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Abstract
The existing truncated variable method to generate random variate cannot be applied when indeterminacy is presented in either
the parameters or observations. This paper addresses the truncated variable simulation under the indeterminate environment.
The truncated variable simulation method will be introduced using the DUS-neutrosophicWeibull distribution. The algorithm
to generate random variate will be presented and applied in random variate generation. Extensive simulation tables for
various values of indeterminacy and truncated variables are presented. The proposed study for other neutrosophic statistical
distribution can be extended as future research.
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Introduction

Sometimes, the algorithms are run to generate the random
variate between the specific intervals rather. The partition of
the original interval of the underlying distribution is done to
the behavior of random variate between the specified inter-
vals. Another reason to partition or truncated the original
random variable is due to the highly reliable product. The
truncation of the variable is done to save time, and cost to
check the randomness in the variate. The truncated vari-
able method utilizes the specified interval to generate the
random variate other than the original range of the interval
associated with the underlying distribution. Michael et al.
[1] worked on the random generation method with multiple
roots and transformations.Kachitvichyanukul andSchmeiser
[2] present a method to generate random variate from the
hypergeometric distribution. Hörmann [3] used the bino-
mial distribution in generating the random variate. Kundu
and Gupta [4] presented a method to generate random vari-
ate from the generalized exponential distribution. Bergman
[5] generated the random variate from the new statistical
distribution. Mohazzabi and Connolly [6] applied the nor-
mal distribution in random number generation. Qu et al. [7]
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worked on the generation of random variate for the gamma
and exponential distributions. For more details, the reader
may refer to [8–10].

Smarandache [11] presented work on neutrosophic logic
and showed that neutrosophic logic is more efficient than
fuzzy logic. Neutrosophic logic provides information about
themeasure of indeterminacywhile fuzzy logic does not pro-
vides such information, see [11]. More information about
fuzzy logic can be seen in [12–15]. Smarandache [16] intro-
duced neutrosophic statistics (NS) to analyze and interpret
the results from the data having neutrosophic numbers. Neu-
trosophic statistics was found to be more efficient than
classical statistics in terms of information and flexibility.
Neutrosophic statistics is the generalization of classical
statistics and can be applied when imprecise observations are
available in the data. Neutrosophic statistics reduce to clas-
sical statistics when no imprecise observations in the data.
Chen et al. [17], Chen et al. [18] and Aslam [19] showed that
NS is more efficient than classical statistics (CS). Recently,
Nayana et al. [20] introduced the DUS-neutrosophicWeibull
distribution and compared the performance with the DUS-
Weibull distribution under CS. More information on NS can
be seen in [21–23]. The importance of neutrosophic theory
and the difference between neutrosophic theory and fuzzy set
theory can be seen in [24–28]. Recently, Smarandache [29]
showed the efficiency of neutrosophic statistics over interval
statistics and classical multivariate statistics. More applica-
tions of neutrosophic logic and sets can be seen in [30–33].
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The existing truncated variable random variate generate
method was introduced under CS. The existing simulation
method cannot be applied in an indeterminate environment.
By exploring the literature and according to the best of
the author’s knowledge, there is no work on the algorithm
for generating random variate from the DUS-neutrosophic
Weibull distribution. To fill this gap, in this paper, the
DUS-neutrosophic Weibull distribution will be applied in
designing the truncated variable simulation method. The
main contribution and novelty of thework are to introduce the
algorithm for generating random variate using various val-
ues of shape and scale parameters of the DUS-neutrosophic
Weibull distribution. We will introduce the algorithm to gen-
erate random variate from the DUS-neutrosophic Weibull
distribution. The rest of the paper is organized as follows: a
brief introduction to DUS-neutrosophic Weibull distribution
will be given in the next section. In the subsequent section, the
neutrosophic truncated variable method to generate random
variate will be introduced followed by which the simulation
study and comparative study are given, respectively. The con-
cluding remarks are given in the last section.

Preliminaries

Let X N ε[X L , XU ] be a neutrosophic random variable and
suppose that x1 � x1L + x1U IN and x2 � x2L + x2U IN be
two neutrosophic numbers (NNs), where IN ε[IL , IU ] is the
measure of indeterminacy. By following [17] and [34], the
basic operations of NNs:

x1 + x2 � (x1L + x2L ) + (x1U + x2U ) IN

� [x1L + x2L + x1L IL + x2L IL ,

x1L + x2L + x1L IU + x2L IU ]

x1 − x2 � x1L − x2L + (x1U − x2U ) IN

� [x1L − x2L + x1U IL − x2U IL ,

x1L − x2L + x1U IU − x2U IU ]

x1 × x2 � x1L x2L + (x1L x2U + x2L x1U )IN + (x1U x2U )I 2N

�

⎡
⎢⎢⎢⎢⎣

min

(
(x1L + x1U IL )(x2L + x2U IL ), (x1L + x1U IL )(x2L + x2U IU ),
(x1L + x1U IU )(x2L + x2U IL ), (x1L + x1U IU )(x2L + x2U IU )

)

max

(
(x1L + x1U IL )(x2L + x2U IL ), (x1L + x1U IL )(x2L + x2U IU ),
(x1L + x1U IU )(x2L + x2U IL ), (x1L + x1U IU )(x2L + x2U IU )

)

⎤
⎥⎥⎥⎥⎦

x1
x2

� x1L + x1U IN

x2L + x2U IN
� [x1L + x1U IL , x1L + x1U IU ]

[x2L + x2U IL , x2L + x2U IU ]

�
⎡
⎣min

(
x1L+x1U IL
x2L+x2U IU

, x1L+x1U IL
x2L+x2U IL

, x1L+x1U IU
x2L+x2U IU

, x1L+x1U IU
x2L+x2U IL

)
,

max
(

x1L+x1U IL
x2L+x2U IU

, x1L+x1U IL
x2L+x2U IL

, x1L+x1U IU
x2L+x2U IU

, x1L+x1U IU
x2L+x2U IL

)
⎤
⎦.

The explanations of these operations with examples can
be seen in [17, 34].

DUS-neutrosophic Weibull distribution

Suppose that xN ε[xL , xU ] > 0 is neutrosophic random
variable follows the DUS-neutrosophic Weibull distribu-
tion. The neutrosophic form of xN ε[xL , xU ] is expressed
as xN � xL + xU IN ; IN ε[IL , IU ], where xL is a ran-
dom variable presents classical statistics and xU IN is the
indeterminate part and IN ε[IL , IU ] is themeasure of indeter-
minacy. Nayana et al. [20] introduced the DUS-neutrosophic
Weibull distribution with the following neutrosophic proba-
bility density (npdf) having shape parameter β > 0 and scale
parameter α > 0.

f (xN ) � β

αβ
xβ−1

N exp

(
−

( xN

α

)β
)

(1 + IN ); IN ε[IL , IU ].

(1)

The corresponding neutrosophic cumulative distribution
function (ncdf) is expressed as follows:

F(xN ) �
(
1 − exp

(
−

( xN

α

)β
))

(1 + IN ); xN > 0,

β > 0, α > 0, IN ε[IL , IU ]

. (2)

Note that IN ε[IL , IU ] denotes the measure of the inde-
terminacy. The npdf and ncdf reduce to pdf and cdf DUS-
Weibull distribution under classical statistics when IN � 0.

Neutrosophic truncated variable method

In this section, we will introduce, a neutrosophic trun-
cated variable method to generate random variate from the
DUS-Neutrosophic Weibull distribution by following [35].
In the truncated method, sometimes, the decision-makers
are interested to generate random variate from the specified
interval rather than using the original range of the variables.
For example, the neutrosophic variable xN from the DUS-
Neutrosophic Weibull distribution has ranged from 0 to ∞.
Suppose that the decision-makers are interested to generate
random variate from cN to dN . Note that limits cN and dN

lie within the original limits of DUS-Neutrosophic Weibull
distribution. The ncdf is given in Eq. (2) for lower truncated
value is given by

(3)

F (cN ) �
(
1 − exp

(
−

(cN

α

)β
))

(1 + IN ) ; cN

> 0, β > 0, α > 0, IN ε [IL , IU ] .
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The ncdf is given in Eq. (2) for upper truncated value is
given by

(4)

F (dN ) �
(
1 − exp

(
−

(
dN

α

)β
))

(1 + IN ) ; dN

> 0, β > 0, α > 0, IN ε [IL , IU ] .

The new density of DUS-Neutrosophic Weibull distribu-
tion using Eq. (1), Eqs. (3) and (4) when a ≤ c ≤ x N ≤ d ≤
b, where a � 0 and b � ∞ is given by

g(xN ) �
β

αβ xβ−1
N exp

(
−( xN

α

)β
)
(1 + IN )

[(
1 − exp

(
−

(
dN
α

)β
))

(1 + IN )

]
−

[(
1 − exp

(
−( cN

α

)β
))

(1 + IN )
] ; IN ε[IL , IU ]. (5)

The value of vN based onEqs. (3) and (4) can be calculated
as follows:

vN �
[(

1 − exp

(
−

(cN

α

)β
))

(1 + IN )

]

+ uN

[[(
1 − exp

(
−

(
dN

α

)β
))

(1 + IN )

]

−
[(

1 − exp

(
−

(cN

α

)β
))

(1 + IN )

]]
, (6)

where uN is a uniform random variate from intervals 0 and
1.

Algorithm

To find the random variate using the truncated variable sim-
ulation under indeterminacy, the following routine can be
run. Note that the following routine does not need g(xN )

described in Eq. (5).
Step-1: Specify the scale parameter α > 0 and shape

parameter β > 0 of the DUS-Weibull distribution.
Step-2: Specify the values of IN

Step-3:Generate a uniform variate, say uN between 0 and
1.

Step-4: Compute F(cN ) �(
1 − exp

(
−( cN

α

)β
))

(1 + IN ) and F(dN ) �(
1 − exp

(
−

(
dN
α

)β
))

(1 + IN ).

Step-5: Compute the values of vN using Eq. (6)
Step-6: Set vN � F(xN )

Step-7: Record the random variate such that F−1
N (vN )

Step-8: Return xN

The proposed algorithm is an extension of an algorithm
given in [35]. The proposed algorithm under indeterminacy

reduces to [35] algorithm when no indeterminacy is found.
The proposed algorithm is shown in Fig. 1.

Simulation study

In this section, we will present the simulation study using the
proposed algorithm for the DUS-Neutrosophic Weibull dis-
tribution. We will consider various values of uN and IN . We
also used various truncated variable values cN and dN to gen-

erate random variate from the DUS-Neutrosophic Weibull
distribution. Using the above-mentioned algorithm, Table 1
is presented for random variate when α � 0.5 and β � 3.0,
Table 2 for random variate when α � 2 and β � 2. Table 3
for random variate when α � 3 and β � 5. Similar tables can
be constructed for other values of the parameters with the R
codes that are given in the supplementary file. FromTables 1,
2, 3, it can be noted that for other the same parameters, there
are no specific trends in random variate for various values of
IN . From Tables 2 and 3, it can be noted the values of xN

increase when α � 2 and β � 2.0 increase to α � 3 and
β � 5.0. For example, when cN=0.2, dN=1 and IN=0.1, the
value of xN from Table 2 is 0.7036 and the value of xN from
Table 3 is 0.7753. From the example, it is clear that there is
an increasing trend in random variate xN when α > 1 and
β > 1.

Comparative study

To see the behavior of random variate, a simulated data of
random variate xN is generated using α � 3, β � 5. The
histograms at different values of indeterminacy are presented
in Figs. 2, 3, 4, and 5. Figures 2, 3, 4, and 5 are presented
for various values of α � 3, β � 5 and various truncated
variable values. Figure 2 shows the histograms for IN �
0 to IN � 1 when the variable is truncated at cN � 0 and
dN � 1. Figure 3 shows the histograms for IN � 0 to IN � 1
when the variable is truncated at cN � 0.2 and dN � 1.
Figure 4 shows the histograms for IN � 0 to IN � 1 when
the variable is truncated at cN � 0.4 and dN � 1. Figure 5
shows the histograms for IN � 0 to IN � 1when the variable
is truncated at cN � 0.5 and dN � 1. The histograms show
that the low frequencies occur at lower tail whereas the higher
frequencies occur at the upper tail of truncated variable. From
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Fig. 1 The algorithm of the
proposed method

Table 1 Random variate when
α � 0.5 and β � 3.0 IN Truncated variable values cN and dN

0, 1 0.2, 1 0.4, 1 0.5, 1

uN xN uN xN uN xN uN xN

0 0.6836 0.5238 0.7029 0.5424 0.1103 0.4284 0.0704 0.5119

0.1 0.8729 0.6363 0.0776 0.2625 0.5718 0.5539 0.6466 0.6340

0.2 0.6901 0.5270 0.2349 0.3461 0.7907 0.6376 0.1021 0.5173

0.3 0.1159 0.2488 0.9595 0.7415 0.6383 0.5759 0.9558 0.8002

0.4 0.1950 0.3004 0.7951 0.5906 0.4800 0.7482 0.6672

0.5 0.4612 0.4259 0.3866 0.4103 0.6927 0.5957 0.1502 0.5258

0.6 0.2035 0.3052 0.9763 0.7796 0.6746 0.5889 0.3076 0.5549

0.7 0.5908 0.4815 0.0953 0.2737 0.7582 0.6225 0.9079 0.7501

0.8 0.3739 0.3882 0.5819 0.4890 0.8413 0.6647 0.1780 0.5307

0.9 0.1413 0.2670 0.4723 0.4446 0.2405 0.4616 0.2762 0.5489

1 0.0962 0.2329 0.3023 0.3756 0.6798 0.5908 0.4049 0.5747

Figs. 2, 3, 4, it can be noted that the behavior of random
variate xN seems to be negatively skewed. From Fig. 5, it is
observed that the distribution of random variate xN tends to
be uniform distribution. From Figs. 2, 3, 4, 5, it is concluded
that as the interval reduces between the truncated values cN

and dN , the trend of the random variable xN move towards
the uniform distribution.

Merits and demerits

The proposed method of simulation can be applied in those
situations where it is difficult to gather the original data due
to complexity or uncertainty. The data obtained from the pro-
posed simulationmethod canbe applied to testing the lifetime
of the product. In addition, the proposed simulated data can
be applied to reliability studies. This random variate can be
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Table 2 Random variate when
α � 2 and β � 2.0 IN Truncated variable values cN and dN

0, 1 0.2, 1 0.4, 1 0.5, 1

uN xN uN xN uN xN uN xN

0 0.4396 0.6397 0.2032 0.4662 0.1142 0.4975 0.3062 0.6820

0.1 0.5592 0.7268 0.5040 0.7036 0.4918 0.7424 0.4391 0.7498

0.2 0.7856 0.8738 0.8393 0.9107 0.0758 0.4667 0.1452 0.5921

0.3 0.0739 0.2567 0.4123 0.6390 0.1231 0.5044 0.8931 0.9554

0.4 0.6045 0.7577 0.1919 0.4553 0.9052 0.9552 0.1427 0.5906

0.5 0.0074 0.0810 0.3144 0.5637 0.4391 0.7123 0.3106 0.6843

0.6 0.6734 0.8032 0.1532 0.4158 0.5037 0.7491 0.1445 0.5917

0.7 0.6316 0.7759 0.5286 0.7202 0.3198 0.6403 0.1625 0.6022

0.8 0.5923 0.7495 0.9252 0.9590 0.7339 0.8711 0.3655 0.7128

0.9 0.7456 0.8491 0.4533 0.6685 0.4965 0.7450 0.2441 0.6485

1 0.3586 0.5750 0.2377 0.4982 0.3847 0.6802 0.4819 0.7707

Table 3 Random variate when
α � 3 and β � 5.0 IN Truncated variable values cN and dN

0, 1 0.2, 1 0.4, 1 0.5, 1

uN xN uN xN uN xN uN xN

0 0.3078 0.7898 0.8822 0.9752 0.5383 0.8849 0.9542 0.9909

0.1 0.2577 0.7622 0.2804 0.7753 0.7490 0.9444 0.6953 0.9323

0.2 0.5523 0.8879 0.3985 0.8318 0.4201 0.8429 0.8895 0.9776

0.3 0.0564 0.5624 0.7626 0.9472 0.1714 0.7094 0.1804 0.7289

0.4 0.4685 0.8591 0.6690 0.9227 0.7703 0.9496 0.6294 0.9148

0.5 0.4838 0.8646 0.2046 0.7280 0.8820 0.9754 0.9896 0.9980

0.6 0.8124 0.9592 0.3575 0.8139 0.5491 0.8883 0.1303 0.6907

0.7 0.3703 0.8196 0.3595 0.8148 0.2777 0.7778 0.3307 0.8111

0.8 0.5466 0.8860 0.6903 0.9285 0.4883 0.8681 0.8651 0.9723

0.9 0.1703 0.7016 0.5358 0.8826 0.9285 0.9854 0.7776 0.9525

1 0.6250 0.9101 0.7108 0.9339 0.3487 0.8129 0.8273 0.9640

used for testing hypotheses in statistics. The proposed simu-
lationmethod is simple and easy to apply for the generation of
random variate under indeterminacy. The proposed simula-
tion method has the limitation that it cannot be applied when
the data follows the normal distribution. Another limitation
is that the proposed method of simulation can be applied in
uncertain environment.

Concluding remarks

The main objective was to introduce the truncated vari-
able algorithm for DUS-Neutrosophic Weibull distribution.
A simulation method for DUS-Neutrosophic Weibull distri-
bution was presented in the paper. An algorithm to perform
the proposed truncated variable simulation method was pre-
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Fig. 2 The histogram at cN � 0 and dN � 1

Fig. 3 The histogram at cN � 0.2 and dN � 1
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Fig. 4 The histogram at cN � 0.4 and dN � 1

Fig. 5 The histogram at cN � 0.5 and dN � 1

sented. The extensive tables for various parameters and
truncated values are present to see the behavior of random
variate generating using the proposed algorithm. From the
simulation study, it was concluded that when the differ-
ence between truncated values decreases the distribution of
random variate tends to uniform. The proposed simulation
method can be applied in computer science, medical sci-
ence, industrial statistics and the automobile industry. The
proposed simulation can be applied when real data under a
complex system cannot be obtained. The proposed simula-
tionmethod for other statistical distributions can be extended
for future research.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s40747-022-00912-5.
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