number k between m and n.

A cycle C of an embedded graph G in a surface
∑

is called (surface)non-separating if∑− C is connected; otherwise, it is (surface)separating. If one component of
∑− C is an

open disc, then C is contractible or trivial ; if not so, C is called non-contractible. It is clear that

a non-separating cycle is also non-contractible. Since a non-separating cycle can’t be spanned

by separating cycles ( as we will show later ), we have the following result.

Theorem E A longest cycle base of an embedded graph must contain a longest non-separating

cycle; any longest non-separating cycle is also contained in a longest cycle base; furthermore,

if a pair of longest cycle bases contains, respectively, m and n longest non-separating cycles,

then for every integer k : m ≤ k ≤ n, there is a longest cycle base containing exactly k longest

non-separating cycles .

On the other direction, if we consider the shortest cycle bases, then interesting properties

on short cycles will appear. We call a graph G in a surface to be LEW-embedded if the length

of shortest non-contractible cycle is longer than any facial walk. It is well known that an LEW-

embedded graph shares many properties with planar graphs [8]. Here, we will present some

more unknown results for cycle bases of LEW-embedded graphs.

Theorem F Let G be an LEW-embedded graph and B1,B2 be a pair of shortest cycle bases.

Then, we have the following results:

(1) For any separating cycle C ∈ Bi and non-separating cycle C
′ ∈ Bi, |C

′ | > |C|;
(2) Both B1 and B2 contain exactly ν(

∑
) non-separating cycles, where ν(

∑
) is the Euler-genus

of the surface
∑

in which G is embedded; further more, the subsets of separating cycles of B1
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and B2 are linearly equivalent;

(3) Both B1 and B2 have the same number of shortest non-separating cycles.

If we restrict some condition on an embedded graph, then some unknown results are ob-

tained. For instance, we have the following

Theorem G Let B1 and B2 be a pair of longest cycle bases of an embedded graph G. If the

length of longest non-separating cycle is longer than that of any separating cycle, then both B1

and B2 have the same number of longest non-separating cycles.

A cycle of a graph is induced if it has no chord. A famous result in cycle space theory

is due to W. Tutte which states that in a simple 3–connected graph, the set of induced cycles

each of which can’t separate the graph generates the whole cycle space [9]. If we consider the

case of embedded graphs, then this cycle set may be smaller. In fact, we have the following

Theorem Let G be a 2–connected graph embedded in a non-spherical surface such that its

facial walks are all cycles. Then there is a cycle base consists of induced non-separating cycles.

Remark(1) Tutte’s definition of a non-separating cycle differs from ours. The former defined

a cycle which can’t separate the graph, while the latter define a cycle which can’t separate the

surface in which the graph is embedded. So, Theorem H and Tutte’s result are different. From

our proof one may see that this base is determined simply by (surface)non-separating cycles.

As for the structure of such bases, we may modify the condition of Theorem A and obtain

another condition for bases consisting of shortest non-separating cycles.

Remark(2) Theorem H implies the existence of a cycle base B satisfying

i ) All cycles in this cycle base B are non-separating;

ii) The length of this base B is shortest subject to i ).

We call a base defined above as shortest non-separating cycle base.

Theorem I Let G be a 2–connected graph embedded in a non-spherical surface such that all

of its facial walks are cycles. Let B be a base consisting of non-separating cycles. Then B is

shortest iff for every non-separating cycle C,

∀ α ∈ Int(C)⇒ |C| ≥ |α|,

where Int(C) is the subset of cycles of B which span C.

Combining Theorems H and I we obtain the following unique structure result for shortest

non-separating cycle bases.

Theorem J Let G be a 2–connected graph embedded in some non-spherical surface with all

its facial walks as cycles. Let B1 and B2 be a pair of shortest non-separating cycle bases. Then

there exists a 1–1 correspondence ϕ between elements of B1 and B2 such that for every element

α ∈ B1, |α| = |ϕ(α)|.

Remark From our proof of Theorem J, one may see that if the surface in which the graph is

embedded is non-orientable, then we may find a cycle base consisting of one–sided cycles and
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so, there is a cycle base satisfying

i ) All cycles in the base are one–sided cycles;

ii ) The length of the base is shortest subject to i );

iii) Any pair of cycle bases satisfying i ) and ii ) have the same structure, i.e., there is a 1–1

correspondence between them such that the corresponding cycles have the same length.

§2. Proofs of general results

In this section we shall prove Theorems A– C. Firstly, we should set up some preliminaries

works. Let M = (S1, S2, . . . , Sm) be a set of m sets. If each Si contains an element ai such

that ai 6= aj for i 6= j, then (a1, a2, . . . , am) is called a SDR of M. The following is a famous

condition for a system of sets to have a SDR.

Lemma 1(Hall’s theorem [7]) Let M = (S1, S2, . . . , Sm) be a system of sets. Then M has a

SDR iff for any k subsets of M, their union has at least k elements, 1 ≤ k ≤ m.

The following is an application of Lemma 1.

Lemma 2 Let B1 = {α1, α2, . . . , αm},B2 = {β1, β2, . . . , βm} be a pair of bases of a linearly

vector space Vm over a field F . Then M = (S1, S2, . . . , Sm) has a SDR, where Si = Int(αi) is

the set of vectors of B2 which spans αi, 1 ≤ i ≤ m.

Proof Suppose on the contrary. Then there is an integer number k and k subsets, say

S1, S2, . . . , Sk such that ∣∣∣∣∣

k⋃

i=1

Si

∣∣∣∣∣ < k (2)

This shows that α1, α2, . . . , αk may be generated by less than k elements of B2, a contradiction

as desired. �

Proof of Theorem A Let B be a longest cycle base of G and C be a cycle of G. Then there

is a set Int(C) of cycles of B which span C, i.e., C =
∑

Ci∈C

⊕ Ci. If there is a cycle Ci ∈ Int(C)

with |Ci| < |C|, then B1 = B − Ci + C is another cycle base with length longer than that

of B1, contrary to the definition of B. Thus, (1) holds for every cycle of G. On the other

hand, suppose that B is a cycle base of G satisfying (1) and B1 is a longest cycle base of G.

Let B = {α1, α2, . . . , αm}, B1 = {γ1, γ2, . . . , γm}, m = β(G). Then for each γi ∈ B1, there is

a set Int(γi) of cycles of B which span γi. By Lemma 2, (Int(γ1), Int(γ2), . . . , Int(γm)) has a

SDR= (α
′

1, α
′

2, . . . , α
′

m) such that α
′

i ∈ Int(γi), 1 ≤ i ≤ m. Then by (1), we have that

|α′

i| ≥ | γi| , 1 ≤ i ≤ m

which implies that l(B) ≥ l(B1) and so, B is also a longest cycle base of G. �

Proof of Theorem B Let B be a longest cycle base of G such that | B ∩ {C1, C2, . . . , Cs}|
is as large as possible. If | B ∩ {C1, C2, . . . , Cs}| = s, then Ci ∈ B for 1 ≤ i ≤ s. B is the

right cycle base. Otherwise, there is an integer k (1 ≤ k ≤ s) such that Ck /∈ B. Then B has

a subset Int(Ck) spanning Ck. It is clear that Int(Ck) * {C1, C2, . . . , Cs}. Hence, there is a
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cycle Cj ∈ Int(Ck)\{C1, C2, . . . , Cs}. Since Theorem A shows that a cycle can’t be generated

by shorter cycles in a longest cycle base, we have that |Cj | = |Ck| . Thus, B1 = B−Cj +Ck is

a longest cycle base containing more cycles in {C1, C2, . . . , Cs} than that of B, a contradiction

as desired. �

Proof of Theorem C Let B1 = {C1, C2, . . . , Cm}, B2 = {C ′

1, C
′

2, . . . , C
′

m} be a pair of

longest cycle bases of G, m = β(G) . Then for each C
′

i ∈ B2, there is a subset Int(C
′

i) ⊆ B1

such that C
′

i is spanned by vectors of Int(C
′

i) . By Lemma 2,
(
Int(C

′

1), Int(C
′

2), . . . , Int(C
′

m)
)

has a SDR, say (C1, C2, . . . , Cm) with Ci ∈ Int(C
′

i), 1 ≤ i ≤ m . By Theorem A, |C ′

i | ≤
|Ci|, 1 ≤ i ≤ m . Let ϕ : Ci 7−→ C

′

i . Then ϕ is a 1-1 correspondence between B1 and B2. Since

both of them are longest, we have that |ϕ(Ci)| = |C
′

i | = |Ci|, 1 ≤ i ≤ m . This ends the proof

of Theorem C. �

§3. Applications to embedded Graphs

In this section, we shall apply the results of § 2 to obtain some important results in graph theory.

We first introduce some definition for graph embedding. Let G be a graph which is topologically

embedded in a surface S such that each component of S − G is an open disc. Such graph

embedding are called 2-cell embedding. We may also define such embedding in another way as

the monograph [8] did. An embedding of a graph is a rotations system π = {πv| v ∈ V (G)} (each

πv is a cyclic permutation of semi-edges around v) with a signature π : E(G) 7−→ {−1, 1} . If

a cycle C has even-number of negative signatures, it is called a two-sided cycle; otherwise, it

is called a one-sided cycle. If an embedding permits no one-sided cycles, then it is called an

orientable embedding; otherwise, it is non-orientable embedding. It is clear that a one-sided

cycle is contained in a Möbius band which bounds a crosscap.

Proof of Theorem D Let B1 = {α1, α2, . . . , αm} and B2 = {β1, β2, . . . , βm} be a pair of

longest(shortest) cycle bases of a graph G, m = β(G), such that B1 and B2 have s and t one-

sided cycles, resp. Suppose that s < t and k is an integer : s ≤ k ≤ t . We will show that

there exists a longest cycle base B with exactly k one-sided cycles. We apply induction on the

value of | s− t | . It is clear that the result holds for smaller value. Now suppose that it holds

for values smaller than | s − t | . By Lemma 2, (Int(β1), Int(β2), . . . , Int(βm)) has a SDR, say

(αi1 , αi2 , . . . , αim
) with αij

∈ Int(βj) , where each Int(βj) is the set of cycles of B1 which span

βj , 1 ≤ j ≤ m . Further, |αij
| = |βj | by the definition of B1 and B2, 1 ≤ j ≤ m . Since B2 has

more one-sided cycles than that of B1, there is a one-sided cycle βj such that Int(βj) contains

a two-sided cycle, say α
′

j , of B1. In fact, we may choose αij
= α

′

j by the 1-1 correspondence.

Now let B = B1 − αij
+ βj . Then B is another longest cycle base with exactly s+ 1 one-sided

cycles. By induction hypothesis, the result holds. �

Proof of Theorem D′ It follows from the proof of Theorem D. �

Before our proving of Theorem E, we have to do some preliminary works. First, we have the

following result for surface topology.

Lemma 3 Let G be an embedded graph and C a non-separating cycle of G. Then C can’t be
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generated by a group of separating cycles .

Proof Since every separating cycle is two–sided and a one–sided cycle can’t be spanned

by two–sided cycles, we may suppose that C is a two-sided non-separating cycle. Recall that

C is non-separating iff Gl(C) = Gr(C), where Gl(C) and Gr(C) are, respectively, the left–

subgraph and right–subgraph of C ( as defined in [8]). Suppose that C may be spanned by a set

of separating cycles. Then C may also by spanned by a set of facial walks : ∂f1, ∂f2, . . . , ∂fs ,

i.e.,

C = ∂f1 ⊕ ∂f2 ⊕ . . .⊕ ∂fs , Int(C) = { ∂f1, ∂f2, . . . , ∂fs },

This implies that for every edge e of C , e is covered(contained) in exactly one facial walk

of Int(C) = { ∂f1, ∂f2, . . . , ∂fs } and every edge in { ∂f1, ∂f2, . . . , ∂fs }\E(C) is contained in

exactly two walks in { ∂f1, ∂f2, . . . , ∂fs }.
Let x ∈ V (C) and e be an edge of C containing x . Then the local rotation of edges incident

to x is Πx = ( e, e1, e2, . . . , ep, ep+1, . . . , eq), where ep+1 is another edge of C having a common

vertex with e. Each pair of consecutive edges forms a corner ∠ei xei+1 containing x. It is clear

that each corner is contained in a region bounded by some facial walk in Int(C). If the corner

∠exe1 is contained in a region bounded by a facial walk, then each corner ∠ei xei+1 (1 ≤ i ≤ p)
is also contained in some facial walk. In particular, ep+1 is also contained in a facial walk.

Thus, if a facial walk of Int(C) is on the right–hand side of C and shares an edge with C, then

all corner together with its edges on the right–side of C are contained in facial walks of Int(C).

Since each edge of C is contained in exactly one facial walk of Int(C), we see that no facial walk

of Int(C) may contain an edge of C which is in Gl(C). Notice that C is non-separating and

thus there is an path P starting from an edge of Gr(C) containing a vertex of C and ending

at another edge in Gl(C) which contains a vertex of C. This implies that G∗, the dual graph

of G, contains a path P ∗ connecting a pair of facial walks which are on the distinct side of C.

We may choose P ∗ such that it has no edge corresponding to an edge of C. It is easy to see

that the vertices of P ∗ correspond to a set of facial walks of Int(C) which form a facial walk

chain. Hence, the two end–facial walks corresponding to the two end–vertices of P must be in

Int(C). This is impossible since Int(C) has no such pair of facial walks ( containing edges in C )

on distinct side of C. This ends the proof of Lemma 3. �

Proof of Theorem E Let B be a longest cycle base and C a longest non-separating cycle. If

C /∈ B, then C is spanned by a set Int(C) of cycles of B. By Lemma 3, Int(C) contains a non-

separating cycle C
′

which is no shorter than that of C ( by (1) of Theorem A ), so |C| = |C ′ |
and C

′

is also a longest non-separating cycle. This proves the first part of Theorem E. Now let

B1 = {α1, α2, . . . , αm, αm+1, . . . , αβ(G)},
B2 = {γ1, γ2, . . . , γn, γn+1, . . . , γβ(G)},

be a pair of longest cycle bases with exactly m and n non-separating cycles. Let αi(1 ≤ i ≤ m)

and γj(1 ≤ j ≤ n) be non-separating cycles of B1 and B1, respectively. Then for each γi ∈ B2,

there is a set Int(γi) of cycles of B1 spanning γi. By the proving procedure of Theorem A, the
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system of sets (
Int(γ1), Int(γ2), . . . , Int(γn), . . . , Int(γβ(G))

)

has a SDR (α
′

1, α
′

2, . . . , α
′

n, . . . , α
′

β(G) ) and further α
′

i ∈ Int(γi) such that |α′

i| = | γi|, 1 ≤ i ≤
β(G). It is clear that there is an integer, say k(1 ≤ k ≤ n), such that α

′

k is separating since

m < n implies that B2 has more longest non-separating cycle than that of B1. Now consider

the set B3 = B2−γk +α
′

k is a longest cycle base containing exactly n−1 longest non-separating

cycles. Repeating this procedure, we may find a longest cycle base with exactly l longest non-

separating cycles for each l : m ≤ l ≤ n. This ends the proof of Theorem E. �

Proof of Theorem F Let B1 = {α1, α2, . . . , αm, αm+1, . . . , αβ(G)} be a MCB (minimum

cycle base) of an LEW-embedded graph G, where αi(1 ≤ i ≤ m) and αj(m < j ≤ β(G))

are, respectively, non-separating cycle and separating cycle. Suppose that there are ϕ facial

walks: ∂f1, ∂f2, . . . , ∂fϕ. It is clear that αm+1, αm+2, . . . , αβ(G) may be linearly expressed

by {∂f1, ∂f2, . . . , ∂fϕ−1}. Let ∂fi(1 ≤ i ≤ ϕ − 1) be a facial walk. Then ∂fi is spanned by

a subset Int(∂fi) of B1. Since B1 is shortest, every cycle of Int(∂fi) must be contractible by

Theorem A. Thus, {∂f1, ∂f2, . . . , ∂fϕ−1} is linearly equivalent to {αm+1, αm+2, . . . , αβ(G)}, i.e.,

β(G) −m = ϕ− 1(which says that B1 has exactly ν(
∑

) non-separating cycles, where ν(
∑

) is

the Euler-genus of the host surface
∑

on which G is embedded). This ends the proof of (2).

Let αi and αj be, respectively, non-separating cycle and separating cycle of B1 such that

|αi| ≤ |αj |. Then αj is spanned by a set Int(αj) of facial walks. It is clear that there is a facial

walk, say αk, of Int(αj) which can’t be generated by vectors in B1\{αj}. It is easy to see that

| ∂fk| < |αj |(since otherwise, |αi| ≤ | ∂fk| will contrary to the definition of LEW-embedded

graph). Hence, B1 − αj + ∂fk will be a shorter cycle base, contrary to the definition of B1. So,

we have |αi| > |αj | which ends the proof of (1).

Let

B1 = {α1, α2, . . . , αs, αs+1, . . . , αβ(G)},
B2 = {γ1, γ2, . . . , γt, γt+1, . . . , γβ(G)},

be a pair of MCBs such that {α1, α2, . . . , αs} and {γ1, γ2, . . . , γt} are, respectively, the set of

longest non-separating cycles of B1 and B2. Suppose that s ≤ t. Then for each γi(1 ≤ i ≤ β(G)),

there is a subset Int(γi) of B1 which span γi. By the proving procedure of Theorem A, the

system of sets: (Int(γ1), Int(γ2), . . . , Int(γβ(G))) has a SDR, say (α
′

1, α
′

2, . . . , α
′

β(G)) such that

α
′

i ∈ Int(γi) and |α′

i| = | γi| , 1 ≤ i ≤ β(G). By (1) we see that each α
′

i(1 ≤ i ≤ t) is non-

separating which implies that α
′

1, α
′

2, . . . , α
′

t is a collection of longest non-separating cycles of

G in B1. Thus, t ≤ s. This ends the proof of (3). �

Proof of Theorem G It follows from the proving procedure of Theorem E. �

Proof of Theorem H Notice that any cycle base consists of two parts: the first part is

determined by non-separating cycles while the second part is composed of separating cycles.

So, what we have to do is to show that any facial cycle may be generated by non-separating

cycles. Our proof depends on two steps.
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Step 1 Let x be a vertex of G. Then there is a non-separating cycle passing through x.

Let C
′

be a non-separating cycle of G which avoids x. Then by Menger’s theorem, there

are two inner disjoint paths P1 and P2 connecting x and C
′

. Let P1 ∩C
′

= {u}, P2 ∩C
′

= {v}.
Suppose further that u

−→
C

′

v and v
−→
C

′

u are two segments of C
′

, where
−→
C is an orientation of C.

Then there are three inner disjoint paths connecting u and v:

Q1 = u
−→
C v, Q2 = v

−→
Cu, Q3 = P1 ∪ P2 .

Since C
′

= Q1 ∪ Q2 is non-separating, at least one of cycles Q2 ∪ Q3 and Q1 ∪ Q3 is non-

separating by Lemma 3.

Step 2 Let ∂f be any facial cycle. Then there exist two non-separating cycles C1 and C2

which span ∂f .

In fact, we add a new vertex x into the inner region of ∂f(i.e., int(∂f)) and join new edges

to each vertex of ∂f . Then the resulting graph also satisfies the condition of Theorem H. By

Step 1, there is a non-separating C passing through x. Let u and v be two vertices of C ∩ ∂f .

Then u
−→
Cv together with two segments of ∂f connecting u and v forms a pair of non-separating

cycles. �

Proof of Theorem I and J It follows from the proving procedure of Theorem A and C. �

§4. Examples

Next, we will compute the lengths of longest cycle bases in some types of graphs.

Example 1 Let G be a “ Möbius ladder graph ” embedded in the projective plane as shown

in Fig.1.

y1

y2

yn

x1

x2

xn

Fig. 1

It is clear that G is non-planar and 3-regular. There are n quadrangles defined as

C
(i)
4 =





(xi, xi+1, yi+1, yi) , 1 ≤ i ≤ n− 1

(xn, y1, x1, yn) , i = n
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and n Hamiltonian cycles as

Hi =





H − {(xi, xi+1), ( yi, yi+1)}+ {(xi, yi), (xi+1, yi+1)}, 1 ≤ i ≤ n− 1

(x1, x2, . . . , xn, yn, yn−1, . . . , y2, y1), i = n

where H is the Hamiltonian cycle (x1, x2, . . . , xn, y1, y2, . . . , yn). It is easy to see that

C
(i)
4 ⊕Hi is the Hamiltonian cycle H .

Case 1 n ≡ 0 (mod 2).

Claim 1 {H1, H2, . . . , Hn} is a linearly independent set.

If not so, one may see that

H1 ⊕H2 ⊕ · · · ⊕Hn = 0

This implies that

(
H1 ⊕ C1

4

)
⊕

(
H2 ⊕ C2

4

)
⊕ · · · ⊕

(
Hn ⊕ C n

4

)
= C1

4 ⊕ C2
4 ⊕ · · · ⊕ Cn

4

i.e.,

nH = H = 0 ,

a contradiction.

Let C be a (2n-1)-cycle which is non-contractible. Since n ≡ 0 (mod 2), we have

Claim 2 C can’t be generated by {H1, H2, . . . , Hn}.

This follows from the fact that C is a one-sided cycle which can’t be spanned by two-sided

cycles. Then B = {C,H1, H2, . . . , Hn} is a longest cycle base. Otherwise, G would have a

longest cycle base which consists of n+ 1 Hamiltonian cycles, and so G is bipartite. This is a

contradiction with the fact that G has an odd cycle (x1, x2, . . . , xn, yn) .

Case 2 n ≡ 1 (mod 2)

Claim 3 {H1, H2, . . . , Hn−1} is a set of linearly independent cycles.

This time, we consider the contractible Hamiltonian cycle H . Then {H1, H2, . . . , Hn−1, H}
is also a set of linearly independent cycles. If not so, H would be the sum of H1, H2, . . . , Hn−1 ,

i.e.,

H = H1 ⊕H2 ⊕ · · · ⊕Hn−1 ,

that is,

H ⊕ C1
4 ⊕ C2

4 ⊕ · · · ⊕ C n−1
4 =

(
H1 ⊕ C1

4

)
⊕

(
H2 ⊕ C2

4

)
⊕

(
Hn−1 ⊕ C n−1

4

)

= (n− 1)H = 0 ,

Now, we have that

H = C1
4 ⊕ C2

4 ⊕ · · · ⊕ C n−1
4 .
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This is impossible(since C1
4 ⊕ C2

4 ⊕ · · · ⊕ C n−1
4 ⊕ Cn

4 = H ).

Let H
′

be a non-contractible Hamiltonian cycle. Then by Claim 2, B = {H1, H2, . . . ,

Hn−1, H,H
′} is a Hamiltonian base of G.

Example 2 Let us consider the longest cycle base ofKn, the complete graph with n vertices. It

is easy to see that β(Kn) = 1
2 (n− 1)(n− 2) = C 2

n−1, which suggests us to give a combinatorial

explanation of β(Kn). Suppose V (G) = {x1, x2, . . . , xn}. Then Kn − xn = Kn−1, i.e., the

complete graph with n − 1 vertices x1, x2, . . . , xn−1. Let us consider a ( n-1)-cycle
−→
C n−1 =

(x1, x2, . . . , xn−1) and xi, xj ∈ V (Cn−1)(i < j). Then Hi,j = xi−1
←−
CCn−1xj xi

−→
C n−1xj−1 is

a Hamiltonian path of Kn−1. Now we find β(Kn) Hamiltonian cycles defined as Cn(i, j) =

(xn xi−1
←−
CCn−1xj xi

−→
C n−1xj−1) in formal.

Claim 4 If | i− j| ≥ 2, then the set {Cn(i, j)|1 ≤ i < j ≤ n− 1} is linearly independent set.

This follows frow the fact that (xi, xj) ∈ E(Cn(i, j)) is an edge which can’t be deleted by

the definition of symmetric difference.

Case 1 n ≡ 1 (mod 2)

Now the n -cycles Cn(i, i + 1) = (xn, xi+1, xi+2, . . . , xn−1, x1, x2, . . . , xi), (1 ≤ i ≤ n − 1)

is linearly independent cycles. Otherwise, we have that

Cn(1, 2)⊕ Cn(2, 3)⊕ . . .⊕ Cn(n− 1, 1) = 0

which implies ∩Cn−1 = 0, a contradiction! Based on this and Claim 4, {Cn(i, j)|1 ≤ i < j ≤
n− 1} is a set of linearly independent Hamiltonian cycles.

Case 2 n ≡ 0 (mod 2)

Although {Cn(1, 2), Cn(2, 3), . . . , Cn(n, 1)} is linearly dependent set of Hamilton cycles,

{Cn(1, 2), Cn(2, 3), . . . , Cn(n − 1, n)} is a set of linearly independent cycles. Since Kn can’t

have a Hamiltonian base, it’s longest cycle base is {Cn(i, j)|1 ≤ i < j ≤ n}\{Cn(n, 1)} together

with a (n-1)-cycle (1, 2, . . . ,n - 1).

Example 3 Let G be an outer planar triangular graph embedded in the sphere with its

triangular faces f1, f2, . . . , fϕ−1. Then it has exactly one Hamiltonian cycle ∂fϕ, here we use

∂f to denote the boundary of a face f . By Euler’s formula, ϕ − 1 = β(G), where ϕ is the

number of faces. Let us define a set of cycles as following

Cn = ∂fϕ,

Cn−1 = ∂f1 ⊕ ∂f2 ⊕ · · · ⊕ ∂fϕ−2, C
′

n−1 = ∂fϕ−1 ⊕ ∂fϕ−2 ⊕ · · · ⊕ ∂f2

Cn−2 = ∂f1 ⊕ ∂f2 ⊕ · · · ⊕ ∂fϕ−3, C
′

n−2 = ∂fϕ−1 ⊕ ∂fϕ−2 ⊕ · · · ⊕ ∂f3

Cn−k = ∂f1 ⊕ ∂f2 ⊕ · · · ⊕ ∂fϕ−k−1

C
′

n−k = ∂fϕ−1 ⊕ ∂fϕ−2 ⊕ · · · ⊕ ∂fk+1, 1 ≤ k ≤ ϕ− 2.
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f1

f2

f3

fϕ−2

fϕ−1

fϕ

b b

Fig. 2

B =





{
Cn, Cn−1, Cn−2, . . . , Cn+3

2

}
∪

{
C

′

n−1, C
′

n−2, . . . , C
′

n+3
2

}
, ϕ ≡ 0 (mod 2)

{
Cn, Cn−1, Cn−2, . . . , Cn+4

2

}
∪

{
C

′

n−1, C
′

n−2, . . . , C
′

n+2
2

}
, ϕ ≡ 1 (mod 2)

Thus B satisfies the condition of Theorem A. Hence, B is a longest cycle base, and the

length of longest cycle base is

l(B) =





n+ 2(n− 1) + 2(n− 2) + · · ·+ 2

(
n+ 3

2

)
, ϕ ≡ 0 (mod 2)

n+ 2(n− 1) + 2(n− 2) + · · ·+ 2

(
n+ 4

2

)
+
n+ 2

2
, ϕ ≡ 1 (mod 2)

Example 4 Again we consider the “ Möbius ladder graph ” in Fig.1. It is clear that the

edge–width(i.e., ew(G)) is n+ 1 and there are n+ 1 shortest non-separating cycles:

Ci =





(y1, y2, . . . , yi, xi, xi+1, . . . , xn), 1 ≤ i ≤ n

(y1, y2, . . . , yn, x1), i = n+ 1

Notice that β(G) = n + 1 and {C1, C2, . . . , Cn+1} may generate every facial cycle and

every non-contractible cycle of G. Thus, B = {C1, C2, . . . , Cn} is a shortest non-separating

cycle base with length l(B) = (n+1)2. Although there are many such bases in G, they have the

same structure as we have shown in Theorem J. Since our definition of non-separating cycles on

locally orientable surface refuses the existence of facial cycles in such shortest non-separating

cycle base, there may exist an edge contained in exactly one cycle in such a base. For instance,

the edge (x1, yn) in Fig.1 is contained in exactly one non-separating cycle of such shortest cycle

base.
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