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Abstract: Symbolic n-plithogenic algebraic structures are considered as symmetric generalizations
of classical algebraic structures because they have n + 1 symmetric components. This paper is
dedicated to generalizing symbolic 3-plithogenic rings by defining symbolic 4-plithogenic rings and
5-plithogenic rings; these new classes of n-symbolic plithogenic algebraic structures will be defined
for the first time, and their algebraic substructures will be studied. AH structures are considered to
be a sign of the presence of symmetry within these types of ring, as they consist of several parts that
are similar in structure and symmetrical, and when combined with each other, they have a broader
structure resembling the classical consonant structure. Many related substructures will be presented
such as 4-plithogenic/5-plithogenic AH-ideals, 4-plithogenic/5-plithogenic AH-homomorphisms,
and 4-plithogenic AHS-isomorphisms will be discussed. We will show our results in terms of
theorems, with many clear numerical examples that explain the novelty of this work.

Keywords: symbolic 4-plithogenic ring; 4-plithogenic ah-ideal; 4-plithogenic ah-homomorphism;
symbolic 5-plithogenic ring; 5-plithogenic ah-ideal; 5-plithogenic ah-homomorphism

1. Introduction

One of the most attractive concepts for mathematicians is algebraic structures due to
their analog properties and close relationship with other branches of mathematics, such as
geometry and matrix theory [1,2].

During the last two years, researchers have become interested in studying symbolic n-
plithogenic algebraic structures. These structures were supposed by Smarandache in [3] as
novel generalizations of classical algebraic structures that have symmetric logical elements
combined with algebraic elements. These algebraic structures have been constructed in a
manner similar to their analogues using neutrosophic logic, where it is possible to clearly
see that the method that was used to construct the neutrosophic structures [4,5], the split-
complex numbers [6,7], and the weak fuzzy numbers [8] was used in the extension of
algebraic rings by plithogenic sets.

For the case of n = 2, we find many studies that deal with corresponding plithogenic
structures. In [9], Merkeci et al. defined the symbolic 2-plithogenic ring and studied its
elementary properties and substructures, such as AH-ideals, AH-homomorphisms, and
kernels. Laterally, their results were used by Taffach and other authors to define and
study symbolic 2-plithogenic vector spaces [10], symbolic 2-plithogenic modules [11], and
symbolic 2-plithogenic number theory [12]. A wide review of symbolic 2-plithogenic
algebraic structures is provided in [13,14].

This is what prompted other researchers to generalize the previous results to the
symbolic 3-plithogenic case. In [15], symbolic 3-plithogenic rings were handled for the first
time by Albasheer, et al.; then, symbolic 3-plithogenic vector spaces, modules, and number
theoretical concepts were defined and studied (see [16-19]).

This is what prompted us to follow up the previous scientific efforts and to study
4-plithogenic rings for the first time by providing basic definitions and proofs that describe
the algebraic behavior of the elements of these rings. It is noteworthy that these new rings
will be very useful in more extensive classes of algebraic modules and vector spaces, and
also cryptographic algorithms.
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We study AH-substructures because they have a symmetric structure, where the compo-

nents of an AH-ideal are classical ideals, and the components of the AH-homomorphism are
classical homomorphisms. These symmetric structures of AH-substructures gives us many
interesting results about the algebraic class of symbolic 4-plithogenic/5-plithogenic rings.

2. Main Discussion

Definition 1. Let R be a ring; the symbolic 4-plithogenic ring is:

4—5&:{%+mﬂ+@&+@%+MMaﬁRJ¥:RPBxﬂ:mmm}
Operations on 4 — SPR:

Addition:

[a0 + a1Py + axPy + azP3 + a4 Py| + [bo + b1 Py + bpPy + b3Ps + by Py] =

(a0 +bo) + (a1 +b1) Py + (a2 + ba) Py + (a3 + b3) P + (a4 + by) Py

Multiplication:

[a0 + a1Py + ax Py + azP3 + agPy)-[bg + b1 Py + baPy + b3 P3 + by Py =

aoby + (aphby + a1bo + a1b1) Py + (apby + arby + axbg + axby + axby) P+

(agbs + a1bs + axbs + aszbs + asbg + azby + azby) Ps+

(agby + a1by + axby + azby + asby + asby + asby + asbs + agby) Py.

It is clear that ( 4 — SPR) is a ring.

If R is commutative, then 4 — SPg is commutative, and if R has a unity, then 4 — SPr has

the same unity.

Example 1. Consider the ring R = Z3z = {0, 1,2}, the corresponding 4 — SPg is:

4 — SPr = {a+bP; +cP,+dP;+ePy;a,b,c,d,e € Z3}.

IfX:2+2P1 + 1Py + P34+ Py, Y = P + 2P3, then:

X4+Y =242P; +2P, + Py,

X—Y=242P —P3+P,,

XY =2P) +4P3+ 2Py +4P3 + P, +2P3 + P3 + 2P3 + Py + 2Py = 5P, + 13P3 + 3P;.

Theorem 1. Let 4 — SPg be a 4-plithogenic symbolic ring, with unity.

Let X = eg + e1Py + eaPy + e3P3 + e4 Py be an arbitrary element; then:

1.  Xisinvertible if and only if ey, eq +e1,e9 +e1+ex,e9+e1+ex+e3,e0+e1+ex+e3+ ¢4
are invertible.

2. X V=eg 4 [(eg+er) —eo P +[(eg+e1+e2) "t — (eg+e1) Pr+][ (eg +e1+
ery+e3) = (eg+er+e) P+ [(eo+er+eates+ey) T — (eg+er+ex+e3) Y]
P, .

Proof.

1.  Assume that X is invertible, then there exists Y = ng + n1P; + noP> + n3P; + ny4Py

such that X-Y = 1; hence:

eons + e1ns + exnz + eznz + ezng + ezny + ezng = 0 (1a)
egng = 1... (1b)
egny +e1ng+enp =0... (1lo) 1)
egny + epng +exnp +egnp +epng = 0... (1d),
eoiy + e1ny + exng + ezng + eqng + eqng + eqns + eqng(le)

From (1b), e is invertible.

By adding (1c) to (1b), we obtain (ey + e1) (19 + n1) = 1; thus, eg + 7 is invertible.
By adding (1d) to (1c) to (1b), (ep +e1 + e2)(ng + 11 +nz) = 1; hence, ey + 1 + €3
is invertible.

By adding (1a) to (1b) to (1c) to (1d),

(60 +e1+e+ 63) (Tl() +ny+nr + 1’13) = 1; hence, ¢y + e1 + e + e3 is invertible.
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Adding all equations gives:
(eog+e1+er+es+eq)(ng+n +ny+nz+mng) = 1; hence, eg + e +ex +e3+ ey
is invertible.
2. From the first part, we have:
no=eo Lmg+m =(egt+e) L ng+nitn=(egt+er+e) !, (eotert+ertes)!
= 0+”1+”2+”3/(€0+€1 +ex+eztes)” ! = ng +nq +np + n3 + ny ; then:
Y = [(80 +61) T ey ]Pl + {(60 +e1 + 62)71 — (60 +€1)71]P2+
[ €0+€1+€2+€3) -1 — (e + €1 +€2)_1}P3+
[

ep+er+exteztes) ! (€0+€1+62—|—€3)71]P4:X71.|:|

Example 2. Take R = Z3 = {0,1,2}, 4 — SPz, is the corresponding symbolic 4-plithogenic ring;
consider X = 2+ 2P, + Py € 4 — SPz,; then:

ep = 2 is invertible with eg ™' = 2, eg + €1 = 2 is invertible with (ep + 61)_1 =2,

eg + e1 + e = 1 is invertible with (eg + 1 + ez)_1 =1,

ep+ei1t+extes=1, (eg+er +€2+€3)71 =1,

ept+er+extestes =2, (eg+e +€2+€3+€4)71 = 2 hence:

X 1=24+02-2)P+(1-2)P,+(1—-1)Ps+ (2—1)Py =2+ 2P, + Py.

Definition 2. If X = m +nP; +cP, +qPs + 1Py € 4 — SPg, then X is idempotent if and only if
X =X.

Theorem 2. If X = m + nP; + cP» + qP; + 1Py € 4 — SPR, then X is idempotent if and only if
m,m~+n,m+n-+cm-+n+c+qgm+n-+c+q-+ 1 areidempotent.

Proof.
X? = X-X = (m+nPy + cPy + qP3 + IPy) (m + nPy + cP, + qP; + 1Py) =
m? + (mn + nm+ n-n)Py + (mc + nc+cm + cn + c-c) P+
(mqg+nq+cq+qm+gn+qc+q-q)P3+ (ml+nl+cl+ql +1Im+In+lc+Ig+1-1)

P,.
mq +nq+cq+qm+qn +qc +q-g = q (2a)
m?>=m... (2b)
X2 = X-X equivalents mn—+nm+nn=n... (2c) 2)

mc+nc+cm+cn+cc=c... (2d)
ml+nl+cl+ql+Im+In+lc+Ig+11=1(2e)

Equation (2b) implies that m is idempotent.

By adding (2¢) to (2b), we obtain (1 + 1)? = m + n; hence, m + n _is idempotent.

By adding (2¢) to (2b) to (2d), we obtain (1 + 1 4 ¢)*> = m +n + ¢; hence, m + n + ¢
is idempotent.

By adding (2a) to (2b) to (2c) to (2d), we obtain (m +n+c+ N =m+n+c+g;
thus, m + n + ¢ + g is idempotent. By adding all equations to each other, we obtain:

(m4+n+c+q+1)?>=m+n+c+q+1, thus m+ n+c+ 1 is idempotent. Thus the
proof is complete. [

Example 3. Take R = Z4 = {0,1,2,3}, 4 — SPz, is the corresponding symbolic 4-plithogenic
ring, and consider X = Py + 3P, € 4 — SPz; thus, we have:
X2 = Py +9P4 + 6Py = P; + 3P, = X.

Theorem 3. Let 4 — SPR be a commutative symbolic 4-plithogenic ring; hence, if X = m +nP; +
cP + qP; + 1Py, then
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X" =m"+ [(m+n)"—m"|Py+ [(m+n+c)" —(m+n)"|P+ [(m+n+c+q)'—
(m4+n+c)" P+ [(m+n+c+q+1)"—(m+n+c+q)"|Pyforeveryn € Z*.

Proof. For n = 1, it holds easily. Assume that it is true for n = k, and prove it for n = k + 1.
Xk+1 — XXk —
(m +nPy + cPy + qP5 + 1Py) (m* + [(m +n)f - mk} Py + {(m +n4co)f—(m+ n)k] P

+[(m+n+c+q)k—(m+n+c)k}P3+ {(m—l—n—l—c—i—q—i—l)k—(m+n+c+q)k}P4) =

mk+l 4 [(m+n)k+l _ mk“}Pl + {(m T (m—i—n)kH}Pz +

{(m tntet+q) T —(m+n+ c)kH} P3+
{(m—i—n—|—c+q—|—l)kJrl - (m+n+c+q)k+1}P4.
So, this proof is complete by induction. O

Definition 3. Let Gy, G1,Gy,Gs, and Gy be ideals of the ring R and define the symbolic 4-plith-
ogenic AH-ideal:

G = Gy + G1Py + GoPy + G3P3 + G4 Py = {wy + w1 Py + wa Py + w3P3 + wyPy; w; € G;}.

If Gg = Gy = Gy = G3 = Gy, then G is called an AHS-ideal.

Example 4. Let R = Z be the ring of integers; then, Go = 7Z and Gy = 11Z are ideals of R.
G = {7m+7nP; + 11tP, + 11sP3 + 111Py; m-n-t,s,1 € Z} is an AHS-ideal of 4 — SPy.
M = {11m+11nP; + 11tP, 4+ 11sP; + 11IPy; m-n-t, s, 1 € Z} is an AHS-ideal of
4- 8P,

Theorem 4. Let G be an AHS- ideal of 4 — SPg; thus,G is an ideal with an ordinary meaning.

Proof. G can be written as G = Gy + GoP; + GoP» + GoPs + GoPy, where Gy is an ideal of R.

It is clear that (G, +) is a subgroup of (4 — SPg, +).

Let F = fo+ fiP1 + foP> + f3Ps + fuPy € 4 — SPg,

Then if X = m +nP; + cP, + qP; + 1Py € G, we have:

F-X = fom+ (fon+ fim+ fin)Py + (foc + fic + fam + fan + foc) Py + (foq + frq + foq +faq +
fam + fan+ f3c)Ps + (fol + fil + fol + f3l + fam + fan + fac + fag + ful) Py € G; thus, G is an ideal.
d

Definition 4. Let R and T be two rings; 4 — SPr and 4 — SPr are the corresponding symbolic 4-plithogenic
rings. Let fo, f1, f2, f3, fa : R = T be ring homomorphisms; thus, we define the AH-homomorphism.:
f:4—SPr — 4 — SPr such that:
f(m+4nPy +cPy 4 qP3 +1Py) = fo(m) + f1(n)P1 + fo2(c)Pr +£3(q)P3 + fa(1)Py
If fo = f1 = f2 = f3 = fa, then f is called an AHS-homomorphism.

Remark 1. If fo, f1, f2, f3,and fy are isomorphisms, then f is called an AH-isomorphism.

Example 5. Tnke R = Z, T = Zy, fo, f1 : R = T such that:
fo(x) = x(mod 4), f1(2) = 2x(mod 4). It is clear that fy and f are homomorphisms.
We define f : 4 — SPr — 4 — SPr, where:
f(m+nPy+cPy+qP; +1Py) = fo(m) + f1(n)Py + fo(c)Pa+ f1(q)Ps + f(1)Py =
m(mod 4) + 2n(mod 4)P; + (c mod 4) P, +(2q mod 4)P3 + (21 mod 4) Py,
Which is an AH-homomorphism.

Theorem 5. Let f = fo+ fiP) + foP>» + f3P3 + fuPy : 4 — SPR — 4 — SPr be a mapping, then:

1. If fis an AHS-homomorphism, then f is a ring homomorphism.
2. If fis an AHS-homomorphism, then it is an isomorphism.

Proof.

1.  Assume that f is an AHS-homomorphism, then, fo = fi = fo = f3 = f4 are homomorphisms.
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Let X = dy+d{Py +dyPy 4+ d3Ps 4+ dyPy,Y = cg+ ¢c1Py + cpPy + c3P3 + ¢4Py € 4 — SPg, and
we have:
fX+Y)=
fo(do +co) + fo(dr +c1)P1 + fo(do 4 c2)Po + fo(ds + c3)Ps + fo(da +ca) Py = f(X) + f(Y)
f(X-Y) = fo(doco) + fo(doc1 + dico + dic1) Py + fo(doca + daco + daca + dacy + dic2) P2
+fo(docs + dycs + docs + dacs + daey + dsco + dsca) P3+
(d0C4 +dycy +docy + dscy + dyco + dgcqy + dgcy + dycs + d4C4)P4
= fo(do) fo(co) + (fo(do) fo(c1) + fo(d1)fo(co) + fo(d1) fo(c1)) Py
+(fo(do) fo(c2) + fo(d2) fo(yo) + fo(d2) folc2) + fo(d2) fo(c1)
+fo(d1)fo(c2)) P2
+[(fo(do) fo(cs) + fo(d1) fo(es) + fo(d2) fo(cs) + fo(ds) fo(cs)
+fo(ds) fo(c1) + fo(ds) fo(c2) + fo(dz) fo(co))IP3
+[(fo(do) fo(ca) + fo(d1) folea) + fo(d2) fo(ca) + fo(ds) fo(ca)
+fo(ds) fo(c1) + fo(da) fo(c2) + fo(da) fo(co) + fo(ds) fo(ca)
+fo(ds)fo(cs))]| Py =
[fo(do) + fo(d1)P1 + fo(d2) P2 + fo(d3)Ps + fo(da)Pa][fo(co) + fo(c1)P1 + fo(c2) P+
fo(e3)Ps + fo(cq) Pa] = f(X)-f(Y).
This implies the proof.
2. Using a similar discussion, we obtain the desired proof. [

The Characterization Of Symbolic 4-Plithogenic Ideals

Theorem 6. Let Q;;0 < i < 4 be ideals of the ring R; then:
0 1 0 2 1 3 2 4 3
Q=4 + (10 4P+ (1 4o+ (o ) x4 - ) s
q(’) € Qi j, k1,5t € I} isan ideal of 4 — SPg.

Proof.

It is clear that Q is non-empty set.

Letx =g+ (o) )P (o~ ) (o7 = o) Pt (9 %)

Y=g+ (a0 =) )P+ (a8 —al) )P+ (0 —a2) P+ (o) — a2 ) Py

For two arbitrary elements of Q, then:

Xv = (49— g0) + [ (50 )~ (59— g®)]Pr + (62 )~ a0~ q1ms 4
[(’71(13) — ql(23)> — ( 512) — qs(f)>]P3 + Kqﬁl) - q;?) - < 1(13) — q}?)] P4 € Q, which is because:
5~ €Q
%~ €Q
qg) - qg) €D
) —q) € Qs
9l —aiy) € Qs
Letr = ro((;i)— 1Py + 1P + 7’(3(,)%’3 + r4Py € 4 — SPg; then:

rX = o4 + [roq,(;) —roq;,” + rlqlg) - rlq](-lo) + rlq](?)]Pl + [roqﬁlz) - ”0”71(;) + rlqglz) - rlqlg) +
rzqgf) - rzqf{? + rzq](]o) + fzq]g) - fzq](]o)]Pz + [’0‘7;(13) - 70%(12) + f1q1(13> - rmﬁf) + qul(f) - rzqglz) + 731/71(13) -
7349 + r3q]<.10) +f311;g) - faq](:)) +f311§12) - 7311;((?)]1’3 + [foqgf) - foqz(f) +r111t(f) - 7141(13) +72qg1> - qul(f) +
raa,) —rsay) +raqy,) — 74111(13) + 74%('10) + 74%2) - 74%(»?) +ragl) VMz(j) + V4ﬂ1(13) —rag 1Py = ?otif) +

[(ro +r1)a = r0aV1Py + [(ro + 11 +72)a) = (ro + r1)a )Py + [(ro + 11 + 72 +13)g)) — (ro+ 71 +

72)q§12)]P3 +[(ro+r+r+r3+ m)qﬁf) —(ro+ri+mn+ r3)ql(13)]P4 € Q; thus, Q is ideal of 4 — SPg.

O

Example 6. Tnke R = Z, the ring of integers, and consider the ideals Qy = 27,Q1 = 3Z,
Q) = 47,Q3 =5Z,Q4 = 6Z; then:

Q = {2x+ (By —2x)Py + (4z — 3y) P> + (5t — 4z)P3 + (6s — 5t)Py, x,y,2,t,s € Z}

Also,
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M = {3x+ (2y —3x)P; + (5t — 2y)Py + (45 — 5t)P3 + (6k — 4s)Py, x,y,k, t,s € Z} is another

ideal of 4 — SPR.

Symbolic 5-plithogenic rings

Definition 5. Lef R be a ring; the symbolic 5-plithogenic ring is:

5— SPR = {110 + tllpl + 112P2 + 113P3 + a4P4 + (15P5; a; € R, P]'2 = P]', Pi X P] = Pmtlx(i,j)}'
Operations on 5 — SPg:

Addition:

[a0 + a1 Py + ax Py + a3Ps + agPy + asPs| + [bg + b1 Py + bp Py + b3P3 + by Py + b5 P5] =

(ag 4+ bo) + (a1 + b1) Py + (ap + by) Py + (a3 + b3)P3 + (a4 + by) Py + (a5 + bs) Ps.

Multiplication:

[ag + a1 Py + axP + a3P3 + ayPy + asPs)-[bg + by Py + by Py + b3 P3 + by Py + bsPs| =

aogby + (agby + a1bg + a1b1) Py + (agby + a1bp + axby + axby + axby) P+

(agbs + ay1bs + aybs + asbs + asby + azby + azby) P3+

(agby + arby + agby + asby + agbg + agby + agby + agbs + agby) Py + (agbs + a1 bs + axbs + azbs +

agbs + asbg + asby + asby + asbs + asby + asbs)Ps.

It is clear that ( 5 — SPR)is a ring.
If R is commutative, then 5 — SPr is commutative, and if R has a unity, then 5 — SPg has the same unity.

Example 7. Consider the ring R = Z3 = {0,1,2}; the corresponding5 — SPy is:

4 —SPr ={a+0bP +cP, +dP; +ePy +wPs;a,b,c,d,e,w € Z3}.
If X =242P) + Py, Y = P, +2Ps, then:
X4+Y=2+2P;+ P, + Py +2P5,
X—Y=2+42P; — P, + Py — 2P,

XY =2P) +4P3 + 2P, +4P5 + Py + 2P5s = 4P, + 4P + Py + 2Ps.

Theorem 7. Let 5 — SPg be a 5-plithogenic symbolic ring, with unity.

Let X = eg + e1P) + eaPs + e3P3 + e4 Py + e5Ps5 be an arbitrary element; then:

1. X is invertible if and only if eg,eg + e1,eg +e1 + e, e0+e1 +ex+e3,e0+ ey +ep+e3+eg,e0 +
e1 + ey + e3 + e4 + es are invertible.

2. X l=¢ 1+ [(eo o) L= 60*1] Py + [(eo +er4e) L= (eg+ 31)71} Py +[(eg +e1
ter+es)t—(eo+er+ex) P+ [(eo+er+ertes+ey)t—(eo+er+exte3) Py
+|(eg+er+ex+e3+es+ 65)71 —(eg+e1+ep+es+ 64)71]134.

Proof.

1.  Assume that X is invertible, then there exists Y = ng + 11 Py + np P, + n3Ps + n4Py + nsP5 such

that X-Y = 1; hence:

egns + eyng + exng + eznz + esng +ezny +e3ng = 0 (3a)
eong = 1... (3b)
eony +e1ng+egny =0... (3c)
eghy + exng +exnpy +eyny +exnp =0... (3(21),
eony + e1ny + exng + ezng + egng + egny + egng + eqng(3e)
egns + e1ns + exh5 + e3M5 + eqghs + e5hg + e5nq + esny + e5n3 + esny + esis = 0 (3f)

®)

From (3b), eg is invertible.

By adding (3c) to (3b), we obtain (eg + e1) (19 + n1) = 1; thus, eg + 7 is invertible.

By adding (3d) to (3c) to (3b), (eg + €1 + e2) (g + 11 + np) = 1; hence, ey + e1 + e, is invertible.
By adding (3a) to (3b) to (3c) to (3d), (ep+e1 +ep+e3)(ng+ny+ny+mn3) = 1; hence,
eo + e1 + ex + e3 is invertible.

Adding all Equations (3a) to (3e) gives:

(eg+e1 4+ e +e3 +eq)(ng +ny +ny+n3 +ny) = 1; hence, ey + €1 + e + e3 + ¢4 is invertible.
Adding all Equations (3a) to (3f) gives:

(€0+€1 +€2+€3+E4+€5)(1’10+1’11 +1’lz—|—1’l3—|—1’l4+1’l5) =1;

Hence, ¢g + €1 + ex + e3 + e4 + es5 is invertible.
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2. From the first part, we have:

ng=eo Lmg+ny = (eg+er) mg+ng+ny=(egte +e)

(eo+e1+extes) " = mg+m +ny+ms(egter+ertegtes) | = nmg+ng+mnyt+ng+
n4,(eo+el+ez+e3+34+e5)71 = ng + ny + np + nz + ny + ns; then:

Y = 6071 + [(60 +61)71 — 6071]P1 + [(60 +e1 +62)71 — (60 +81)71]P2+

[(80 terterte3) ! —(ete +€2)71]P3+

[(eo +e1+ertes +e4)_1 —(ep+e1+e +€3)_1]P4+
[(60 +e1+et+eztey +E5)71 —(eg+e1+e+e3 +e4)71]P5 =x10O

Example 8. Take R = Z3 = {0,1,2}, 5 — SPz, is the corresponding symbolic 5-plithogenic ring, and
consider X = 2+ 2P, + Ps € 5 — SPz,; then:

eo = 2 is invertible with ey~ = 2, eg +e1 = 2 is invertible with (eg + el)_1 =2,

eg +e1 + ey =1 is invertible with (eg + €1 + 82)71 =1,

eg+e1+e+ez3=1, (80+61 +€2+€3)71 =1,

egt+e1+e+ezt+es=1, (€0+€1 +€2+€3+€4)71 =1,epg+e1+ep+e3+es+es=2,

(ep+e1+ex+esz+eq+ 35)_1 = 2; hence,

X 1=24+(2-2)P,+(1-2)P,+ (1—1)P3+ (1 —1)Py+ (2—1)P5s =2+ 2P, + Ps.

Definition 6. Let X = m + nPy 4+ cP, + qP3 + [Py + kP5 € 5 — SPg, then, X is idempotent if and only if
X2 =X.

Theorem 8. Let X = m + nPy + cPy + qP3 + 1Py + kP5 € 5 — SPg; then, X is idempotent if and only if
mm+nm+n+c,mt+nt+c+qgmt+nt+c+q+1, m+n+c+q+1+kareidempotent.

Proof.
X?=XX= (m+nPy +cPy + qP3 + [Py + kDPs) (m + nPy + cP + qP3 + 1Py + kDPs5) =
m? + (mn + nm + n-n)Py + (mc + nc+cm + cn + c-c) P+
(mg+ng+cqg+qgm+qn+qc+q-q)Ps+ (ml+nl+cl+ql+1m+In+lc+1q+1-1)Py+
(mk + nk + ck + gk + Ik + km + kn + kc + kq + kIl + k-k)Ps.

mq +nq+cq+qm+qn+qc+q-g = q (4a)
m?> =m... (4b)
mn+nm+nn=mn... (4c)
mc+nc+cm+cn+cc=c... (4d)
ml+nl+cl+ql+Im+In+lc+lg+11=1(4e)
mk + nk + ck + gk + lk + km + kn + kc + kq + kl 4+ k-k = k (4f)

xX2=XX equivalents “)

Equation (4b) implies that m is idempotent.

By adding (4c) to (4b), we obtain (m + n)* = m + n; hence, m + n_is idempotent.

By adding (4c) to (4b) to (4d), we obtain (m+n+ ¢)> = m+n+c; hence, m+n+c
is idempotent.

By adding (4a) to (4b) to (4c) to (4d), we obtain (m +n+c+ 7)* = m+n+c+g; thus,
m +n + ¢ + q is idempotent.

By adding all equations from (4a) to (4e) to each other, we obtain:

(m+n+c+q+0)*=m-+n+c+q+1, thus m+ n + c +1 is idempotent.

By adding all equations from (4a) to (4f), we obtain:

(m+n+ct+q+l+k)?=m+n+c+q+1+k thusm-+n+c+1+kisidempotent.

Thus, the proof is complete. [J

Example 9. Tuke R = Z, = {0,1,2,3}, 5 — SPyz, is the corresponding symbolic 5-plithogenic ring, and
consider X = Py + 3P4 € 5 — SPy,; thus, we have:
X2 =P +9P;+ 6Py = P, + 43Py = X.

Theorem 9. Let 5 — SPg be a commutative symbolic 5-plithogenic ring; hence, if X = m + nP; 4+ cPp +
qPs + 1Py + kPs, then
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Xt=m"+[(m+n)"—m"|P+[(m+n+c)"—(m+n)"|Pr+[(m+n+c+q)" —(m+n+
NP3+ [(m+n+c+qg+D)"—(m+n+c+q)"|Py+[(m+n+c+g+l+k)' —(m+n+c+qg+1)"]
Ds foreveryn € Z.

Proof.
For n = 1, it holds easily. Assume that it is true for n = k and prove it forn = k4 1.
Xk+1 — X-Xk —

(m4nPy + cPy + qP3 + 1Py + kPs) (m* + [(m + n)E — m¥] Py + [(m 414 c)* — (m +n)K| Py + [(m +
ntct+q)f—(m+n+c)X|Ps+[(m+ntctqg+Df—(m+n+c+q) P+ [(m+n+c+q+1+
k) = (m+n+c+q+1D9Ps) = mkt 4 [(m 4 e — kP [(m+ 0+ )R — (m 4 n)EH Py
+[(m+n+c+q) — (m+n+ )P+

[(mtntctqg+ D —(mtntc+q P+ [(m+n+c+qgt+l+k) T —(m+n+c+
g+ 1)< ps.

So, this proof is complete by induction. [

Definition 7. Let Gy, G1, G2,G3, Gy, and Gs be ideals of the ring R; define the symbolic 5-plithogenic
AH-ideal:
G = Go+ G1P; + GoP> + G3P3 + G4 Py + Gs5P5 = {wy + w1 Py + wo Py + w3Ps + wy Py + wsDs;
w; € G,‘}.
If Go = Gy = Gy = G3 = G4 = Gs, then G is called an AHS-ideal.

Example 10. Let R = Z be the ring of integers; then, Go = 7Z, Gy = 11Z, are ideals of R.
G = {7m +7nP; + 11tP, + 11sP3 + 111Py + 11kPs; m-n-t,s, 1,k € Z} is an AHS-ideal of 5 — SPy.
M = {11m + 11nP; + 11¢P, + 11sP; + 111Py + 11kP5; m-n-t,s, 1,k € Z} is an AHS-ideal of
5— SPy.

Theorem 10. Let G be an AHS- ideal of 5 — SPg; then, G is an ideal with an ordinary meaning.

Proof.

G can be written as G = Gy + GoP; + GoP> + GoP3 + GoPy + GoPs, where Gy is an ideal of R.

It is clear that (G, +) is a subgroup of (5 — SPg, +).

Let F = fo+ fiP1 + foP2 + f3P3 + faPy + fsP5 € 5 — SPg,

Then if X = m + nP; + cP, + qP; + 1Py + kP5s € G, we have:

F-X = fom+ (fon+ fim + fin) Py + (foc + fic+ fom + fon + foc) P + (foq + f19 + f2q + f39 +
fam+ fan+ f3¢)Ps + (fol + fil + fal + f3l + fam + fan + fac + faq + fal) Py + (fok + fik + fok + f3k +
fak+ fsm+ fsn + fsc + fsq + f51)Ps € G; thus, G is an ideal. O

Definition 8. Let R, T be two rings, 5 — SPr,5 — SPr are the corresponding symbolic 5-plithogenic rings,
and let fo, f1, f2, f3, fa, f5 : R — T be ring homomorphisms; we define the AH-homomorphism:
f:5—SPr — 5 — SPr such that:
f(m+nPy+cPy+qP3 + 1Py + kPs5) = fo(m) + f1(n)Py + fo(c)Ps +f3(q)Ps + fa(1)Ps + f5(k)P5
If fo = f1 = fo = f3 = fa = f5, then f is called an AHS-homomorphism.

Remark 2. If fy, f1, f2, f3, fa, and f5 are isomorphisms, then f is called an AH-isomorphism.

Example 11. Take R = Z, T = Zy4, fo, f1 : R — T such that:
fo(x) = x(mod 4), f1(2) = 2x(mod 4). It is clear that fy and fi are homomorphisms.
We define f :5 — SPr — 5 — SPr, where:
f(m+nPy+cPy +qP3 + 1Py + kPs) = fo(m) + f1(n)Py + fo(c)Pr+ f1(q)Ps + f1(1) Py
+f1(k)P5s = m(mod 4) + 2n(mod 4)Py + (c mod 4)P, +(2q mod 4)P; + (21 mod 4) P4
+(2k mod 4)Ps,
Which is an AH-homomorphism.

Theorem 11. Let f = fo+ f1P1 + foP» + f3Ps + faPy + f5P5 : 5 — SPr — 5 — SPr be a mapping; then:

1. If f is an AHS-homomorphism, then f is a ring homomorphism.
2. Iff is an AHS-homomorphism, then it is an isomorphism.
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Proof.

1. Assume that f is an AHS-homomorphism; then, fo = f1 = fo = f3 = f4 = f5 are homomorphisms.
Let
X = dy+dPy +dyPy + d3Ps + dyPy + dsPs,Y = co+ c1Py + 2Py + c3P3 + c4Py + cs5P5 €
5 — SPg; we have:
fX+Y)=
fo(do +co) + fo(d1 +c1)Pr + fo(dz + c2) P2 + fo(ds + c3)Ps + fo(da + ca) Py + fo(ds + c5)Ps =
f(X)+£(Y)
f(X-Y) = fo(doco) + fo(doct + dico + dyc1) Py + fo(doca + daco + daca + dacy +dic2) P2
+fo(docs +dic3 +dacs +dacs +dsey +daco + dcz) P3+
(d0C4 +dycy +dycy + dscy + dyco + dgcq + dgcy + dycs + d4C4)P4
+(d0C5 + dycs5 + dycs + dscs + dycs + dscg + dscq + dscp + dscs + dscy + d5C5)P5
= fo(do) fo(co) + (fo(do) fo(er) + fo(dr) fo(co) + fo(dr)fo(c1)) Py
+(fo(do) fo(c2) + fo(d2) fo(vo) + fo(d2) fo(c2) + fo(d2)fo(c1)
+fo(d1) fo(c2)) P2
+[(fo(do) fo(cs) + fo(d1) fo(es) + fo(d2) fo(cs) + fo(ds) fo(cs)
+fo(ds) fo(e1) + fo(ds) fo(ca) + fo(dz)fo(co))IP3
+[(fo(do) fo(ca) + fo(d1) fo(ea) + fo(d2) fo(ca) + fo(ds)fo(ca)
+fo(da) fo(c1) + fo(da) fo(e2) + fo(da) fo(co) + fo(da) fo(ca)
+fo(dy) fo(c3))]Ps + [fo(do) fo(es) + fo(d1) fo(cs) + fo(d2) fo(cs)
+fo(d3) foles) + fo(da) fo(cs) + fo(ds) fo(co) + fo(ds) fo(c1) + fo(ds) fo(ca)
+fo(ds) fo(es) + fo(ds) fo(ca) + fo(ds) fo(cs)]Ps =
[fo(do) + fo(d1)P1 + fo(d2) P2 + fo(d3)Ps + fo(ds) Ps + fo(ds)Ps][fo(co) + fo(c1)Pr+
fole2)Pa+ fo(c3)Ps + fo(ca) Py + fo(cs)Ps] = f(X)-f(Y). This implies the proof.

2. Using a similar discussion, we obtain the desired proof. [

The following table shows the number of units in the ring R, symbolic 2-plithogenic ring
2 — SPg, symbolic 3-plithogenic ring 3 — SPg, and symbolic 4-plithogenic ring 4 — SPg, and symbolic
5-plithogenic ring 5 — SPr

Classical Ring

Symbolic
5-Plithogenic Ring

Symbolic
2-Plithogenic Ring

Symbolic
3-Plithogenic Ring

Symbolic
4-Plithogenic Ring

Z (2 units)

Z(I) (64 units)

2 — SPy (8 units)

3 — SPy (16 units)

4 — SPy (32 units)

Z» (1 unit)

Z»(I) (1 unit)

2 — SPz, (1 unit)

3 — SPz, (1 unit)

4 — SPz, (1 unit)

Z3 (2 units)

Z5(1) (64 units)

2 — SPz, (8 units)

3 — SPz, (16 units)

4 — SPz, (32 units)

Zy4 (2 units)

Z4(1) (64 units)

2 — SPz, (8 units)

3 — SPz, (16 units)

4 — SPz, (32 units)

Z5 (4 units)

Z5(1) (4096 units)

2 — SPz, (64 units)

3 — SPz, (256 units)

4 — SP7, (1024 units)

Ze (2 units)

Ze(I) (64 units)

2 — SPz, (8 units)

3 — SPz, (16 units)

4 — SPz, (32 units)

Z7 (6 units)

Z7(1) (6° units)

2 — SPz, (216 units)

3 — SPz, (1296 units)

4 — SPz, (7776 units)

Zg (4 units)

Zg(I) (4096 units)

2 — SPz, (64 units)

3 — SPz, (256 units)

4 — 5Pz, (1024 units)

Zy (6 units)

Zo(I) (6° units)

2 — SPz, (216 units)

3 — SPy, (1296 units)

4 — SPy, (7776 units)

Z10 (4 units)

Z1o(I) (4096 units)

2 — SPz,, (64 units)

3 — 5Pz, (256 units)

4 — SPz,, (1024 units)

3. Conclusions

In this paper, we have defined the 4-plithogenic rings and 5-plithogenic rings, the elements of
which have many algebraic properties such as invertibility, nilpotency, and idempotency.

Also, we have shown some related substructures, such as 4-plithogenic AH-ideals, 4-plithogenic AH-
kernels and homomorphisms, 5-plithogenic AH-ideals, 5-plithogenic AH-kernels, and homomorphism:s.

As a future direction, we aim to use 4-plithogenic numbers and rings to generalize symbolic
3-plithogenic algebraic modules and equations.
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