Triple Connected Domination Number of a Graph

G.Mahadevan*, Selvam Avadayappan ${ }^{\dagger}$, J.Paulraj Joseph ${ }^{\ddagger}$ and T.Subramanian*
*Department of Mathematics Anna University: Tirunelveli Region, India
${ }^{\dagger}$ Department of Mathematics, VHNSN College, Virudhunagar, India
${ }^{\ddagger}$ Department of Mathematics Manonmaniam Sundaranar University, Tirunelveli, India
E-mail: selvam_avadayappan@yahoo.co.in,jpaulraj_2003@yahoo.co.in

Abstract

The concept of triple connected graphs with real life application was introduced in [7] by considering the existence of a path containing any three vertices of a graph G. In this paper, we introduce a new domination parameter, called Smarandachely triple connected domination number of a graph. A subset S of V of a nontrivial graph G is said to be Smarandachely triple connected dominating set, if S is a dominating set and the induced sub graph $\langle S\rangle$ is triple connected. The minimum cardinality taken over all Smarandachely triple connected dominating sets is called the Smarandachely triple connected domination number and is denoted by $\gamma_{t c}$. We determine this number for some standard graphs and obtain bounds for general graphs. Its relationship with other graph theoretical parameters are also investigated.

Key Words: Domination number, triple connected graph, Smarandachely triple connected domination number.

AMS(2010): 05C69

§1. Introduction

By a graph we mean a finite, simple, connected and undirected graph $G(V, E)$, where V denotes its vertex set and E its edge set. Unless otherwise stated, the graph G has p vertices and q edges. Degree of a vertex v is denoted by $d(v)$, the maximum degree of a graph G is denoted by $\Delta(G)$. We denote a cycle on p vertices by C_{p}, a path on p vertices by P_{p}, and a complete graph on p vertices by K_{p}. A graph G is connected if any two vertices of G are connected by a path. A maximal connected subgraph of a graph G is called a component of G. The number of components of G is denoted by $\omega(G)$. The complement \bar{G} of G is the graph with vertex set V in which two vertices are adjacent if and only if they are not adjacent in G. A tree is a connected acyclic graph. A bipartite graph (or bigraph) is a graph whose vertex set can be divided into two disjoint sets V_{1} and V_{2} such that every edge has one end in V_{1} and another end in V_{2}. A complete bipartite graph is a bipartite graph where every vertex of V_{1} is adjacent to every

[^0]vertex in V_{2}. The complete bipartite graph with partitions of order $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, is denoted by $K_{m, n}$. A star, denoted by $K_{1, p-1}$ is a tree with one root vertex and $p-1$ pendant vertices. A bistar, denoted by $B(m, n)$ is the graph obtained by joining the root vertices of the stars $K_{1, m}$ and $K_{1, n}$. A wheel graph, denoted by W_{p} is a graph with p vertices, formed by joining a single vertex to all vertices of C_{p-1}. A helm graph, denoted by H_{n} is a graph obtained from the wheel W_{n} by attaching a pendant vertex to each vertex in the outer cycle of W_{n}. Corona of two graphs G_{1} and G_{2}, denoted by $G_{1} \circ G_{2}$ is the graph obtained by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} in which $i^{t h}$ vertex of G_{1} is joined to every vertex in the $i^{t h}$ copy of G_{2}. If S is a subset of V, then $\langle S\rangle$ denotes the vertex induced subgraph of G induced by S. The open neighbourhood of a set S of vertices of a graph G, denoted by $N(S)$ is the set of all vertices adjacent to some vertex in S and $N(S) \cup S$ is called the closed neighbourhood of S, denoted by $N[S]$. The diameter of a connected graph is the maximum distance between two vertices in G and is denoted by $\operatorname{diam}(G)$. A cut-vertex (cut edge) of a graph G is a vertex (edge) whose removal increases the number of components. A vertex cut, or separating set of a connected graph G is a set of vertices whose removal results in a disconnected graph. The connectivity or vertex connectivity of a graph G, denoted by $\kappa(G)$ (where G is not complete) is the size of a smallest vertex cut. A connected subgraph H of a connected graph G is called a H-cut if $\omega(G-H) \geq 2$. The chromatic number of a graph G, denoted by $\chi(G)$ is the smallest number of colors needed to colour all the vertices of a graph G in which adjacent vertices receive different colours. For any real number $x,\lfloor x\rfloor$ denotes the largest integer less than or equal to x. A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. Terms not defined here are used in the sense of [2].

A subset S of V is called a dominating set of G if every vertex in $V-S$ is adjacent to at least one vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets in G. A dominating set S of a connected graph G is said to be a connected dominating set of G if the induced sub graph $\langle S\rangle$ is connected. The minimum cardinality taken over all connected dominating sets is the connected domination number and is denoted by γ_{c}.

Many authors have introduced different types of domination parameters by imposing conditions on the dominating set [11-12]. Recently, the concept of triple connected graphs has been introduced by Paulraj Joseph et. al. [7] by considering the existence of a path containing any three vertices of G. They have studied the properties of triple connected graphs and established many results on them. A graph G is said to be triple connected if any three vertices lie on a path in G. All paths, cycles, complete graphs and wheels are some standard examples of triple connected graphs. In this paper, we use this idea to develop the concept of Smarandachely triple connected dominating set and Smarandachely triple connected domination number of a graph.

Theorem 1.1([7]) A tree T is triple connected if and only if $T \cong P_{p} ; p \geq 3$.

Theorem 1.2([7]) A connected graph G is not triple connected if and only if there exists a H-cut with $\omega(G-H) \geq 3$ such that $\left|V(H) \cap N\left(C_{i}\right)\right|=1$ for at least three components C_{1}, C_{2} and C_{3} of $G-H$.

Notation 1.3 Let G be a connected graph with m vertices $v_{1}, v_{2}, \ldots, v_{m}$. The graph obtained from G by attaching n_{1} times a pendant vertex of $P_{l_{1}}$ on the vertex v_{1}, n_{2} times a pendant vertex of $P_{l_{2}}$ on the vertex v_{2} and so on, is denoted by $G\left(n_{1} P_{l_{1}}, n_{2} P_{l_{2}}, n_{3} P_{l_{3}}, \ldots, n_{m} P_{l_{m}}\right)$ where $n_{i}, l_{i} \geq 0$ and $1 \leq i \leq m$.

Example 1.4 Let $v_{1}, v_{2}, v_{3}, v_{4}$, be the vertices of K_{4}. The graph $K_{4}\left(2 P_{2}, P_{3}, P_{4}, P_{3}\right)$ is obtained from K_{4} by attaching 2 times a pendant vertex of P_{2} on $v_{1}, 1$ time a pendant vertex of P_{3} on $v_{2}, 1$ time a pendant vertex of P_{4} on v_{3} and 1 time a pendant vertex of P_{3} on v_{4} and is shown in Figure 1.1.

Figure $1.1 K_{4}\left(2 P_{2}, P_{3}, P_{4}, P_{3}\right)$

§2. Triple Connected Domination Number

Definition 2.1 A subset S of V of a nontrivial connected graph G is said to be a Smarandachely triple connected dominating set, if S is a dominating set and the induced subgraph $\langle S\rangle$ is triple connected. The minimum cardinality taken over all Smarandachely triple connected dominating sets is called the Smarandachely triple connected domination number of G and is denoted by $\gamma_{t c}(G)$. Any Smarandachely triple connected dominating set with $\gamma_{t c}$ vertices is called a $\gamma_{t c}$-set of G.

Example 2.2 For the graph G_{1} in Figure 2.1, $S=\left\{v_{1}, v_{2}, v_{5}\right\}$ forms a $\gamma_{t c}$-set of G_{1}. Hence $\gamma_{t c}\left(G_{1}\right)=3$.

Figure 2.1 Graph with $\gamma_{t c}=3$

Observation 2.3 Triple connected dominating set (tcd-set) does not exist for all graphs and if exists, then $\gamma_{t c}(G) \geq 3$.

Example 2.4 For the graph G_{2} in Figure 2.2, any minimum dominating set must contain all the supports and any connected subgraph containing these supports is not triple connected and hence $\gamma_{t c}$ does not exist.

Figure 2.2 Graph with no tcd-set

Throughout this paper we consider only connected graphs for which triple connected dominating set exists.
Observation 2.5 The complement of the triple connected dominating set need not be a triple connected dominating set.

Example 2.6 For the graph G_{3} in Figure 2.3, $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ forms a triple connected dominating set of G_{3}. But the complement $V-S=\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$ is not a triple connected dominating set.

Figure 2.3 Graph in which $V-S$ is not a tcd-set

Observation 2.7 Every triple connected dominating set is a dominating set but not conversely.
Observation 2.8 For any connected graph $G, \gamma(G) \leq \gamma_{c}(G) \leq \gamma_{t c}(G)$ and the bounds are sharp.

Example 2.9 For the graph G_{4} in Figure 2.4, $\gamma\left(G_{4}\right)=4, \gamma_{c}\left(G_{4}\right)=6$ and $\gamma_{t c}\left(G_{4}\right)=8$. For the graph G_{5} in Figure 2.4, $\gamma\left(G_{5}\right)=\gamma_{c}\left(G_{5}\right)=\gamma_{t c}\left(G_{5}\right)=3$.

Figure 2.4

Theorem 2.10 If the induced subgraph of each connected dominating set of G has more than two pendant vertices, then G does not contain a triple connected dominating set.

Proof The proof follows from Theorem 1.2.
Some exact value for some standard graphs are listed in the following:

1. Let P be the petersen graph. Then $\gamma_{t c}(P)=5$.
2. For any triple connected graph G with p vertices, $\gamma_{t c}\left(G \circ K_{1}\right)=p$.
3. For any path of order $p \geq 3, \gamma_{t c}\left(P_{p}\right)= \begin{cases}3 & \text { if } p<5 \\ p-2 & \text { if } p \geq 5 .\end{cases}$
4. For any cycle of order $p \geq 3, \gamma_{t c}\left(C_{p}\right)= \begin{cases}3 & \text { if } p<5 \\ p-2 & \text { if } p \geq 5 .\end{cases}$
5. For any complete bipartite graph of order $p \geq 4, \gamma_{t c}\left(K_{m, n}\right)=3$. (where $m, n \geq 2$ and $m+n=p)$.
6. For any star of order $p \geq 3, \gamma_{t c}\left(K_{1, p-1}\right)=3$.
7. For any complete graph of order $p \geq 3, \gamma_{t c}\left(K_{p}\right)=3$.
8. For any wheel of order $p \geq 4, \gamma_{t c}\left(W_{p}\right)=3$.
9. For any helm graph of order $p \geq 7, \gamma_{t c}\left(H_{n}\right)=\frac{p-1}{2}$ (where $2 n-1=p$).
10. For any bistar of order $p \geq 4, \gamma_{t c}(B(m, n))=3$ (where $m, n \geq 1$ and $m+n+2=p$).

Example 2.11 For the graph G_{6} in Figure 2.5, $S=\left\{v_{6}, v_{2}, v_{3}, v_{4}\right\}$ is a unique minimum connected dominating set so that $\gamma_{c}\left(G_{6}\right)=4$. Here we notice that the induced subgraph of S has three pendant vertices and hence G does not contain a triple connected dominating set.

Figure 2.5 Graph having cd set and not having tcd-set

Observation 2.12 If a spanning sub graph H of a graph G has a triple connected dominating set, then G also has a triple connected dominating set.

Observation 2.13 Let G be a connected graph and H be a spanning sub graph of G. If H has a triple connected dominating set, then $\gamma_{t c}(G) \leq \gamma_{t c}(H)$ and the bound is sharp.

Example 2.14 Consider the graph G_{7} and its spanning subgraphs G_{8} and G_{9} shown in Figure 2.6.

Figure 2.6

For the graph $G_{7}, S=\left\{u_{2}, u_{4}, u_{7}\right\}$ is a minimum triple connected dominating set and so $\gamma_{t c}\left(G_{7}\right)=3$. For the spanning subgraph G_{8} of $G_{7}, S=\left\{u_{1}, u_{3}, u_{4}, u_{5}\right\}$ is a minimum triple connected dominating set so that $\gamma_{t c}\left(G_{8}\right)=4$. Hence $\gamma_{t c}\left(G_{7}\right)<\gamma_{t c}\left(G_{8}\right)$. For the spanning subgraph G_{9} of $G_{7}, S=\left\{u_{2}, u_{4}, u_{7}\right\}$ is a minimum triple connected dominating set so that $\gamma_{t c}\left(G_{9}\right)=3$. Hence $\gamma_{t c}\left(G_{7}\right)=\gamma_{t c}\left(G_{9}\right)$.
Observation 2.15 For any connected graph G with p vertices, $\gamma_{t c}(G)=p$ if and only if $G \cong P_{3}$ or C_{3}.

Theorem 2.16 For any connected graph G with p vertices, $\gamma_{t c}(G)=p-1$ if and only if $G \cong P_{4}, C_{4}, K_{4}, K_{1,3}, K_{4}-\{e\}, C_{3}\left(P_{2}\right)$.

Proof Suppose $G \cong P_{4}, C_{4}, K_{4}-\{e\}, K_{4}, K_{1,3}, C_{3}\left(P_{2}\right)$, then $\gamma_{t c}(G)=3=p-1$. Conversely, let G be a connected graph with p vertices such that $\gamma_{t c}(G)=p-1$. Let $S=\left\{u_{1}, u_{2}, \ldots, u_{p-1}\right\}$ be a $\gamma_{t c}$-set of G. Let x be in $V-S$. Since S is a dominating set, there exists a vertex v_{i} in S such that v_{i} is adjacent to x. If $p \geq 5$, by taking the vertex v_{i}, we can construct a triple connected dominating set S with fewer elements than $p-1$, which is a contradiction. Hence $p \leq 4$. Since $\gamma_{t c}(G)=p-1$, by Observation 2.5, we have $p=4$. Let $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $V-S=\left\{v_{4}\right\}$. Since S is a $\gamma_{t c}$-set of $G,\langle S\rangle=P_{3}$ or C_{3}.

Case $i \quad\langle S\rangle=P_{3}=v_{1} v_{2} v_{3}$
Since G is connected, v_{4} is adjacent to v_{1} (or v_{3}) or v_{4} is adjacent to v_{2}. Hence $G \cong P_{4}$ or $K_{1,3}$.

Case ii $\langle S\rangle=C_{3}=v_{1} v_{2} v_{3} v_{1}$
Since G is connected, v_{4} is adjacent to v_{1} (or v_{2} or v_{3}). Hence $G \cong C_{3}\left(P_{2}\right)$. Now by adding edges to $P_{4}, K_{1,3}$ or $C_{3}\left(P_{2}\right)$ without affecting $\gamma_{t c}$, we have $G \cong C_{4}, K_{4}-\{e\}, K_{4}$.

Theorem 2.17 For any connected graph G with $p \geq 5$, we have $3 \leq \gamma_{t c}(G) \leq p-2$ and the bounds are sharp.

Proof The lower bound follows from Definition 2.1 and the upper bound follows from Observation 2.15 and Theorem 2.16. Consider the dodecahedron graph G_{10} in Figure 2.7, the path P_{5} and the cycle C_{9}.

Figure 2.7

One can easily check that $S=\left\{u_{6}, u_{7}, u_{8}, u_{9}, u_{10}, u_{11}, u_{12}, u_{13}, u_{14}, u_{15}\right\}$ is a minimum triple connected dominating set of G_{10} and $\gamma_{t c}\left(G_{10}\right)=10>3$. In addition, $\gamma_{t c}\left(G_{10}\right)=10<p-2$. For P_{5}, the lower bound is attained and for C_{9} the upper bound is attained.

Theorem 2.18 For a connected graph G with 5 vertices, $\gamma_{t c}(G)=p-2$ if and only if G is isomorphic to $P_{5}, C_{5}, W_{5}, K_{5}, K_{1,4}, K_{2,3}, K_{1} \circ 2 K_{2}, K_{5}-\{e\}, K_{4}\left(P_{2}\right), C_{4}\left(P_{2}\right), C_{3}\left(P_{3}\right), C_{3}\left(2 P_{2}\right), C_{3}\left(P_{2}\right.$, $\left.P_{2}, 0\right), P_{4}\left(0, P_{2}, 0,0\right)$ or any one of the graphs shown in Figure 2.8.

Figure 2.8 Graphs with $\gamma_{t c}=p-2$

Proof Suppose G is isomorphic to $P_{5}, C_{5}, W_{5}, K_{5}, K_{1,4}, K_{2,3}, K_{1} \circ 2 K_{2}, K_{5}-\{e\}$, $K_{4}\left(P_{2}\right), C_{4}\left(P_{2}\right), C_{3}\left(P_{3}\right), C_{3}\left(2 P_{2}\right), C_{3}\left(P_{2}, P_{2}, 0\right), P_{4}\left(0, P_{2}, 0,0\right)$ or any one of the graphs H_{1} to H_{7} given in Figure 2.8., then clearly $\gamma_{t c}(G)=p-2$. Conversely, let G be a connected graph with 5 vertices and $\gamma_{t c}(G)=3$. Let $S=\{x, y, z\}$ be a $\gamma_{t c}$-set. Then clearly $\langle S\rangle=P_{3}$ or C_{3}. Let $V-S=V(G)-V(S)=\{u, v\}$. Then $\langle V-S\rangle=K_{2}$ or \bar{K}_{2}.

Case $i \quad\langle S\rangle=P_{3}=x y z$

Subcase $i \quad\langle V-S\rangle=K_{2}=u v$
Since G is connected, there exists a vertex say x (or z) in P_{3} which is adjacent to u (or v) in K_{2}. Then $S=\{x, y, u\}$ is a minimum triple connected dominating set of G so that $\gamma_{t c}(G)=p-2$. If $d(x)=d(y)=2, d(z)=1$, then $G \simeq P_{5}$. Since G is connected, there exists a vertex say y in P_{3} is adjacent to u (or v) in K_{2}. Then $S=\{y, u, v\}$ is a minimum triple connected dominating set of G so that $\gamma_{t c}(G)=p-2$. If $d(x)=d(z)=1, d(y)=3$, then $G \cong P_{4}\left(0, P_{2}, 0,0\right)$. Now by increasing the degrees of the vertices, by the above arguments, we have $G \cong C_{5}, W_{5}, K_{5}, K_{2,3}, K_{5}-\{e\}, K_{4}\left(P_{2}\right), C_{4}\left(P_{2}\right), C_{3}\left(P_{3}\right), C_{3}\left(2 P_{2}\right), C_{3}\left(P_{2}, P_{2}, 0\right)$ and H_{1} to H_{7} in Figure 2.8. In all the other cases, no new graph exists.

Subcase ii $\langle V-S\rangle=2$
Since G is connected, there exists a vertex say x (or z) in P_{3} is adjacent to u and v in \bar{K}_{2}. Then $S=\{x, y, z\}$ is a minimum triple connected dominating set of G so that $\gamma_{t c}(G)=p-2$. If $d(x)=3, d(y)=2, d(z)=1$, then $G \cong P_{4}\left(0, P_{2}, 0,0\right)$. In all the other cases, no new graph exists. Since G is connected, there exists a vertex say y in P_{3} which is adjacent to u and v in \bar{K}_{2}. Then $S=\{x, y, z\}$ is a minimum triple connected dominating set of G so that $\gamma_{t c}(G)=p-2$. If $d(x)=d(z)=1, d(y)=4$, then $G \cong K_{1,4}$. In all the other cases, no new graph exists. Since G is connected, there exists a vertex say x in P_{3} which is adjacent to u in \bar{K}_{2} and y in P_{3} is adjacent to v in \bar{K}_{2}. Then $S=\{x, y, z\}$ is a minimum triple connected dominating set of G so that $\gamma_{t c}(G)=p-2$. If $d(x)=2, d(y)=3, d(z)=1$, then $G \cong P_{4}\left(0, P_{2}, 0,0\right)$. In all the other cases, no new graph exists. Since G is connected, there exists a vertex say x in P_{3} which is adjacent to u in \bar{K}_{2} and z in P_{3} which is adjacent to v in \bar{K}_{2}. Then $S=\{x, y, z\}$ is a minimum triple connected dominating set of G so that $\gamma_{t c}(G)=p-2$. If $d(x)=d(y)=d(z)=2$, then $G \cong P_{5}$. In all the other cases, no new graph exists.

Case $i i \quad\langle S\rangle=C_{3}=x y z x$
Subcase $i \quad\langle V-S\rangle=K_{2}=u v$
Since G is connected, there exists a vertex say x (or y, z) in C_{3} is adjacent to $u\left(\right.$ or v) in K_{2}. Then $S=\{x, y, u\}$ is a minimum triple connected dominating set of G so that $\gamma_{t c}(G)=p-2$. If $d(x)=3, d(y)=d(z)=2$, then $G \cong C_{3}\left(P_{3}\right)$. If $d(x)=4, d(y)=d(z)=2$, then $G \cong K_{1} \circ 2 K_{2}$. In all the other cases, no new graph exists.

Subcase $i i \quad\langle V-S\rangle=\bar{K}_{2}$
Since G is connected, there exists a vertex say x (or y, z) in C_{3} is adjacent to u and v in \bar{K}_{2}. Then $S=\{x, y, z\}$ is a minimum triple connected dominating set of G so that $\gamma_{t c}(G)=p-2$. If $d(x)=4, d(y)=d(z)=2$, then $G \cong C_{3}\left(2 P_{2}\right)$. In all the other cases, no new graph exists. Since G is connected, there exists a vertex say x (or y, z) in C_{3} is adjacent to u in \bar{K}_{2} and y (or z) in C_{3} is adjacent to v in \bar{K}_{2}. Then $S=\{x, y, z\}$ is a minimum triple connected dominating set of G so that $\gamma_{t c}(G)=p-2$. If $d(x)=d(y)=3, d(z)=2$, then $G \cong C_{3}\left(P_{2}, P_{2}, 0\right)$. In all other cases, no new graph exists.

Theorem 2.19 For a connected graph G with $p>5$ vertices, $\gamma_{t c}(G)=p-2$ if and only if G
is isomorphic to P_{p} or C_{p}.
Proof Suppose G is isomorphic to P_{p} or C_{p}, then clearly $\gamma_{t c}(G)=p-2$. Conversely, let G be a connected graph with $p>5$ vertices and $\gamma_{t c}(G)=p-2$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{p-2}\right\}$ be a $\gamma_{t c}$-set and let $V-S=V(G)-V(S)=\left\{v_{p-1}, v_{p}\right\}$. Then $\langle V-S\rangle=K_{2}, \bar{K}_{2}$.

Claim. $\langle S\rangle$ is a tree.
Suppose $\langle S\rangle$ is not a tree. Then $\langle S\rangle$ contains a cycle. Without loss of generality, let $C=v_{1} v_{2} \cdots v_{q} v_{1}, q \leq p-2$ be a cycle of shortest length in $\langle S\rangle$. Now let $\langle V-S\rangle=K_{2}=v_{p-1} v_{p}$. Since G is connected and S is a $\gamma_{t c}$-set of $G, v_{p-1}\left(\right.$ or $\left.v_{p}\right)$ is adjacent to a vertex v_{k} in $\langle S\rangle$. If v_{k} is in C, then $S=\left\{v_{p-1}, v_{i}, v_{i+1}, \ldots, v_{i-3}\right\} \cup\{x \in V(G): x \notin C\}$ forms a $\gamma_{t c}$-set of G so that $\gamma_{t c}(G)<p-2$, which is a contradiction. Suppose v_{p-1} (or v_{p}) is adjacent to a vertex v_{i} in $\langle S\rangle-C$, then we can construct a $\gamma_{t c}$-set which contains v_{p-1}, v_{i} with fewer elements than $p-2$, which is a contradiction. Similarly if $\langle V-S\rangle=\bar{K}_{2}$, we can prove that no graph exists. Hence $\langle S\rangle$ is a tree. But S is a triple connected dominating set. Therefore by Theorem 1.1, we have $\langle S\rangle \cong P_{p-2}$.

Case $i \quad\langle V-S\rangle=K_{2}=v_{p-1} v_{p}$
Since G is connected and S is a $\gamma_{t c}$-set of G, there exists a vertex, say, v_{i} in P_{p-2} which is adjacent to a vertex, say, v_{p-1} in K_{2}. If $v_{i}=v_{1}$ (or) v_{p-2}, then $G \cong P_{p}$. If $v_{i}=v_{1}$ is adjacent to v_{p+1} and v_{p-2} is adjacent to v_{p}, then $G \cong C_{p}$. If $v_{i}=v_{j}$ for $j=2,3, \ldots, p-3$, then $S_{1}=S-\left\{v_{1}, v_{p-2}\right\} \cup\left\{v_{p-1}\right\}$ is a triple connected dominating set of cardinality $p-3$ and hence $\gamma_{t c} \leq p-3$, which is a contradiction.

Case $i i \quad\langle V-S\rangle=\bar{K}_{2}$
Since G is connected and S is a $\gamma_{t c}$-set of G, there exists a vertex say v_{i} in P_{p-2} which is adjacent to both the vertices v_{p-1} and v_{p} in \bar{K}_{2}. If $v_{i}=v_{1}$ (or v_{p-2}), then by taking the vertex v_{1} (or v_{p-2}), we can construct a triple connected dominating set which contains fewer elements than $p-2$, which is a contradiction. Hence no graph exists. If $v_{i}=v_{j}$ for $j=2,3, \ldots, n-3$, then by taking the vertex v_{j}, we can construct a triple connected dominating set which contains fewer elements than $p-2$, which is a contradiction. Hence no graph exists. Suppose there exists a vertex say v_{i} in P_{p-2} which is adjacent to v_{p-1} in \bar{K}_{2} and a vertex $v_{j}(i \neq j)$ in P_{p-2} which is adjacent to v_{p} in \bar{K}_{2}. If $v_{i}=v_{1}$ and $v_{j}=v_{p-2}$, then $S=\left\{v_{1}, v_{2}, \ldots, v_{p-2}\right\}$ is a $\gamma_{t c}$-set of G and hence $G \cong P_{p}$. If $v_{i}=v_{1}$ and $v_{j}=v_{k}$ for $k=2,3, \ldots, n-3$, then by taking the vertex v_{1} and v_{k}, we can construct a triple connected dominating set which contains fewer elements than $p-2$, which is a contradiction. Hence no graph exists. If $v_{i}=v_{k}$ and $v_{j}=v_{l}$ for $k, l=2,3, \ldots, n-3$, then by taking the vertex v_{k} and v_{l}, we can construct a triple connected dominating set which contains fewer elements than $p-2$, which is a contradiction.

Corollary 2.20 Let G be a connected graph with $p>5$ vertices. If $\gamma_{t c}(G)=p-2$, then $\kappa(G)=1$ or $2, \Delta(G)=2, \chi(G)=2$ or 3 , and $\operatorname{diam}(G)=p-1$ or $\left\lfloor\frac{p}{2}\right\rfloor$.

Proof Let G be a connected graph with $p>5$ vertices and $\gamma_{t c}(G)=p-2$. Since $\gamma_{t c}(G)=$ $p-2$, by Theorem 2.19, G is isomorphic to P_{p} or C_{p}. We know that for $P_{p}, \kappa(G)=1, \Delta(G)=$
$2, \chi(G)=2$ and $\operatorname{diam}(G)=p-1$. For $C_{p}, \kappa(G)=2, \Delta(G)=2, \operatorname{diam}(G)=\left\lfloor\frac{p}{2}\right\rfloor$ and

$$
\chi(G)= \begin{cases}2 & \text { if } \mathrm{p} \text { is even } \\ 3 & \text { if } \mathrm{p} \text { is odd }\end{cases}
$$

Observation 2.21 Let G be a connected graph with $p \geq 3$ vertices and $\Delta(G)=p-1$. Then $\gamma_{t c}(G)=3$.

For, let v be a full vertex in G. Then $S=\left\{v, v_{i}, v_{j}\right\}$ is a minimum triple connected dominating set of G, where v_{i} and v_{j} are in $N(v)$. Hence $\gamma_{t c}(G)=3$.

Theorem 2.22 For any connected graph G with $p \geq 3$ vertices and $\Delta(G)=p-2, \gamma_{t c}(G)=3$.
Proof Let G be a connected graph with $p \geq 3$ vertices and $\Delta(G)=p-2$. Let v be a vertex of maximum degree $\Delta(G)=p-2$. Let v_{1}, v_{2}, \ldots and v_{p-2} be the vertices which are adjacent to v, and let v_{p-1} be the vertex which is not adjacent to v. Since G is connected, v_{p-1} is adjacent to a vertex v_{i} for some i. Then $S=\left\{v, v_{i}, v_{j} \mid i \neq j\right\}$ is a minimum triple connected dominating set of G. Hence $\gamma_{t c}(G)=3$.

Theorem 2.23 For any connected graph G with $p \geq 3$ vertices and $\Delta(G)=p-3, \gamma_{t c}(G)=3$.
Proof Let G be a connected graph with $p \geq 3$ vertices and $\Delta(G)=p-3$ and let v be the vertex of G with degree $p-3$. Suppose $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{p-3}\right\}$ and $V-N(v)=\left\{v_{p-2}, v_{p-1}\right\}$. If v_{p-1} and v_{p-2} are not adjacent in G, then since G is connected, there are vertices v_{i} and v_{j} for some $i, j, 1 \leq i, j \leq p-3$, which are adjacent to v_{p-2} and v_{p-1} respectively. Here note that i can be equal to j. If $i=j$, then $\left\{v, v_{i}, v_{p-1}\right\}$ is a required triple connected dominating set of G. If $i \neq j$, then $\left\{v_{i}, v, v_{j}\right\}$ is a required triple connected dominating set of G. If v_{p-2} and v_{p-1} are adjacent in G, then there is a vertex v_{j}, for some $j, 1 \leq j \leq p-3$, which is adjacent to v_{p-1} or to v_{p-1} or to both. In this case, $\left\{v, v_{i}, v_{p-1}\right\}$ or $\left\{v, v_{i}, v_{p-2}\right\}$ is a triple connected dominating set of G. Hence in all the cases, $\gamma_{t c}(G)=3$.

The Nordhaus - Gaddum type result is given below:

Theorem 2.24 Let G be a graph such that G and \bar{G} are connected graphs of order $p \geq 5$. Then $\gamma_{t c}(G)+\gamma_{t c}(\bar{G}) \leq 2(p-2)$ and the bound is sharp.

Proof The bound directly follows from Theorem 2.17. For the cycle $C_{5}, \gamma_{t c}(G)+\gamma_{t c}(\bar{G})=$ $2(p-2)$.

§3. Relation with Other Graph Parameters

Theorem 3.1 For any connected graph G with $p \geq 5$ vertices, $\gamma_{t c}(G)+\kappa(G) \leq 2 p-3$ and the bound is sharp if and only if $G \cong K_{5}$.

Proof Let G be a connected graph with $p \geq 5$ vertices. We know that $\kappa(G) \leq p-1$ and by Theorem 2.17, $\gamma_{t c}(G) \leq p-2$. Hence $\gamma_{t c}(G)+\kappa(G) \leq 2 p-3$. Suppose G is isomorphic
to K_{5}. Then clearly $\gamma_{t c}(G)+\kappa(G)=2 p-3$. Conversely, let $\gamma_{t c}(G)+\kappa(G)=2 p-3$. This is possible only if $\gamma_{t c}(G)=p-2$ and $\kappa(G)=p-1$. But $\kappa(G)=p-1$, and so $G \cong K_{p}$ for which $\gamma_{t c}(G)=3=p-2$ so that $p=5$. Hence $G \cong K_{5}$.

Theorem 3.2 For any connected graph G with $p \geq 5$ vertices, $\gamma_{t c}(G)+\chi(G) \leq 2 p-2$ and the bound is sharp if and only if $G \cong K_{5}$.

Proof Let G be a connected graph with $p \geq 5$ vertices. We know that $\chi(G) \leq p$ and by Theorem 2.17, $\gamma_{t c}(G) \leq p-2$. Hence $\gamma_{t c}(G)+\chi(G) \leq 2 p-2$. Suppose G is isomorphic to K_{5}. Then clearly $\gamma_{t c}(G)+\chi(G)=2 p-2$. Conversely, let $\gamma_{t c}(G)+\chi(G)=2 p-2$. This is possible only if $\gamma_{t c}(G)=p-2$ and $\chi(G)=p$. Since $\chi(G)=p, G$ is isomorphic to K_{p} for which $\gamma_{t c}(G)=3=p-2$ so that $p=5$. Hence $G \cong K_{5}$.

Theorem 3.3 For any connected graph G with $p \geq 5$ vertices, $\gamma_{t c}(G)+\Delta(G) \leq 2 p-$ 3 and the bound is sharp if and only if G is isomorphic to $W_{5}, K_{5}, K_{1,4}, K_{1} \circ 2 K_{2}, K_{5}-$ $\{e\}, K_{4}\left(P_{2}\right), C_{3}\left(2 P_{2}\right)$ or any one of the graphs shown in Figure 3.1.

Figure 3.1 Graphs with $\gamma_{t c}+\Delta=2 p-3$

Proof Let G be a connected graph with $p \geq 5$ vertices. We know that $\Delta(G) \leq p-1$ and by Theorem 2.17, $\gamma_{t c}(G) \leq p-2$. Hence $\gamma_{t c}(G)+\Delta(G) \leq 2 p-3$. Let G be isomorphic to $W_{5}, K_{5}, K_{1,4}, K_{1} \circ 2 K_{2}, K_{5}-\{e\}, K_{4}\left(P_{2}\right), C_{3}\left(2 P_{2}\right)$ or any one of the graphs G_{1} to G_{4} given in Figure 3.1. Then clearly $\gamma_{t c}(G)+\Delta(G)=2 p-3$. Conversely, let $\gamma_{t c}(G)+\Delta(G)=2 p-3$. This is possible only if $\gamma_{t c}(G)=p-2$ and $\Delta(G)=p-1$. Since $\Delta(G)=p-1$, by Observation 2.21, we have $\gamma_{t c}(G)=3$ so that $p=5$. Let v be the vertex having a maximum degree and let $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices which are adjacent to the vertex v. If $d(v)=4, d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{3}\right)=d\left(v_{4}\right)=1$, then $G \cong K_{1,4}$. Now by adding edges to $K_{1,4}$ without affecting the value of $\gamma_{t c}$, we have $G \cong W_{5}, K_{5}, K_{1} \circ 2 K_{2}, K_{5}-\{e\}, K_{4}\left(P_{2}\right), C_{3}\left(2 P_{2}\right)$ and the graphs G_{1} to G_{4} given in Figure 3.1.

References

[1] Cokayne E. J. and Hedetniemi S. T., Total domination in graphs, Networks, Vol. 10 (1980), 211-219.
[2] John Adrian Bondy, Murty U.S.R., Graph Theory, Springer, 2008.
[3] Nordhaus E. A. and Gaddum J. W. (1956), On complementary graphs, Amer. Math.Monthly, 63: 175-177.
[4] Paulraj Joseph J. and Arumugam. S., Domination and connectivity in graphs, International Journal of Management Systems, 8 (3)(1992), 233-236.
[5] Paulraj Joseph J. and Arumugam.S., Domination in graphs, International Journal of Management Systems, 11 (1995): 177-182.
[6] Paulraj Joseph J. and Arumugam.S., Domination and coloring in graphs, International Journal of Management Systems, 8 (1)(1997), 37-44.
[7] Paulraj Joseph J., Angel Jebitha M.K., Chithra Devi P. and Sudhana G., Triple connected graphs, Indian Journal of Mathematics and Mathematical Sciences, Vol. 8, No. 1 (2012), 61-75.
[8] Paulraj Joseph J. and Mahadevan G., On complementary perfect domination number of a graph, Acta Ciencia Indica, Vol. XXXI M, No. 2(2006),847-853.
[9] Sampathkumar, E., Walikar, H.B, The connected domination number of a graph, J. Math. Phys. Sci, 13 (6)(1979), 607-613.
[10] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Domination in graphsAdvanced Topics, Marcel Dekker, New York, 1998.
[11] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.

[^0]: ${ }^{1}$ Received May 31, 2012. Accepted September 18, 2012.

