On two inequalities for the composition of arithmetic functions

József Sándor
Department of Mathematics, Babeş-Bolyai University, Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania
E-mail: jsandor@math.ubbcluj.ro

Abstract

Let f, g be arithmetic functions satisfying certain conditions. We prove the inequalities $f(g(n)) \leq 2 n-\omega(n) \leq 2 n-1$ and $f(g(n)) \leq n+\omega(n) \leq 2 n-1$ for any $n \geq 1$, where $\omega(n)$ is the number of distinct prime factors of n. Particular cases include $f(n)=$ Smarandache function, $g(n)=\sigma(n)$ or $g(n)=\sigma^{*}(n)$.

Keywords Arithmetic functions, inequalities.
AMS Subject Classification: 11A25.

§1. Introduction

Let $S(n)$ be the Smarandache (or Kempner-Smarandache) function, i.e., the function that associates to each positive integer n the smallest positive integer k such that $n \mid k!$. Let $\sigma(n)$ denote the sum of distinct positive divisors of n, while $\sigma^{*}(n)$ the sum of distinct unitary divisors of n (introduced for the first time by E. Cohen, see e.g. [7] for references and many informations on this and related functions). Put $\omega(n)=$ number of distinct prime divisors of n, where $n>1$. In paper [4] we have proved the inequality

$$
\begin{equation*}
S(\sigma(n)) \leq 2 n-\omega(n) \tag{1}
\end{equation*}
$$

for any $n>1$, with equality if and only if $\omega(n)=1$ and $2 n-1$ is a Mersenne prime.
In what follows we shall prove the similar inequality

$$
\begin{equation*}
S\left(\sigma^{*}(n)\right) \leq n+\omega(n), \tag{2}
\end{equation*}
$$

for $n>1$. Remark that $n+\omega(n) \leq 2 n-\omega(n)$, as $2 \omega(n) \leq n$ follows easily for any $n>1$. On the other hand $2 n-\omega(n) \leq 2 n-1$, so both inequalities (1) and (2) are improvements of

$$
\begin{equation*}
S(g(n)) \leq 2 n-1 \tag{3}
\end{equation*}
$$

where $g(n)=\sigma(n)$ or $g(n)=\sigma^{*}(n)$.
We will consider more general inequalities, for the composite functions $f(g(n))$, where f, g are arithmetical functions satisfying certain conditions.

§2. Main results

Lemma 2.1. For any real numbers $a \geq 0$ and $p \geq 2$ one has the inequality

$$
\begin{equation*}
\frac{p^{a+1}-1}{p-1} \leq 2 p^{a}-1, \tag{4}
\end{equation*}
$$

with equality only for $a=0$ or $p=2$.
Proof. It is easy to see that (4) is equivalent to

$$
\left(p^{a}-1\right)(p-2) \geq 0,
$$

which is true by $p \geq 2$ and $a \geq 0$, as $p^{a} \geq 2^{a} \geq 1$ and $p-2 \geq 0$.
Lemma 2.2. For any real numbers $y_{i} \geq 2(1 \leq i \leq r)$ one has

$$
\begin{equation*}
y_{1}+\ldots+y_{r} \leq y_{1} \ldots y_{r} \tag{5}
\end{equation*}
$$

with equality only for $r=1$.
Proof. For $r=2$ the inequality follows by $\left(y_{1}-1\right)\left(y_{2}-1\right) \geq 1$, which is true, as $y_{1}-1 \geq 1, y_{2}-1 \geq 1$. Now, relation (5) follows by mathematical induction, the induction step $y_{1} \ldots y_{r}+y_{r+1} \leq\left(y_{1} \ldots y_{r}\right) y_{r+1}$ being an application of the above proved inequality for the numbers $y_{1}^{\prime}=y_{1} \ldots y_{r}, y_{2}^{\prime}=y_{r+1}$.

Now we can state the main results of this paper.
Theorem 2.1. Let $f, g: \mathbb{N} \rightarrow \mathbb{R}$ be two arithmetic functions satisfying the following conditions:
(i) $f(x y) \leq f(x)+f(y)$ for any $x, y \in \mathbb{N}$.
(ii) $f(x) \leq x$ for any $x \in \mathbb{N}$.
(iii) $g\left(p^{\alpha}\right) \leq 2 p^{\alpha}-1$, for any prime powers p^{α} (p prime, $\alpha \geq 1$).
(iv) g is multiplicative function.

Then one has the inequality

$$
\begin{equation*}
f(g(n)) \leq 2 n-\omega(n), n>1 \tag{6}
\end{equation*}
$$

Theorem 2.2. Assume that the arithmetical functions f and g of Theorem 2.1 satisfy conditions (i), (ii), (iv) and
(iii)' $g\left(p^{\alpha}\right) \leq p^{\alpha}+1$ for any prime powers p^{α}.

Then one has the inequality

$$
\begin{equation*}
f(g(n)) \leq n+\omega(n), n>1 \tag{7}
\end{equation*}
$$

Proof of Theorem 2.1. As $f\left(x_{1}\right) \leq f\left(x_{1}\right)$ and

$$
f\left(x_{1} x_{2}\right) \leq f\left(x_{1}\right)+f\left(x_{2}\right),
$$

it follows by mathematical induction, that for any integers $r \geq 1$ and $x_{1}, \ldots, x_{r} \geq 1$ one has

$$
\begin{equation*}
f\left(x_{1} \ldots x_{r}\right) \leq f\left(x_{1}\right)+\ldots+f\left(x_{r}\right) . \tag{8}
\end{equation*}
$$

Let now $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}>1$ be the prime factorization of n, where p_{i} are distinct primes and $\alpha_{i} \geq 1(i=1, \ldots, r)$. Since g is multiplicative, by inequality (8) one has

$$
f(g(n))=f\left(g\left(p_{1}^{\alpha_{1}}\right) \ldots g\left(p_{r}^{\alpha_{r}}\right)\right) \leq f\left(g\left(p_{1}^{\alpha_{1}}\right)\right)+\ldots+f\left(g\left(p_{r}^{\alpha_{r}}\right)\right) .
$$

By using conditions (ii) and (iii), we get

$$
f(g(n)) \leq g\left(p_{1}^{\alpha_{1}}\right)+\ldots+g\left(p_{r}^{\alpha_{r}}\right) \leq 2\left(p_{1}^{\alpha_{1}}+\ldots+p_{r}^{\alpha_{r}}\right)-r .
$$

As $p_{i}^{\alpha_{i}} \geq 2$, by Lemma 2.2 we get inequality (6), as $r=\omega(n)$.
Proof of Theorem 2.2. Use the same argument as in the proof of Theorem 2.1, by remarking that by (iii)'

$$
f(g(n)) \leq\left(p_{1}^{\alpha+1}+\ldots+p_{r}^{\alpha_{r}}\right)+r \leq p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}+r=n+\omega(n)
$$

Remark 2.1. By introducing the arithmetical function $B^{1}(n)$ (see [7], Ch.IV.28)

$$
B^{1}(n)=\sum_{p^{\alpha} \| n} p^{\alpha}=p_{1}^{\alpha_{1}}+\ldots+p_{r}^{\alpha_{r}}
$$

(i.e., the sum of greatest prime power divisors of n), the following stronger inequalities can be stated:

$$
f(g(n)) \leq 2 B^{1}(n)-\omega(n)
$$

(in place of (6)); as well as:

$$
f(g(n)) \leq B^{1}(n)+\omega(n),
$$

(in place of (7)).
For the average order of $B^{1}(n)$, as well as connected functions, see e.g. [2], [3], [8], [7].

§3. Applications

1. First we prove inequality (1).

Let $f(n)=S(n)$. Then inequalities (i), (ii) are well-known (see e.g. [1], [6], [4]). Put $g(n)=\sigma(n)$. As $\sigma\left(p^{\alpha}\right)=\frac{p^{\alpha+1}-1}{p-1}$, inequality (iii) follows by Lemma 2.1. Theorem 2.1 may be applied.
2. Inequality (2) holds true.

Let $f(n)=S(n), g(n)=\sigma^{*}(n)$. As $\sigma^{*}(n)$ is a multiplicative function, with $\sigma^{*}\left(p^{\alpha}\right)=p^{\alpha}+1$, inequality (iii)' holds true. Thus (2) follows by Theorem 2.2.
3. Let $g(n)=\psi(n)$ be the Dedekind arithmetical function, i.e., the multiplicative function whose value of the prime power p^{α} is

$$
\psi\left(p^{\alpha}\right)=p^{\alpha-1}(p+1)
$$

Then $\psi\left(p^{\alpha}\right) \leq 2 p^{\alpha}-1$ since

$$
p^{\alpha}+p^{\alpha-1} \leq 2 p^{\alpha}-1 ; p^{\alpha-1}+1 \leq p^{\alpha} ; p^{\alpha-1}(p-1) \geq 0
$$

which is true, with strict inequality.
Thus Theorem 2.1 may be applied for any function f satisfying (i) and (ii).
4. There are many functions satisfying inequalities (i) and (ii) of Theorems 2.1 and 2.2 . Let $f(n)=\log \sigma(n)$.
As $\sigma(m n) \leq \sigma(m) \sigma(n)$ for any $m, n \geq 1$, relation (i) follows. The inequality $f(n) \leq n$ follows by $\sigma(n) \leq e^{n}$, which is a consequence of e.g. $\sigma(n) \leq n^{2}<e^{n}$ (the last inequality may be proved e.g. by induction).

Remark 3.1. More generally, assume that $F(n)$ is a submultiplicative function, i.e., satisfying

$$
F(m n) \leq F(m) F(n) \text { for } m, n \geq 1
$$

Assume also that

$$
F(n) \leq e^{n}
$$

Then $f(n)=\log F(n)$ satisfies relations (i) and (ii).
5. Another nontrivial function, which satisfies conditions (i) and (ii) is the following

$$
f(n)= \begin{cases}p, & \text { if } n=p \text { (prime) } \tag{9}\\ 1, & \text { if } n=\text { composite or } n=1\end{cases}
$$

Clearly, $f(n) \leq n$, with equality only if $n=1$ or $n=$ prime. For $y=1$ we get $f(x) \leq$ $f(x)+1=f(x)+f(1)$, when $x, y \geq 2$ one has

$$
f(x y)=1 \leq f(x)+f(y)
$$

6. Another example is

$$
\begin{equation*}
f(n)=\Omega(n)=\alpha_{1}+\ldots+\alpha_{r}, \tag{10}
\end{equation*}
$$

for $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$, i.e., the total number of prime factors of n. Then $f(m n)=f(m)+f(n)$, as $\Omega(m n)=\Omega(m)+\Omega(n)$ for all $m, n \geq 1$. The inequality $\Omega(n)<n$ follows by $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}} \geq$ $2^{\alpha_{1}+\ldots+\alpha_{r}}>\alpha_{1}+\ldots+\alpha_{r}$.
7. Define the additive analogue of the sum of divisors function σ, as follows: If $n=$ $p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ is the prime factorization of n, put

$$
\begin{equation*}
\Sigma(n)=\Sigma\left(\frac{p^{\alpha+1}-1}{p-1}\right)=\sum_{i=1}^{r} \frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1} . \tag{11}
\end{equation*}
$$

As $\sigma(n)=\prod_{i=1}^{r} \frac{p_{i}^{\alpha_{i}+1}-1}{p-1}$, and $\frac{p^{\alpha+1}-1}{p-1}>2$, clearly by Lemma 2.2 one has

$$
\begin{equation*}
\Sigma(n) \leq \sigma(n) \tag{12}
\end{equation*}
$$

Let $f(n)$ be any arithmetic function satisfying condition (ii), i.e., $f(n) \leq n$ for any $n \geq 1$. Then one has the inequality:

$$
\begin{equation*}
f(\Sigma(n)) \leq 2 B^{1}(n)-\omega(n) \leq 2 n-\omega(n) \leq 2 n-1 \tag{13}
\end{equation*}
$$

for any $n>1$.

Indeed, by Lemma 2.1, and Remark 2.1, the first inequality of (13) follows. Since $B^{1}(n) \leq n$ (by Lemma 2.2), the other inequalities of (13) will follow. An example:

$$
\begin{equation*}
S(\Sigma(n)) \leq 2 n-1, \tag{14}
\end{equation*}
$$

which is the first and last term inequality in (13).
It is interesting to study the cases of equality in (14). As $S(m)=m$ if and only if $m=1$, 4 or p (prime) (see e.g. [1], [6], [4]) and in Lemma 2.2 there is equality if $\omega(n)=1$, while in Lemma 2.1, as $p=2$, we get that n must have the form $n=2^{\alpha}$. Then $\Sigma(n)=2^{\alpha+1}-1$ and $2^{\alpha+1}-1 \neq 1,2^{\alpha+1}-1 \neq 4,2^{\alpha+1}-1=$ prime, we get the following theorem:

There is equality in (14) iff $n=2^{\alpha}$, where $2^{\alpha+1}-1$ is a prime.
In paper [5] we called a number n almost f-perfect, if $f(n)=2 n-1$ holds true. Thus, we have proved that n is almost $S \circ \Sigma$-perfect number, iff $n=2^{\alpha}$, with $2^{\alpha+1}-1$ a prime (where " \circ " denotes composition of functions).

References

[1] Ch. Ashbacher, An introduction to the Smarandache function, Erhus Univ. Press, Vail, 1995.
[2] P. Erdös and A. Ivić, Estimates for sums involving the largest prime factor of an integer and certain related additive functions, Studia Sci. Math. Hung., 15(1980), 183-199.
[3] J. M. de Koninck and A. Ivić, Topics in arithmetical functions, Notas de Matematica, North Holland, 1980.
[4] F. Luca and J. Sándor, On the composition of a certain arithmetic function, Functiones et Approximatio, 41(2009), 185-209.
[5] J. Sándor, On the composition of some arithmetic functions, Studia Univ. Babeş-Bolyai, Math., 34(1989), 7-14.
[6] J. Sándor, Geometric theorems, diophantine equations and arithmetic functions, New Mexico, 2002.
[7] J. Sándor, D. S. Mitrinović and B. Crstici, Handbook of number theory I, Springer Verlag, 2006.
[8] T. Z. Xuan, On some sums of large additive number theoretic functions (Chinese), Journal of Beijing normal university, 1984, No. 2, 11-18.

