Supermagic Coverings of Some Simple Graphs

P.Jeyanthi

Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628 215
P.Selvagopal

Department of Mathematics, Cape Institute of Technology,
Levengipuram, Tirunelveli Dist.-627 114

E-mail: jeyajeyanthi@rediffmail.com, selvagopaal@gmail.com

Abstract

A simple graph $G=(V, E)$ admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. We say that G is Smarandachely pair $\{s, l\} H$-magic if there is a total labeling $f: V \cup E \rightarrow\{1,2,3, \cdots,|V|+|E|\}$ such that there are subgraphs $H_{1}=\left(V_{1}, E_{1}\right)$ and $H_{2}=\left(V_{2}, E_{2}\right)$ of G isomorphic to H, the sum $\sum_{v \in V_{1}} f(v)+\sum_{e \in E_{1}} f(e)=s$ and $\sum_{v \in V_{2}} f(v)+\sum_{e \in E_{2}} f(e)=l$. Particularly, if $s=l$, such a Smarandachely pair $\{s, l\} H$-magic is called H-magic and if $f(V)=\{1,2, \cdots,|V|\}, G$ is said to be a H-supermagic. In this paper we show that edge amalgamation of a finite collection of graphs isomorphic to any 2-connected simple graph H is H-supermagic.

Key Words: H-covering, Smarandachely pair $\{s, l\} H$-magic, H-magic, H-supermagic.
AMS(2010): 05C78

§1. Introduction

The concept of H-magic graphs was introduced in [3]. An edge-covering of a graph G is a family of different subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ such that each edge of E belongs to at least one of the subgraphs $H_{i}, 1 \leq i \leq k$. Then, it is said that G admits an $\left(H_{1}, H_{2}, \ldots, H_{k}\right)$ - edge covering. If every H_{i} is isomorphic to a given graph H, then we say that G admits an H-covering.

Suppose that $G=(V, E)$ admits an H-covering. We say that a bijective function f : $V \cup E \rightarrow\{1,2,3, \cdots,|V|+|E|\}$ is an H-magic labeling of G if there is a positive integer $m(f)$, which we call magic sum, such that for each subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to H, we have, $f\left(H^{\prime}\right)=\sum_{v \in V^{\prime}} f(v)+\sum_{e \in E^{\prime}} f(e)=m(f)$. In this case we say that the graph G is H-magic. When $f(V)=\{1,2,|V|\}$, we say that G is H-supermagic and we denote its supermagic-sum by $s(f)$.

We use the following notations. For any two integers $n<m$, we denote by $[n, m]$, the set of all consecutive integers from n to m. For any set $\mathbb{I} \subset \mathbb{N}$ we write, $\sum \mathbb{I}=\sum_{x \in \mathbb{I}} x$ and for any integers $k, \mathbb{I}+k=\{x+k: x \in \mathbb{I}\}$. Thus $k+[n, m]$ is the set of consecutive integers from $k+n$ to

[^0]$k+m$. It can be easily verified that $\sum(\mathbb{I}+k)=\sum \mathbb{I}+k|\mathbb{I}|$. If $\mathbb{P}=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ is a partition of a set X of integers with the same cardinality then we say \mathbb{P} is an n-equipartition of X. Also we denote the set of subsets sums of the parts of \mathbb{P} by $\sum \mathbb{P}=\left\{\sum X 1, \sum X_{2}, \cdots, \sum X_{n}\right\}$. Finally, given a graph $G=(V, E)$ and a total labeling f on it we denote by $f(G)=\sum f(V)+\sum f(E)$.

§2. Preliminary Results

In this section we give some lemmas which are used to prove the main results in Section 3.

Lemma 2.1 Let h and k be two positive integers and h is odd. Then there exists a k equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$ of $X=[1, h k]$ such that $\sum X_{r}=\frac{(h-1)(h k+k+1)}{2}+r$ for $1 \leq r \leq k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P}=\frac{(h-1)(h k+k+1)}{2}+$ $[1, k]$.

Proof Let us arrange the set of integers $X=[1, h k]$ in a $h \times k$ matrix \mathcal{A} as given below.

$$
\mathcal{A}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & k-1 & k \\
n+1 & n+2 & \cdots & 2 k-1 & 2 k \\
2 n+1 & 2 n+2 & \cdots & 3 k-1 & 3 k \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
(h-1) k+1 & (h-1) k+2 & \cdots & h k-1 & h k
\end{array}\right)_{h \times k}
$$

That is, $\mathcal{A}=\left(a_{i, j}\right)_{h \times k}$ where $a_{i, j}=(i-1) k+j$ for $1 \leq i \leq h$ and $1 \leq j \leq k$. For $1 \leq r \leq k$, define $X_{r}=\left\{a_{i, r} / 1 \leq i \leq \frac{h+1}{2}\right\} \cup\left\{a_{i, k-r+1} / \frac{h+3}{2} \leq i \leq h\right\}$. Then

$$
\begin{aligned}
\sum X_{r} & =\sum_{i=1}^{\frac{h+1}{2}} a_{i, r}+\sum_{i=\frac{h+3}{2}}^{h} a_{i, k-r+1} \\
& =\sum_{i=1}^{\frac{h+1}{2}}(i-1) k+r \sum_{i=\frac{h+3}{2}}^{h}(i-1) k+k-r+1 \\
& =\frac{h^{2} k+h-k-1}{2}+r \\
& =\frac{(h-1)(h k+k+1)}{2}+r \quad \text { for } \quad 1 \leq r \leq k
\end{aligned}
$$

Hence, $\sum \mathbb{P}=\frac{(h-1)(h k+k+1)}{2}+[1, k]$.
Example 2.2 Let $h=9, k=6$ and $X=[1,54]$. Then the partition subsets are $X_{1}=$ $\{1,7,13,19,25,36,42,48,54\}, X_{2}=\{2,8,14,20,26,35,41,47,53\}, X_{3}=\{3,9,15,21,27,34$, $40,46,52\}, X_{4}=\{4,10,16,22,28,33,39,45,51\}, X_{5}=\{5,11,17,23,29,32,38,44,50\}$ and $X_{6}=$ $\{6,12,18,24,30,31,37,43,49\} . \sum X_{r}=\frac{(h-1)(h k+k+1)}{2}+r=244+r$ for $1 \leq r \leq 6$.

Lemma 2.3 Let h and k be two positive integers such that h is even and $k \geq 3$ is odd. Then there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$ of $X=[1, h k]$ such that $\sum X_{r}=$ $\frac{(h-1)(h k+k+1)}{2}+r$ for $1 \leq r \leq k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P}=\frac{(h-1)(h k+k+1)}{2}+[1, k]$.

Proof Let us arrange the set of integers $X=\{1,2,3, \cdots, h k\}$ in a $h \times k$ matrix \mathcal{A} as given below.

$$
\mathcal{A}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & k-1 & k \\
n+1 & n+2 & \cdots & 2 k-1 & 2 k \\
2 n+1 & 2 n+2 & \cdots & 3 k-1 & 3 k \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
(h-1) k+1 & (h-1) k+2 & \cdots & h k-1 & h k
\end{array}\right)_{h \times k}
$$

That is, $\mathcal{A}=\left(a_{i, j}\right)_{h \times k}$ where $a_{i, j}=(i-1) k+j$ for $1 \leq i \leq h$ and $1 \leq j \leq k$. For $1 \leq r \leq k$, define $Y_{r}=\left\{a_{i, r} / 1 \leq i \leq \frac{h}{2}\right\} \cup\left\{a_{i, k-r+1} / \frac{h}{2}+1 \leq i \leq h-1\right\}$. Then

$$
\begin{aligned}
\sum Y_{r} & =\sum_{i=1}^{\frac{h}{2}} a_{i, r}+\sum_{i=\frac{h}{2}+1}^{h-1} a_{i, k-r+1} \\
& =\sum_{i=1}^{\frac{h}{2}}\{(i-1) k+r\}+\sum_{i=\frac{h}{2}+1}^{h-1}\{(i-1) k+k-r+1\} \\
& =\frac{k(h-1)^{2}+h-k-2}{2}+r
\end{aligned}
$$

For $1 \leq r \leq k$, define $X_{r}=Y_{\sigma(r)} \cup\{(h-1) k+\pi(r)\}$, where σ and π denote the permutations of $\{1,2, \cdots, k\}$ given by $\sigma(r)=\left\{\begin{array}{lll}\frac{k-2 r+1}{2} & \text { for } & 1 \leq r \leq \frac{k-1}{2} \\ \frac{3 k-2 r+1}{2} & \text { for } & \frac{k+1}{2} \leq r \leq k\end{array}\right.$ and $\pi(r)=$ $\left\{\begin{array}{lll}2 r & \text { for } \quad 1 \leq r \leq \frac{k-1}{2} \\ 2 r-k & \text { for } & \frac{k+1}{2} \leq r \leq k\end{array}\right.$. Then

$$
\sum X_{r}=\sum Y_{\sigma(r)}+(h-1) k+\pi(r)
$$

$$
=\frac{k(h-1)^{2}+h-k-2}{2}+\sigma(r)+(h-1) k+\pi(r)
$$

$\sum X_{r}=\left\{\begin{array}{ll}\frac{k(h-1)^{2}+h-k-2}{2}+\frac{k-2 r+1}{2}+(h-1) k+2 r & \text { for } \quad 1 \leq r \leq \frac{k-1}{2} \\ \frac{k(h-1)^{2}+h-k-2}{2}+\frac{3 k-2 r+1}{2}+(h-1) k+2 r-k & \text { for } \quad \frac{k+1}{2} \leq r \leq k\end{array}\right.$. On simplification we get $\sum X_{r}=\frac{(h-1)(h k+k+1)}{2}+r \quad$ for $\quad 1 \leq r \leq k$. Hence, $\sum \mathbb{P}=$ $\frac{(h-1)(h k+k+1)}{2}+[1, k]$.

Example 2.4 Let $h=6, k=5$ and $X=[1,30] . Y_{1}=\{1,6,11,20,25\}, Y_{2}=\{2,7,12,19,24\}$, $Y_{3}=\{3,8,13,18,23\}, Y_{4}=\{4,9,14,17,22\}$ and $Y_{5}=\{5,10,15,16,21\}$. By definition the partition subsets are, $X_{r}=Y_{\sigma(r)} \cup\left\{(h-1) k+\pi(r)\right.$ for $1 \leq r \leq 5 . X_{1}=\{2,7,12,19,24,27\}, X_{2}=$ $\{1,6,11,20,25,29\}, X_{3}=\{5,10,15,16,21,26\} X_{4}=\{4,9,14,17,22,28\} X_{5}=\{3,8,13,18,23,30\}$, Now, $\sum X_{r}=\frac{(h-1)(h k+k+1)}{2}+r=90+r$ for $1 \leq r \leq 5$.

Lemma 2.5 If h is even, then there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$ of $X=$ $[1, h k]$ such that $\sum X_{r}=\frac{h(h k+1)}{2}$ for $1 \leq r \leq k$. Thus, the subsets sum are equal and is equal to $\frac{h(h k+1)}{2}$.

Proof Let us arrange the set of integers $X=\{1,2,3, \cdots, h k\}$ in a $h \times k$ matrix \mathcal{A} as given below.

$$
\mathcal{A}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & k-1 & k \\
n+1 & n+2 & \cdots & 2 k-1 & 2 k \\
2 n+1 & 2 n+2 & \cdots & 3 k-1 & 3 k \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
(h-1) k+1 & (h-1) k+2 & \cdots & h k-1 & h k
\end{array}\right)_{h \times k}
$$

That is, $\mathcal{A}=\left(a_{i, j}\right)_{h \times k}$ where $a_{i, j}=(i-1) k+j$ for $1 \leq i \leq h$ and $1 \leq j \leq k$. For $1 \leq r \leq k$, define $X_{r}=\left\{a_{i, r} / 1 \leq i \leq \frac{h}{2}\right\} \cup\left\{a_{i, k-r+1} / \frac{h}{2}+1 \leq i \leq h-1\right\}$. Then

$$
\begin{aligned}
\sum X_{r} & =\sum_{i=1}^{\frac{h}{2}} a_{i, r}+\sum_{i=\frac{h}{2}+1}^{h} a_{i, k-r+1} \\
& =\sum_{i=1}^{\frac{h}{2}}\{(i-1) k+r\}+\sum_{i=\frac{h}{2}+1}^{h}\{(i-1) k+k-r+1\}=\frac{h(h k+1)}{2}
\end{aligned}
$$

Thus, the subsets sum are equal and is equal to $\frac{h(h k+1)}{2}$.
Example 2.6 Let $h=6, k=5$ and $X=[1,30]$. Then the partition subsets are $X_{1}=$ $\{1,6,11,20,25,30\}, X_{2}=\{2,7,12,19,24,29\}, X_{3}=\{3,8,13,18,23,28\}, X_{4}=\{4,9,14,17$, $22,27\}$ and $X_{5}=\{5,10,15,16,21,26\}$. Now, $\sum X_{r}=\frac{h(h k+1)}{2}=93$ for $1 \leq r \leq 5$.

Lemma 2.7 Let h and k be two even positive integers and $h \geq 4$. If $X=[1, h k+1]-\left\{\frac{k}{2}+1\right\}$, there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$ of X such that $\sum X_{r}=\frac{h^{2} k+3 h-k-2}{2}+r$ for $1 \leq r \leq k$. Thus $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^{2} k+3 h-k-2}{2}+[1, k]$.

Proof First we prove this lemma for $h=2$ and we generalize for any even integer $h \geq 4$.
Case 1: $h=2$.
$X=[1,2 k+1]-\left\{\frac{k}{2}+1\right\}$. For $1 \leq r \leq k$, define

$$
X_{r}=\left\{\begin{array}{lll}
\left\{\frac{k}{2}+1-r, k+1+2 r\right\} & \text { for } \quad 1 \leq r \leq \frac{k}{2} \\
\left\{\frac{3 k}{2}+2-r, 2 r\right\} & \text { for } \quad \frac{k}{2}+1 \leq r \leq k
\end{array}\right.
$$

Hence, $\sum X_{r}=\frac{3 k}{2}+2+r$ for $1 \leq r \leq k$.
Case 2: $h \geq 4$
Let $Y=[1,2 k+1]-\left\{\frac{k}{2}+1\right\}$ and $Z=[2 k+2, h k+1]$. Then $X=Y \cup Z$. By Case 1 , there exists a k-equipartition $\mathbb{P}_{1}=\left\{Y_{1}, Y_{2}, \cdots, Y_{k}\right\}$ of Y such that

$$
\begin{equation*}
\sum Y_{r}=\frac{3 k}{2}+2+r \quad \text { for } \quad 1 \leq r \leq k \tag{1}
\end{equation*}
$$

Since $h-2$ is even, by Lemma 2.5, there exists a k-equipartition $\mathbb{P}_{2}^{\prime}=\left\{Z_{1}^{\prime}, Z_{2}^{\prime}, \cdots, Z_{k}^{\prime}\right\}$ of $[1,(h-2) k]$ such that $\sum Z_{r}^{\prime}=\frac{(h-2)(h k-2 k+1)}{2}$ for $1 \leq r \leq k$. Adding $2 k+1$ to $[1,(h-2) k]$, we get a k-equipartition $\mathbb{P}_{2}=\left\{Z_{1}, Z_{2}, \cdots, Z_{k}\right\}$ of $Z=[2 k+2, h k+$ 1] such that $\sum Z_{r}=(h-2)(2 k+1)+\frac{(h-2)(h k-2 k+1)}{2}$ for $1 \leq r \leq k$. Let $X_{r}=Y_{r} \cup Z_{r}$ for $1 \leq r \leq k$. Then,

$$
\begin{aligned}
\sum X_{r} & =\sum Y_{r} \cup \sum Z_{r} \\
& =\frac{h^{2} k+3 h-k-2}{2}+r \quad \text { for } \quad 1 \leq r \leq k
\end{aligned}
$$

Hence, $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^{2} k+3 h-k-2}{2}+[1, k]$.
Example 2.8 Let $h=6, k=6$ and $X=[1,37]-\{4\}$. Then the partition subsets are $X_{1}=$ $\{3,9,14,20,31,37\}, X_{2}=\{2,11,15,21,30,36\}, X_{3}=\{1,13,16,22,29,35\}, X_{4}=\{7,8,17,23$, $28,34\}, X_{5}=\{6,10,18,24,27,33\}$ and $X_{6}=\{5,12,19,25,26,32\}$. Now,

$$
\sum X_{r}=\frac{h^{2} k+3 h-k-2}{2}+r=113+r
$$

for $1 \leq r \leq 6$.
Lemma 2.9 Let h and k be two even positive integers. If $X=[1, h k+2]-\left\{1, \frac{k}{2}+2\right\}$, there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$ of X such that $\sum X_{r}=\frac{h^{2} k+5 h-k-2}{2}+r$ for $1 \leq r \leq k$. Thus $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^{2} k+5 h-k-2}{2}+[1, k]$.

Proof First we prove this lemma for $h=2$ and we generalize for any even integer $h \geq 4$.
Case 1: $\quad h=2$

$$
X=[1,2 k+2]-\left\{1, \frac{k}{2}+2\right\} . \text { For } 1 \leq r \leq k, \text { define }
$$

$$
X_{r}=\left\{\begin{array}{lll}
\left\{\frac{k}{2}+1-r, k+2+2 r\right\} & \text { for } & 1 \leq r \leq \frac{k}{2} \\
\left\{\frac{3 k}{2}+3-r, 2 r+1\right\} & \text { for } & \frac{k}{2}+1 \leq r \leq k
\end{array}\right.
$$

Hence, $\sum X_{r}=\frac{3 k}{2}+4+r$ for $1 \leq r \leq k$.
Case 2: $\quad h \geq 4$
Let $Y=[1,2 k+2]-\left\{1, \frac{k}{2}+2\right\}$ and $Z=[2 k+3, h k+2]$. Then $X=Y \cup Z$. By Case 1, there exists a k-equipartition ${\underset{\mathbb{P}}{1}}=\left\{Y_{1}, Y_{2}, \cdots, Y_{k}\right\}$ of Y such that

$$
\begin{equation*}
\sum Y_{r}=\frac{3 k}{2}+4+r \quad \text { for } \quad 1 \leq r \leq k \tag{2}
\end{equation*}
$$

Since $h-2$ is even, by Lemma 2.5, there exists a k-equipartition
$\mathbb{P}_{2}^{\prime}=\left\{Z_{1}^{\prime}, Z_{2}^{\prime}, \cdots, Z_{k}^{\prime}\right\}$ of $[1,(h-2) k]$ such that $\sum Z_{r}^{\prime}=\frac{(h-2)(h k-2 k+1)}{2}$ for $1 \leq r \leq k$. Adding $2 k+2$ to $[1,(h-2) k]$, we get a k-equipartition $\mathbb{P}_{2}=\left\{Z_{1}, Z_{2}, \cdots, Z_{k}\right\}$ of $Z=[2 k+3, h k+$ 2] such that $\sum Z_{r}=(h-2)(2 k+2)+\frac{(h-2)(h k-2 k+1)}{2}$ for $1 \leq r \leq k$. Let $X_{r}=Y_{r} \cup Z_{r}$ for $1 \leq r \leq k$. Then,

$$
\begin{aligned}
\sum X_{r} & =\sum Y_{r} \cup \sum Z_{r} \\
& =\frac{h^{2} k+5 h-k-2}{2}+r \quad \text { for } \quad 1 \leq r \leq k
\end{aligned}
$$

Hence, $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^{2} k+5 h-k-2}{2}+[1, k]$.
Example 2.10 Let $h=6, k=6$ and $X=[1,38]-\{1,5\}$.Then the partition subsets are $X_{1}=\{4,10,15,21,32,38\}, X_{2}=\{3,12,16,22,31,37\}, X_{3}=\{2,14,17,23,30,36\}, X_{4}=$ $\{8,9,18,24,29,35\}, X_{5}=\{7,11,19,25,28,34\}$ and $X_{6}=\{6,13,20,26,27,33\}$. Now, $\sum X_{r}=$ $\frac{h^{2} k+5 h-k-2}{2}+r=119+r$ for $1 \leq r \leq 6$.

§3. Main Results

Definition 3.1(Edge amalgamation of a finite collection of graphs, [1]) For any finite collection $\left(G_{i}, u_{i} v_{i}\right)$ of graphs G_{i}, each with a fixed edge $u_{i} v_{i}$, Carlson [1] defined the edge amalgamation \mathcal{E} dgeamal $\left\{\left(G_{i}, u_{i} v_{i}\right)\right\}$ as the graph obtained by taking the union of all the G_{i} 's and identifying their fixed edges.

Definition 3.2(Generalized Book) If all the G_{i} 's are cycles then \mathcal{E} dgeamal $\left\{\left(G_{i}, u_{i} v_{i}\right)\right\}$ is called a generalized book.

Theorem 3.3 Let H be a 2-connected (p, q) simple graph. Then the edge amalgamation \mathcal{E} dgeamal $\left\{\left(H_{i}, u_{i} v_{i}\right)\right\}$ of any finite collection $\left\{H_{i}, u_{i} v_{i}\right\}$ of graphs H_{i}, each with a fixed edge $u_{i} v_{i}$ isomorphic to H is H-supermagic for all values of p and q.

Proof Let $\left\{H_{i}, u_{i} v_{i}\right\}$ be a collection of n graphs H_{i}, each with a fixed edge $u_{i} v_{i}$ and isomorphic to a 2 -connected simple graph H.
Let $G=\mathcal{E}$ dgeamal $\left\{\left(H_{i}, u_{i} v_{i}\right)\right\}$ with vertex set V and edge set E. Note that $|V|=n(p-2)+2$ and $|E|=n(q-1)+1$. Let $H_{i}=\left(V_{i}, E_{i}\right)$ for $1 \leq i \leq n$. Label the common edge of G as $e=w_{1} w_{2}$. Let $V_{i}^{\prime}=V_{i}-\left\{w_{1}, w_{2}\right\}$ and $E_{i}^{\prime}=E-\{e\}$ for $1 \leq i \leq n$.

Case 1: n is odd
Subcase (i): p is even and q is odd
Since $p-2$ and $q-1$ are even by Lemma 2.5 there exists n-equipartitions $\mathbb{P}_{1}^{\prime}=\left\{X_{1}^{\prime}, X_{2}^{\prime}\right.$, $\left.\cdots, X_{n}^{\prime}\right\}$ of $[1,(p-2) n]$ and $\mathbb{P}_{2}^{\prime}=\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \cdots, Y_{n}^{\prime}\right\}$ of $[1,(q-1) n]$ such that

$$
\sum X_{i}^{\prime}=\frac{(p-2)(p n-2 n+1)}{2}, \quad \sum Y_{i}^{\prime}=\frac{(q-1)(q n-n+1)}{2}
$$

Add 2 to each element of the set $[1,(p-2) n]$ and $(p-2) n+3$ to each element of the set $[1,(q-1) n]$. We get n-equipartitions $\mathbb{P}_{1}=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ of $[3, p n-2 n+3]$ and $\mathbb{P}_{2}=\left\{Y_{1}, Y_{2}, \cdots, Y_{n}\right\}$ of $[p n-2 n+4,(p+q-3) n+3]$ such that
$\sum X_{i}=(p-2) 2+\frac{(p-2)(p n-2 n+1)}{2}, \quad \sum Y_{i}=(q-1)(p n-2 n+3)+\frac{(q-1)(q n-n+1)}{2}$.
Define a total labeling $f: V \cup E \rightarrow[1,(p+q-3) n+3]$ as follows:

$$
\begin{aligned}
f\left(w_{1}\right) & =1 \quad \text { and } \quad f\left(w_{2}\right)=2 \\
f(e) & =p n-2 n+3 \\
f\left(V_{i}^{\prime}\right) & =X_{i} \quad \text { for } \quad 1 \leq i \leq n \\
f\left(E_{i}^{\prime}\right) & =Y_{n-i+1} \quad \text { for } \quad 1 \leq i \leq n
\end{aligned}
$$

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}^{\prime}\right) \\
& =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum X_{i}^{\prime}+\sum Y_{n-i+1}^{\prime} \\
& =\frac{n(p+q)^{2}+p+q+5(n-1)}{2}-(n-1)(2 p+3 q) \\
& =\text { constant. }
\end{aligned}
$$

Since $H_{i} \cong H$ for $1 \leq i \leq n, G$ is H-supermagic.
Subcase (ii): p is odd and q is even
Since $p-2$ and $q-1$ are odd, by Lemma 2.1 there exists n-equipartitions $\mathbb{P}_{1}^{\prime}=\left\{X_{1}^{\prime}, X_{2}^{\prime}, \cdots\right.$, $\left.X_{n}^{\prime}\right\}$ of $[1,(p-2) n]$ and $\mathbb{P}_{2}^{\prime}=\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \cdots, Y_{n}^{\prime}\right\}$ of $[1,(q-1) n]$ such that

$$
\sum X_{i}^{\prime}=\frac{(p-3)(p n-n+1)}{2}+i, \quad \sum Y_{i}^{\prime}=\frac{(q-2)(q n+1)}{2}+i
$$

for $1 \leq i \leq n$. Add 2 to each element of the set $[1,(p-2) n]$ and $(p-2) n+3$ to each element of the set $[1,(q-1) n]$. We get n-equipartitions $\mathbb{P}_{1}=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ of $[3, p n-2 n+3]$ and $\mathbb{P}_{2}=\left\{Y_{1}, Y_{2}, \cdots, Y_{n}\right\}$ of $[p n-2 n+4,(p+q-3) n+3]$ such that
$\sum X_{i}=(p-2) 2+\frac{(p-3)(p n-n+1)}{2}+i, \quad \sum Y_{i}=(q-1)(p n-2 n+3)+\frac{(q-2)(n q+1)}{2}+i$
for $1 \leq i \leq n$. Define a total labeling $f: V \cup E \rightarrow[1,(p+q-3) n+3]$ as follows:

$$
\begin{aligned}
f\left(w_{1}\right) & =1 \quad \text { and } \quad f\left(w_{2}\right)=2 \\
f(e) & =p n-2 n+3 \\
f\left(V_{i}^{\prime}\right) & =X_{i} \quad \text { for } \quad 1 \leq i \leq n \\
f\left(E_{i}^{\prime}\right) & =Y_{n-i+1} \quad \text { for } \quad 1 \leq i \leq n
\end{aligned}
$$

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}^{\prime}\right) \\
& =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum X_{i}^{\prime}+\sum Y_{n-i+1}^{\prime} \\
& =\frac{n(p+q)^{2}+p+q+5(n-1)}{2}-(n-1)(2 p+3 q) \\
& =\text { constant. }
\end{aligned}
$$

Since $H_{i} \cong H$ for $1 \leq i \leq n, G$ is H-supermagic.
Subcase (iii): p and q are odd
Since $p-2$ is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{P}_{1}^{\prime}=\left\{X_{1}^{\prime}, X_{2}^{\prime}, \cdots, X_{n}^{\prime}\right\}$ of $[1,(p-2) n]$ such that $\sum X_{i}^{\prime}=\frac{(p-3)(p n-n+1)}{2}+i$ for $1 \leq i \leq n$. Since $q-1$ is even and n is odd, by Lemma 2.3 there exists an n-equipartition $\mathbb{P}_{2}^{\prime}=\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \cdots, Y_{n}^{\prime}\right\}$ of $[1,(q-1) n]$ such that $\sum Y_{i}^{\prime}=\frac{(q-2)(q n+1)}{2}+i$ for $1 \leq i \leq n$. Add 2 to each element of the set $[1,(p-2) n]$ and $(p-2) n+3$ to each element of the set $[1,(q-1) n]$. We get n-equipartitions $\mathbb{P}_{1}=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ of $[3, p n-2 n+3]$ and $\mathbb{P}_{2}=\left\{Y_{1}, Y_{2}, \cdots, Y_{n}\right\}$ of $[p n-2 n+4,(p+q-3) n+3]$ such that

$$
\begin{aligned}
\sum X_{i} & =(p-2) 2+\frac{(p-3)(n p-n+1)}{2}+i \\
\sum Y_{i} & =(q-1)(p n-2 n+3)+\frac{(q-2)(q n+1)}{2}+i
\end{aligned}
$$

for $1 \leq i \leq n$. Define a total labeling $f: V \cup E \rightarrow[1,(p+q-3) n+3]$ as follows:

$$
\begin{aligned}
f\left(w_{1}\right) & =1 \quad \text { and } \quad f\left(w_{2}\right)=2 \\
f(e) & =p n-2 n+3 \\
f\left(V_{i}^{\prime}\right) & =X_{i} \quad \text { for } \quad 1 \leq i \leq n \\
f\left(E_{i}^{\prime}\right) & =Y_{n-i+1} \quad \text { for } \quad 1 \leq i \leq n
\end{aligned}
$$

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}^{\prime}\right) \\
& =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum X_{i}^{\prime}+\sum Y_{n-i+1}^{\prime} \\
& =\frac{n(p+q)^{2}+p+q+5(n-1)}{2}-(n-1)(2 p+3 q) \\
& =\text { constant. }
\end{aligned}
$$

Since $H_{i} \cong H$ for $1 \leq i \leq n, G$ is H-supermagic.
Subcase (iv): p and q are even
Since $p-2$ is even and n is odd, by Lemma 2.3 there exists an n-equipartition $\mathbb{P}_{1}^{\prime}=$ $\left\{X_{1}^{\prime}, X_{2}^{\prime}, \cdots, X_{n}^{\prime}\right\}$ of $[1,(p-2) n]$ such that $\sum X_{i}^{\prime}=\frac{(p-3)(p n-n+1)}{2}+i$ for $1 \leq i \leq n$. Since $q-1$ is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{P}_{2}^{\prime}=\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \cdots, Y_{n}^{\prime}\right\}$ of
$[1,(q-1) n]$ such that $\sum Y_{i}^{\prime}=\frac{(q-2)(q n+1)}{2}+i$ for $1 \leq i \leq n$. Add 2 to each element of the set $[1,(p-2) n]$ and $(p-2) n+3$ to each element of the set $[1,(q-1) n]$. We get n-equipartitions $\mathbb{P}_{1}=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ of $[3, p n-2 n+3]$ and $\mathbb{P}_{2}=\left\{Y_{1}, Y_{2}, \cdots, Y_{n}\right\}$ of $[p n-2 n+4,(p+q-3) n+3]$ such that
$\sum X_{i}=(p-2) 2+\frac{(p-3)(p n-n+1)}{2}+i, \quad \sum Y_{i}=(q-1)(p n-2 n+3)+\frac{(q-2)(q n+1)}{2}+i$
for $1 \leq i \leq n$. Define a total labeling $f: V \cup E \rightarrow[1,(p+q-3) n+3]$ as follows:

$$
\begin{aligned}
f\left(w_{1}\right) & =1 \quad \text { and } \quad f\left(w_{2}\right)=2 \\
f(e) & =p n-2 n+3 \\
f\left(V_{i}^{\prime}\right) & =X_{i} \quad \text { for } \quad 1 \leq i \leq n \\
f\left(E_{i}^{\prime}\right) & =Y_{n-i+1} \quad \text { for } \quad 1 \leq i \leq n
\end{aligned}
$$

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}^{\prime}\right) \\
& =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum X_{i}^{\prime}+\sum Y_{n-i+1}^{\prime} \\
& =\frac{n(p+q)^{2}+p+q+5(n-1)}{2}-(n-1)(2 p+3 q) \\
& =\text { constant. }
\end{aligned}
$$

Since $H_{i} \cong H$ for $1 \leq i \leq n, G$ is H-supermagic.
Case 2: n is even
Subcase (i): p is even and q is odd
The argument in Subcase(i) of Case (1) is independent of the nature of n. Hence we get G is H-supermagic.

Subcase (ii): p is odd and q is even
The argument in Subcase(ii) of Case (1) is independent of the nature of n. Hence we get G is H-supermagic.

Subcase (iii): p and q are odd
Since $p-2$ is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{P}_{1}^{\prime}=\left\{X_{1}^{\prime}, X_{2}^{\prime}, \cdots, X_{n}^{\prime}\right\}$ of $[1,(p-2) n]$ such that $\sum X_{i}^{\prime}=\frac{(p-3)(p n-n+1)}{2}+i$ for $1 \leq i \leq n$. Since $q-1$ and n are even, by Lemma 2.7 there exists an n-equipartition $\mathbb{P}_{2}^{\prime}=\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \cdots, Y_{n}^{\prime}\right\}$ of $[1,(q-1) n+$ $1]-\left\{\frac{n}{2}+1\right\}$ such that $\sum Y_{i}^{\prime}=\frac{(q-1)^{2} n+3(q-1)-n-2}{2}+i$ for $1 \leq i \leq n$. Add 2 to each element of the set $[1,(p-2) n]$ and $(p-2) n+2$ to each element of the set $[1,(q-1) n]$. We get n-equipartitions $\mathbb{P}_{1}=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ of $[3, p n-2 n+3]$ and $\mathbb{P}_{2}=\left\{Y_{1}, Y_{2}, \cdots, Y_{n}\right\}$ of $[p n-2 n+3,(p+q-3) n+3]-\left\{(p-2) n+\frac{n}{2}+3\right\}$ such that

$$
\sum X_{i}=(p-2) 2+\frac{(p-3)(p n-n+1)}{2}+i
$$

$$
\sum Y_{i}=(q-1)(p n-2 n+2)+\frac{(q-1)^{2} n+3(q-1)-n-2}{2}+i
$$

for $1 \leq i \leq n$. Define a total labeling $f: V \cup E \rightarrow[1,(p+q-3) n+3]$ as follows:

$$
\begin{aligned}
f\left(w_{1}\right) & =1 \quad \text { and } \quad f\left(w_{2}\right)=2 \\
f(e) & =(p-2) n+\frac{n}{2}+3 \\
f\left(V_{i}^{\prime}\right) & =X_{i} \text { for } 1 \leq i \leq n \\
f\left(E_{i}^{\prime}\right) & =Y_{n-i+1} \quad \text { for } \quad 1 \leq i \leq n
\end{aligned}
$$

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}^{\prime}\right) \\
& =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum X_{i}^{\prime}+\sum Y_{n-i+1}^{\prime} \\
& =\frac{n(p+q)^{2}+p+q}{2}-(n-1)(2 p+3 q-3) \\
& =\text { constant. }
\end{aligned}
$$

Since $H_{i} \cong H$ for $1 \leq i \leq n, G$ is H-supermagic.
Subcase (iv): p and q are even
Since $p-2$ and n are even, by Lemma 2.9 there exists an n-equipartition $\mathbb{P}_{1}=\left\{X_{1}, X_{2}\right.$, $\left.\cdots, X_{n}\right\}$ of $[1,(p-2) n+2]-\left\{1, \frac{n}{2}+2\right\}$ such that $\sum X_{i}=\frac{(p-2)^{2} n+5(p-2)-n-2}{2}+i$ for $1 \leq i \leq n$.

Since $q-1$ is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{P}_{2}^{\prime}=\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \cdots, Y_{n}^{\prime}\right\}$ of $[1,(q-1) n]$ and $\sum Y_{i}^{\prime}=\frac{(q-2)(q n+1)}{2}+i$ for $1 \leq i \leq n$. Add $(p-2) n+3$ to each element of the set $[1,(q-1) n]$. We get an n-equipartition $\mathbb{P}_{2}=\left\{Y_{1}, Y_{2}, \cdots, Y_{n}\right\}$ of $[p n-2 n+4,(p+q-3) n+3]$ such that $\sum Y_{i}=(q-1)(p n-2 n+3)+\frac{(q-2)(q n+1)}{2}+i$ for $1 \leq i \leq n$. Define a total labeling $f: V \cup E \rightarrow[1,(p+q-3) n+3]$ as follows:

$$
\begin{aligned}
f\left(w_{1}\right) & =1 \quad \text { and } \quad f\left(w_{2}\right)=\frac{n}{2}+2 \\
f(e) & =p n-2 n+3 \\
f\left(V_{i}^{\prime}\right) & =X_{i} \quad \text { for } \quad 1 \leq i \leq n \\
f\left(E_{i}^{\prime}\right) & =Y_{n-i+1} \quad \text { for } \quad 1 \leq i \leq n
\end{aligned}
$$

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}^{\prime}\right) \\
& =f\left(w_{1}\right)+f\left(w_{2}\right)+f(e)+\sum X_{i}^{\prime}+\sum Y_{n-i+1}^{\prime} \\
& =\frac{n(p+q)^{2}+p+q}{2}-(n-1)(2 p+3 q-3) \\
& =\text { constant. }
\end{aligned}
$$

Since $H_{i} \cong H$ for $1 \leq i \leq n, G$ is H-supermagic.

Hence, the edge amalgamation \mathcal{E} dgeamal $\left\{\left(H_{i}, u_{i} v_{i}\right)\right\}$ of any finite collection $\left\{H_{i}, u_{i} v_{i}\right\}$ of graphs H_{i}, each with a fixed edge $u_{i} v_{i}$ and isomorphic to H is H-supermagic for all values of p and q.

Illustration 3.4 Let $H_{1}, H_{2}, H_{3}, H_{4}$ and H_{5} be five graphs isomorphic to the wheel $W_{4}=$ $C_{4}+K_{1}$ and their fixed edges given by dotted lines. Then the Edge amalgamation graph \mathcal{E} dgeamal $\left\{\left(H_{i}, u_{i} v_{i}\right)\right\}$ of the given collection is W_{4}-supermagic with supermagic sum 303.

Fig. 1

Illustration 3.5 Let H_{1}, H_{2}, H_{3} and H_{4} be four graphs isomorphic to H and their fixed edges given by dotted lines. Then the Edge amalgamation graph $\mathcal{E} d g e a m a l\left\{\left(H_{i}, u_{i} v_{i}\right)\right\}$ of the given collection is H-supermagic with supermagic sum 300 .

Fig. 2

Definition 3.6(Book with m-gon pages) Let n and m be any positive integers with $n \geq 1$ and $m \geq 3$. Then, n copies of the cycle C_{m} with an edge in common is called a book with n m-gon pages. That is, if $\left\{G i, u_{i} v_{i}\right\}$ is a collection of n copies of the cycle C_{m} each with a fixed edge $u_{i} v_{i}$ then $\mathcal{E} d g e a m a l\left\{\left(G_{i}, u_{i} v_{i}\right)\right\}$ is called a book with n m-gon pages.

A book with 3 pentagon pages is given below.

Fig. 3
Corollary 3.7 Books with n m-gon pages are C_{m}-supermagic for every positive integers $n \geq 1$ and $m \geq 3$.

Illustration $3.8 C_{5}$-supermagic covering of a book with 3 hexagon pages is given below. The supermagic sum is 167 .

Fig. 4
Theorem 3.9 Let $H_{i}=K_{1, k}$ with vertex set $V\left(H_{i}\right)=\left\{v_{i}, v_{i r}: 1 \leq r \leq k\right\}$ and the edge set $E\left(H_{i}\right)=\left\{v_{i} v_{i r}: 1 \leq r \leq k\right\}$ where $1 \leq i \leq k$ and G be a graph obtained by joining a new vertex w with $v_{11}, v_{21}, \cdots, v_{k 1}$. Then G is $K_{1, k}$-supermagic.

Proof Let $V_{i}=\left\{v_{i}, v_{i r}: 1 \leq r \leq k\right\}$ and $E_{i}=\left\{V_{i} v_{j r}: 1 \leq r \leq k\right\}$ for $1 \leq i \leq k$. Then the vertex and edge set of $G=(V, E)$ are given by $V=\cup_{i=1}^{k} V_{i} \cup\{v\}$ and $E=\cup_{i=1}^{k} E_{i} \cup$ $\left\{v v_{1}, v v_{2}, \cdots, v v_{k}\right\}$. Also $|V|=k^{2}+k+1$ and $|E|=k^{2}+k$. Let $V_{k+1}=\left\{w, v_{1}, v_{2}, \cdots, v_{k}\right\}$ and $E_{k+1}=\left\{w v_{1}, w v_{2}, \cdots, w v_{k}\right\}$ and $H_{k+1}=\left(V_{k+1}, E_{k+1}\right)$ be the graph with vertex set V_{k+1} and edge set E_{k+1}. Note that any edge of E belongs to at least one of the subgraphs H_{i} for $1 \leq i \leq k+1$. Since $H_{i} \cong K_{1, k}$ for $1 \leq i \leq k+1, G$ admits a $K_{1, k}$-covering.

Case 1: k is odd
Since $k+1$ is even, by Lemma 2.3, there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$ of $X=[1,(k+1) k]$ such that

$$
\begin{equation*}
\sum X_{i}=\frac{k(k+1)^{2}}{2}+i \quad \text { for } \quad 1 \leq i \leq k \tag{3}
\end{equation*}
$$

It can be easily verified from the definition of X_{r} in Lemma 2.3 that $\left(\frac{k+1}{2}-1\right) k+\sigma(r) \in X_{r}$ for $1 \leq r \leq k$, where σ denotes the permutation of $\{1,2, \cdots, k\}$ given by

$$
\sigma(r)=\left\{\begin{array}{ll}
\frac{k-2 r+1}{2} & \text { for } \quad 1 \leq r \leq \frac{k-1}{2} \\
\frac{3 k-2 r+1}{2} & \text { for } \quad \frac{k+1}{2} \leq r \leq k
\end{array} .\right.
$$

Construct $X_{k+1}=\left\{\left(\frac{k+1}{2}-1\right) k+\sigma(r): 1 \leq r \leq k\right\} \cup\left\{k^{2}+k+1\right\}$.

$$
\begin{align*}
\sum X_{k+1} & =\sum_{r=1}^{k}\left[\left(\frac{k+1}{2}-1\right) k+\sigma(r)\right]+k^{2}+k+1 \\
& =\frac{k^{2}(k-1)}{2}+\frac{k(k+1)}{2}+k^{2}+k+1 \\
& =\frac{k(k+1)^{2}}{2}+k+1 \tag{4}
\end{align*}
$$

From (1) and (2) we have

$$
\begin{equation*}
\sum X_{i}=\frac{k(k+1)^{2}}{2}+i \quad \text { for } \quad 1 \leq i \leq k+1 \tag{5}
\end{equation*}
$$

As k is odd, by Lemma 1 , there exists a $k+1$-equipartition $\mathbb{Q}^{\prime}=\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \cdots, Y_{k+1}^{\prime}\right\}$ of the set $Y=[1, k(k+1)]$ such that $\sum Y_{i}^{\prime}=\frac{(k-1)\left[(k+1)^{2}+1\right]}{2}+i$ for $1 \leq i \leq k+1$.

Adding $k^{2}+k+1$ to $[1, k(k+1)]$, we get a $k+1$-equipartition $\mathbb{Q}=\left\{Y_{1}, Y_{2}, \cdots, Y_{k+1}\right\}$ of the set $Y=\left[k^{2}+k+2,2 k^{2}+2 k+1\right]$ such that

$$
\begin{equation*}
\sum Y_{i}=k\left(k^{2}+k+1\right)+\frac{(k-1)\left[(k+1)^{2}+1\right]}{2}+i \quad \text { for } \quad 1 \leq i \leq k+1 \tag{6}
\end{equation*}
$$

Define a total labeling $f: V \cup E \rightarrow\left[1,2 k^{2}+2 k+1\right]$ as follows:
(i) $f(w)=k^{2}+k+1$.
(ii) $f\left(V_{i}\right)=X_{i}$ with $f\left(v_{i 1}\right)=\left(\frac{k+1}{2}-1\right) k+\sigma(r)$ for $1 \leq i \leq k+1$.
(iii) $f\left(E_{i}\right)=Y_{k+2-i}$ for $1 \leq i \leq k+1$.

Then for $1 \leq i \leq k+1$,

$$
\begin{aligned}
f\left(H_{i}\right) & =\sum f\left(V_{i}\right)+\sum f\left(E_{i}\right)=\sum X_{i}+\sum Y_{k+2-i} \\
& =\frac{4 k^{3}+5 k^{2}+5 k+2}{2},
\end{aligned}
$$

which is a constant. Since $H_{i} \cong K_{1, k}$ for $1 \leq i \leq k+1, G$ is $K_{1, k}$-supermagic.
Case 2: k is even
Since $k+1$ is odd, by Lemma 1 , there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$ of $X=[1,(k+1) k]$ such that

$$
\begin{equation*}
\sum X_{i}=\frac{k(k+1)^{2}}{2}+i \quad \text { for } \quad 1 \leq i \leq k \tag{7}
\end{equation*}
$$

It can be easily verified from the definition of X_{r} in Lemma 2.3 that $\left(\frac{k+2}{2}-1\right) k+r \in X_{r}$ for $1 \leq r \leq \frac{k}{2}$, and $\left(\frac{k}{2}-1\right) k+r \in X_{r}$ for $\frac{k}{2}+1 \leq r \leq k$. Construct $X_{k+1}=\left\{\left(\frac{k+2}{2}-1\right) k+r\right.$: $\left.1 \leq r \leq \frac{k}{2}\right\} \cup\left\{\left(\frac{k}{2}-1\right) k+r: \frac{k}{2}+1 \leq r \leq k\right\} \cup\left\{k^{2}+k+1\right\}$.

$$
\begin{align*}
\sum X_{k+1} & =\sum_{r=1}^{\frac{k}{2}}\left[\left(\frac{k+2}{2}-1\right) k+r\right]+\sum_{\frac{k}{2}+1}^{k}\left[\left(\frac{k}{2}-1\right) k+r\right]+k^{2}+k+1 \\
& =\frac{k^{2}(k-1)}{2}+\frac{k(k+1)}{2}+k^{2}+k+1 \\
& =\frac{k(k+1)^{2}}{2}+k+1 \tag{8}
\end{align*}
$$

From (5) and (6) we have

$$
\begin{equation*}
\sum X_{i}=\frac{k(k+1)^{2}}{2}+i \quad \text { for } \quad 1 \leq i \leq k+1 \tag{9}
\end{equation*}
$$

As k is even, by Lemma 2.3, there exists a $k+1$-equipartition $\mathbb{Q}^{\prime}=\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \cdots, Y_{k+1}^{\prime}\right\}$ of the set $Y=[1, k(k+1)]$ such that $\sum Y_{i}^{\prime}=\frac{(k-1)\left[(k+1)^{2}+1\right]}{2}+i$ for $1 \leq i \leq k+1$. Adding $k^{2}+k+1$ to $[1, k(k+1)]$, we get a $k+1$-equipartition $\mathbb{Q}=\left\{Y_{1}, Y_{2}, \cdots, Y_{k+1}\right\}$ of the set $Y=\left[k^{2}+k+2,2 k^{2}+2 k+1\right]$ such that

$$
\begin{equation*}
\sum Y_{i}=k\left(k^{2}+k+1\right)+\frac{(k-1)\left[(k+1)^{2}+1\right]}{2}+i \quad \text { for } \quad 1 \leq i \leq k+1 \tag{10}
\end{equation*}
$$

Define a total labeling $f: V \cup E \rightarrow\left[1,2 k^{2}+2 k+1\right]$ as follows:
(i) $f(w)=k^{2}+k+1$.
(ii) $f\left(V_{i}\right)=X_{i}$ with $f\left(v_{i 1}\right)=\left(\frac{k+2}{2}-1\right) k+r$ for $1 \leq i \leq \frac{k}{2}$ and $f\left(v_{i 1}\right)=\left(\frac{k}{2}-1\right) k+r$ for $\frac{k}{2}+1 \leq i \leq k$.
(iii) $f\left(E_{i}\right)=Y_{k+2-i}$ for $1 \leq i \leq k+1$.

Then for $1 \leq i \leq k+1$,

$$
\begin{aligned}
f\left(H_{i}\right) & =\sum f\left(V_{i}\right)+\sum f\left(E_{i}\right) \\
& =\sum X_{i}+\sum Y_{k+2-i} \\
& =\frac{4 k^{3}+5 k^{2}+5 k+2}{2}
\end{aligned}
$$

which is a constant. Since $H_{i} \cong K_{1, k}$ for $1 \leq i \leq k+1, G$ is $K_{1, k}$-supermagic. Thus, in both the cases G is $K_{1, k}$-supermagic with supermagic sum $s(f)=\frac{4 k^{3}+5 k^{2}+5 k+2}{2}$.

Illustration 3.10

Fig.1. G - is $K_{1,5}$-supermagic with supermagic sum 236.

Fig.2. G - is $K_{1,6}$-supermagic with supermagic sum 538.

References

[1] K.Carlson, Generalized books and Cm-snakes are prime graphs, Ars Combin. 80(2006) 215-221.
[2] J.A.Gallian, A Dynamic Survey of Graph labeling(DS6), The Electronic Journal of Combinatorics, 5(2005).
[3] A.Gutierrez, A.Llado, Magic coverings, J. Combin. Math. Combin. Comput., 55(2005), 43-56.
[4] P.Selvagopal, P.Jeyanthi, On Ck-supermagic graphs, International Journal of Mathematics and Computer Science, 3(2008), No. 1, 25-30.

[^0]: ${ }^{1}$ Received December 29, 2010. Accepted February 20, 2011.

