On the Time-like Curves of Constant Breadth in Minkowski 3-Space

Süha Yılmaz and Melih Turgut
(Department of Mathematics of Buca Educational Faculty of Dokuz Eylül University, 35160 Buca-Izmir,Turkey.)
E-mail: suha.yilmaz@yahoo.com, melih.turgut@gmail.com

Abstract

A regular curve with more than 2 breadths in Minkowski 3-space is called a Smarandache breadth curve. In this paper, we study a special case of Smarandache breadth curves. Some characterizations of the time-like curves of constant breadth in Minkowski 3 -Space are presented.

Key Words: Smarandache breadth curves, curves of constant breadth, Minkowski 3-Space, time-like curves.

AMS(2000): 51B20, 53C50.

§1. Introduction

Curves of constant breadth were introduced by L. Euler [3]. In [8], some geometric properties of plane curves of constant breadth are given. And, in another work [9], these properties are studied in the Euclidean 3-Space E^{3}. Moreover, M. Fujivara [5] had obtained a problem to determine whether there exist space curve of constant breadth or not, and he defined breadth for space curves and obtained these curves on a surface of constant breadth. In [1], this kind curves are studied in four dimensional Euclidean space E^{4}.

A regular curve with more than 2 breadths in Minkowski 3-space is called a Smarandache breadth curve. In this paper, we study a special case of Smarandache breadth curves. We investigate position vector of simple closed time-like curves and some characterizations in the case of constant breadth. Thus, we extended this classical topic to the space E_{1}^{3}, which is related with Smarandache geometries, see [4] for details. We used the method of [9].

§2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves in the space E_{1}^{3} are briefly presented. A more complete elementary treatment can be found in the reference [2].

The Minkowski 3 -space E_{1}^{3} is the Euclidean 3-space E^{3} provided with the standard flat metric given by

[^0]$$
\langle,\rangle=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2},
$$
where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of E_{1}^{3}. Since \langle,$\rangle is an indefinite metric,$ recall that a vector $v \in E_{1}^{3}$ can have one of three Lorentzian characters: it can be space-like if $\langle v, v\rangle>0$ or $v=0$, time-like if $\langle v, v\rangle<0$ and null if $\langle v, v\rangle=0$ and $v \neq 0$. Similarly, an arbitrary curve $\varphi=\varphi(s)$ in E_{1}^{3} can locally be space-like, time-like or null (light-like), if all of its velocity vectors φ^{\prime} are respectively space-like, time-like or null (light-like), for every $s \in I \subset R$. The pseudo-norm of an arbitrary vector $a \in E_{1}^{3}$ is given by $\|a\|=\sqrt{|\langle a, a\rangle|} . \varphi$ is called an unit speed curve if velocity vector v of φ satisfies $\|v\|= \pm 1$. For vectors $v, w \in E_{1}^{3}$ it is said to be orthogonal if and only if $\langle v, w\rangle=0$.

Denote by $\{T, N, B\}$ the moving Frenet frame along the curve φ in the space E_{1}^{3}. For an arbitrary curve φ with first and second curvature, κ and τ in the space E_{1}^{3}, the following Frenet formulae are given in [6]:

Let φ be a time-like curve, then the Frenet formulae read

$$
\left[\begin{array}{l}
T^{\prime} \tag{1}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
0 & \kappa & 0 \\
\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

where

$$
\begin{gathered}
\langle T, T\rangle=-1,\langle N, N\rangle=\langle B, B\rangle=1 \\
\langle T, N\rangle=\langle T, B\rangle=\langle T, N\rangle=\langle N, B\rangle=0
\end{gathered}
$$

Let a and b be two time-like vectors in E_{1}^{3}. If a and b aren't in the same time cone then there is unique real number $\delta \geq 0$ called the hyperbolic angle between a and b, such that $g(a, b)=\|a\|\|b\| \cosh \delta$. Let $\vartheta=\vartheta(s)$ be a time-like curve in E_{1}^{3}. If tangent vector field of this curve forms a constant angle with a constant vector field U, then this curve is called an inclined curve.

In [7], the author wrote a characterization for the inclined time-like curves with the following theorem.

Theorem 2.1 Let $\varphi=\varphi(s)$ be an unit speed time-like curve in $E_{1}^{3} . \varphi$ is an inclined curve if and only if

$$
\begin{equation*}
\frac{\kappa}{\tau}=\text { constant } \tag{2}
\end{equation*}
$$

§3. The Time-like Curves of Constant Breadth in \mathbf{E}_{1}^{3}

Definition 3.1 A regular curve with more than 2 breadths in Minkowski 3-space is called a Smarandache breadth curve.

Let $\varphi=\varphi(s)$ be a Smarandache breadth curve. Moreover, let us suppose $\varphi=\varphi(s)$ simple closed time-like curve in the space E_{1}^{3}. These curves will be denoted by (C). The normal plane
at every point P on the curve meets the curve at a single point Q other than P. We call the point Q the opposite point of P. We consider a curve in the class Γ as in [?] having parallel tangents T and T^{*} in opposite directions at the opposite points φ and φ^{*} of the curve. A simple closed curve having parallel tangents in opposite directions at opposite points can be represented with respect to Frenet frame by the equation

$$
\begin{equation*}
\varphi^{*}(s)=\varphi(s)+m_{1} T+m_{2} N+m_{3} B \tag{3}
\end{equation*}
$$

where $m_{i}(s), 1 \leq i \leq 3$ are arbitrary functions and φ and φ^{*} are opposite points. Differentiating both sides of (3) and considering Frenet equations, we have

$$
\left\{\begin{array}{c}
\frac{d \varphi^{*}}{d s}=T^{*} \frac{d s^{*}}{d s}=\left(\frac{d m_{1}}{d s}+m_{2} \kappa+1\right) T+ \tag{4}\\
\left(\frac{d m_{2}}{d s}+m_{1} \kappa-m_{3} \tau\right) N+\left(\frac{d m_{3}}{d s}+m_{2} \tau\right) B
\end{array}\right\}
$$

Since $T^{*}=-T$. Rewriting (4), we have respectively,

$$
\left\{\begin{array}{c}
\frac{d m_{1}}{d s}=-m_{2} \kappa-1-\frac{d s^{*}}{d s} \tag{5}\\
\frac{d m_{2}}{d s}=-m_{1} \kappa+m_{3} \tau \\
\frac{d m_{3}}{d s}=-m_{2} \tau
\end{array}\right\}
$$

If we call ϕ as the angle between the tangent of the curve (C) at point $\varphi(s)$ with a given fixed direction and consider $\frac{d \phi}{d s}=\kappa$, we have (5) as follow:

$$
\left\{\begin{array}{c}
\frac{d m_{1}}{d \phi}=-m_{2}-f(\phi) \tag{6}\\
\frac{d m_{2}}{d \phi}=-m_{1}+m_{3} \rho \tau \\
\frac{d m_{3}}{d \phi}=-m_{2} \rho \tau
\end{array}\right\}
$$

where $f(\phi)=\rho+\rho^{*}, \rho=\frac{1}{\kappa}$ and $\rho^{*}=\frac{1}{\kappa^{*}}$ denote the radius of curvatures at φ and φ^{*}, respectively. And using system (6), we have the following differential equation with respect to m_{1} as

$$
\begin{equation*}
\frac{\kappa}{\tau}\left[\frac{d^{3} m_{1}}{d \phi^{3}}+\frac{d^{2} f}{d \phi^{2}}\right]+\frac{d}{d \phi}\left(\frac{\kappa}{\tau}\right)\left[\frac{d^{2} m_{1}}{d \phi^{2}}-m_{1}+\frac{d f}{d \phi}\right]+\left(\frac{\tau^{2}-\kappa^{2}}{\tau \kappa}\right) \frac{d m_{1}}{d \phi}+\frac{\tau}{\kappa} f=0 \tag{7}
\end{equation*}
$$

Equation (7) is a characterization for φ^{*}. If the distance between opposite points of (C) and $\left(C^{*}\right)$ is constant, then, we can write that

$$
\begin{equation*}
\left\|\varphi^{*}-\varphi\right\|=-m_{1}^{2}+m_{2}^{2}+m_{3}^{2}=l^{2}=\text { constant } . \tag{8}
\end{equation*}
$$

Hence, we write

$$
\begin{equation*}
-m_{1} \frac{d m_{1}}{d \phi}+m_{2} \frac{d m_{2}}{d \phi}+m_{3} \frac{d m_{3}}{d \phi}=0 \tag{9}
\end{equation*}
$$

Considering system (6), we obtain

$$
\begin{equation*}
m_{1}\left(\frac{d m_{1}}{d \phi}+m_{2}\right)=0 \tag{10}
\end{equation*}
$$

We write $m_{1}=0$ or $\frac{d m_{1}}{d \phi}=-m_{2}$. Thus, we shall study in the following subcases.
Case 1. $\frac{d m_{1}}{d \phi}=-m_{2}$. Then $f(\phi)=0$. In this case, $\left(C^{*}\right)$ is translated by the constant vector

$$
\begin{equation*}
u=m_{1} T+m_{2} N+m_{3} B \tag{11}
\end{equation*}
$$

of (C). Now, let us to investigate solution of the equation (7), in some special cases.
Case 1.1 Suppose that φ is an inclined curve. If we rewrite (7), we have the following differential equation:

$$
\begin{equation*}
\frac{d^{3} m_{1}}{d \phi^{3}}+\left(\frac{\tau^{2}}{\kappa^{2}}-1\right) \frac{d m_{1}}{d \phi}=0 \tag{12}
\end{equation*}
$$

General solution of (12) depends on character of $\frac{\tau}{\kappa}$. Due to this, we distinguish following subcases.

Case 1.1.1 $\tau>\kappa$. Then the solution above differential equation is:

$$
\begin{equation*}
m_{1}=C_{1} \cos \sqrt{\frac{\tau^{2}}{\kappa^{2}}-1} \phi+C_{2} \sin \sqrt{\frac{\tau^{2}}{\kappa^{2}}-1} \phi \tag{13}
\end{equation*}
$$

And therefore, we have m_{2} and m_{3}, respectively,

$$
\begin{gather*}
m_{2}=\sqrt{\frac{\tau^{2}}{\kappa^{2}}-1}\left\{C_{1} \sin \sqrt{\frac{\tau^{2}}{\kappa^{2}}-1 \phi}-C_{2} \cos \sqrt{\frac{\tau^{2}}{\kappa^{2}}-1 \phi}\right\}, \tag{14}\\
m_{3}=\frac{\tau}{\kappa}\left[C_{1} \cos \sqrt{\frac{\tau^{2}}{\kappa^{2}}-1 \phi}+C_{2} \sin \sqrt{\frac{\tau^{2}}{\kappa^{2}}-1 \phi}\right] \tag{15}
\end{gather*}
$$

where C_{1} and C_{2} are real numbers.
Case 1.1.2 $\tau<\kappa$. Then the solution has the form

$$
\begin{equation*}
m_{1}=A_{1} e^{\sqrt{1-\frac{\tau^{2}}{\kappa^{2}} \phi}}+A_{2} e^{-\sqrt{1-\frac{\tau^{2}}{\kappa^{2}}} \phi} \tag{16}
\end{equation*}
$$

Hence, we have m_{2} and m_{3} as follows:

$$
\begin{gather*}
m_{2}=\sqrt{1-\frac{\tau^{2}}{\kappa^{2}}}\left\{-A_{1} e^{\sqrt{1-\frac{\tau^{2}}{\kappa^{2}} \phi}}+A_{2} e A_{2} e^{-\sqrt{1-\frac{\tau^{2}}{\kappa^{2}} \phi}}\right\} \tag{17}\\
m_{3}=\frac{\tau}{\kappa}\left[A_{1} e^{\sqrt{1-\frac{\tau^{2}}{\kappa^{2}} \phi}}+A_{2} e^{-\sqrt{1-\frac{\tau^{2}}{\kappa^{2}} \phi}}\right] \tag{18}
\end{gather*}
$$

where A_{1} and A_{2} are real numbers.
Corollary 3.1 Position vector of φ^{*} can be formed by the equations (13), (14) and (15) or (16), (17) and (18) according to ratio of $\frac{\tau}{\kappa}$.

Case 1.2 Let us suppose $m_{1}=c_{1}=$ constant $\neq 0$. Thus $m_{2}=0$. From $(6)_{3}$ we easily have $m_{3}=c_{3}=$ constant. And using $(6)_{2}$ we get

$$
\begin{equation*}
\frac{\kappa}{\tau}=\frac{c_{3}}{c_{1}}=\text { constant } . \tag{19}
\end{equation*}
$$

Equation (19) shows that φ is an inclined curve. Therefore, Case $\mathbf{1 . 2}$ is a characterization for the inclined time-like curves of constant breadth in E_{1}^{3}. Then the position vector of φ^{*} can be written as follow:

$$
\begin{equation*}
\varphi^{*}=\varphi+c_{1} T+c_{3} B \tag{20}
\end{equation*}
$$

And curvature of φ^{*} is obtained as

$$
\begin{equation*}
\kappa^{*}=\kappa . \tag{21}
\end{equation*}
$$

Case $2 m_{1}=0$. Then $m_{2}=-f(\phi)$. And, here, let us suppose that φ is an inclined curve. Thus, the equation (7) has the form

$$
\begin{equation*}
\frac{d^{2} f}{d \phi^{2}}+\frac{\tau^{2}}{\kappa^{2}} f=0 \tag{22}
\end{equation*}
$$

The solution of (22) is

$$
\begin{equation*}
f(\phi)=L_{1} \cos \frac{\tau}{\kappa} \phi+L_{2} \sin \frac{\tau}{\kappa} \phi . \tag{23}
\end{equation*}
$$

where L_{1} and L_{2} are real numbers. Using equation (23), we have m_{2} and m_{3}

$$
\begin{gather*}
m_{2}=-L_{1} \cos \frac{\tau}{\kappa} \phi-L_{2} \sin \frac{\tau}{\kappa} \phi=-\rho-\rho^{*} \tag{24}\\
m_{3}=L_{1} \sin \frac{\tau}{\kappa} \phi-L_{2} \sin \frac{\tau}{\kappa} \phi . \tag{25}
\end{gather*}
$$

And therefore, we write the position vector and the curvature of φ^{*}

$$
\begin{gather*}
\varphi^{*}=\varphi+\left(-\rho-\rho^{*}\right) N+\left(L_{1} \sin \frac{\tau}{\kappa} \phi-L_{2} \sin \frac{\tau}{\kappa} \phi\right) B \tag{26}\\
\kappa^{*}=\frac{1}{L_{1} \cos \frac{\tau}{\kappa} \phi+L_{2} \sin \frac{\tau}{\kappa} \phi-\frac{1}{\kappa}} \tag{27}
\end{gather*}
$$

And the distance between the opposite points of (C) and $\left(C^{*}\right)$ is

$$
\begin{equation*}
\left\|\varphi^{*}-\varphi\right\|=L_{1}^{2}+L_{2}^{2}=\text { constant } . \tag{28}
\end{equation*}
$$

References

[1] A. Mağden and Ö. Köse, On The Curves of Constant Breadth, Tr. J. of Mathematics, 1 (1997), 277-284.
[2] B. O'Neill, Semi-Riemannian Geometry,, Academic Press, New York,1983.
[3] L. Euler, De Curvis Trangularibis, Acta Acad. Petropol (1780), 3-30.
[4] L. F. Mao, Pseudo-manifold geometries with applications, International J.Math. Comb., Vol.1(2007), No.1, 45-58.
[5] M. Fujivara, On Space Curves of Constant Breadth, Tohoku Math. J. 5 (1914), 179-184.
[6] M. Petrovic-Torgasev and E. Sucurovic, Some characterizations of the spacelike, the timelike and the null curves on the pseudohyperbolic space H_{0}^{2} in E_{1}^{3}, Kragujevac J. Math. 22 (2000), 71-82.
[7] N. Ekmekci, The Inclined Curves on Lorentzian Manifolds, Dissertation, Ankara University (1991)
[8] O. Köse, Some Properties of Ovals and Curves of Constant Width in a Plane, Doga Mat.,(8) 2 (1984), 119-126.
[9] Ö. Köse, On Space Curves of Constant Breadth, Doga Math. (10) 1 (1986), 11-14.

[^0]: ${ }^{1}$ Received July 1, 2008. Accepted August 25, 2008.

