The Upper Monophonic Number of a Graph

J.John
Department of Mathematics of Government College of Engineering, Tirunelveli - 627007, India
S.Panchali
Department of Mathematics of Cape Institute of Technology, Levengipuram- 627114, India
Email: johnramesh1971@yahoo.co.in, panchalis64@gmail.com

Abstract

For a connected graph $G=(V, E)$, a Smarandachely k-monophonic set of G is a set $M \subseteq V(G)$ such that every vertex of G is contained in a path with less or equal k chords joining some pair of vertices in M. The Smarandachely k-monophonic number $m_{S}^{k}(G)$ of G is the minimum order of its Smarandachely k-monophonic sets. Particularly, a Smarandachely 0-monophonic path, a Smarandachely 0-monophonic number is abbreviated to a monophonic path, monophonic number $m(G)$ of G respectively. Any monophonic set of order $m(G)$ is a minimum monophonic set of G. A monophonic set M in a connected graph G is called a minimal monophonic set if no proper subset of M is a monophonic set of G. The upper monophonic number $m^{+}(G)$ of G is the maximum cardinality of a minimal monophonic set of G. Connected graphs of order p with upper monophonic number p and $p-1$ are characterized. It is shown that for every two integers a and b such that $2 \leq a \leq b$, there exists a connected graph G with $m(G)=a$ and $m^{+}(G)=b$.

Key Words: Smarandachely k-monophonic path, Smarandachely k-monophonic number, monophonic path, monophonic number.

AMS(2010): 05C12

§1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [1]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P including the vertices u and v. The eccentricity $e(v)$ of a vertex v in G is the maximum distance from v and a vertex of G. The minimum eccentricity among the vertices of G is the radius, rad G or $r(G)$ and the maximum eccentricity is its diameter, diam G of G. A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a geodesic joining some pair of vertices of S. The geodetic number $g(G)$ of G is the minimum cardinality of its geodetic sets and any

[^0]geodetic set of cardinality $g(G)$ is a minimum geodetic set of G. The geodetic number of a graph is introduced in [2] and further studied in [3]. $N(v)=\{u \in V(G): u v \in E(G)\}$ is called the neighborhood of the vertex v in G. For any set S of vertices of G, the induced subgraph $\langle S\rangle$ is the maximal subgraph of G with vertex set S. A vertex v is an extreme vertex of a graph G if $<N(v)>$ is complete. A chord of a path $u_{0}, u_{1}, u_{2}, \ldots, u_{h}$ is an edge $u_{i} u_{j}$, with $j \geq i+2$. An $u-v$ path is called a monophonic path if it is a chordless path. A Smarandachely k-monophonic set of G is a set $M \subseteq V(G)$ such that every vertex of G is contained in a path with less or equal k chords joining some pair of vertices in M. The Smarandachely k-monophonic number $m_{S}^{k}(G)$ of G is the minimum order of its Smarandachely k-monophonic sets. Particularly, a Smarandachely 0 -monophonic path, a Smarandachely 0 -monophonic number is abbrevated to monophonic path, monophonic number $m(G)$ of G respectively. Thus, a monophonic set of G is a set $M \subseteq V$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in M. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is a minimum monophonic set or simply a m-set of G. It is easily observed that no cut vertex of G belongs to any minimum monophonic set of G. The monophonic number of a graph is studied in $[4,5,6]$. For the graph G given in Figure 1.1, $S_{1}=\left\{v_{2}, v_{4}, v_{5}\right\}, S_{2}=\left\{v_{2}, v_{4}, v_{6}\right\}$ are the only minimum geodetic sets of G so that $g(G)=3$. Also, $M_{1}=\left\{v_{2}, v_{4}\right\}, M_{2}=\left\{v_{4}, v_{6}\right\}, M_{3}=\left\{v_{2}, v_{5}\right\}$ are are the only minimum monophonic sets of G so that $m(G)=2$.

Figure 1: G

§2. The Upper Monophonic Number of a Graph

Definition 2.1 A monophonic set M in a connected graph G is called a minimal monophonic set if no proper subset of M is a monophonic set of G. The upper monophonic number $m^{+}(G)$ of G is the maximum cardinality of a minimal monophonic set of G.

Example 2.2 For the graph G given in Figure 1.1, $M_{4}=\left\{v_{1}, v_{3}, v_{5}\right\}$ and $M_{5}=\left\{v_{1}, v_{3}, v_{6}\right\}$ are minimal monophonic sets of G so that $m^{+}(G) \geq 3$. It is easily verified that no four element subsets or five element subsets of $V(G)$ is a minimal monophonic set of G and so $m^{+}(G)=3$.

Remark 2.3 Every minimum monophonic set of G is a minimal monophonic set of G and the converse is not true. For the graph G given in Figure 1.1, $M_{4}=\left\{v_{1}, v_{3}, v_{5}\right\}$ is a minimal
monophonic set but not a minimum monophonic set of G.

Theorem 2.4 Each extreme vertex of G belongs to every monophonic set of G.

Proof Let M be a monophonic set of G and v be an extreme vertex of G. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be the neighbors of v in G. Suppose that $v \notin M$. Then v lies on a monophonic path $P: x=x_{1}, x_{2}, \ldots, v_{i}, v, v_{j}, \ldots, x_{m}=y$, where $x, y \in M$. Since $v_{i} v_{j}$ is a chord of P and so P is not a monophonic path, which is a contradiction. Hence it follows that $v \in M$.

Theorem 2.5 Let G be a connected graph with cut-vertices and S be a monophonic set of G. If v is a cut-vertex of G, then every component of $G-v$ contains an element of S.

Proof Suppose that there is a component G_{1} of $G-v$ such that G_{1} contains no vertex of S. By Theorem 2.4, G_{1} does not contain any end-vertex of G. Thus G_{1} contains at least one vertex, say u. Since S is a monophonic set, there exists vertices $x, y \in S$ such that u lies on the $x-y$ monophonic path $P: x=u_{0}, u_{1}, u_{2}, \ldots, u, \ldots, u_{t}=y$ in G. Let P_{1} be a $x-u$ sub path of P and P_{2} be a $u-y$ subpath of P. Since v is a cut-vertex of G, both P_{1} and P_{2} contain v so that P is not a path, which is a contradiction. Thus every component of $G-v$ contains an element of S.

Theorem 2.6 For any connected graph G, no cut-vertex of G belongs to any minimal monophonic set of G.

Proof Let M be a minimal monophonic set of G and $v \in M$ be any vertex. We claim that v is not a cut vertex of G. Suppose that v is a cut vertex of G. Let $G_{1}, G_{2}, \ldots, G_{r}(r \geq 2)$ be the components of $G-v$. By Theorem 2.5, each component $G_{i}(1 \leq i \leq r)$ contains an element of M. We claim that $M_{1}=M-\{v\}$ is also a monophonic set of G. Let x be a vertex of G. Since M is a monophonic set, x lies on a monophonic path P joining a pair of vertices u and v of M. Assume without loss of generality that $u \in G_{1}$. Since v is adjacent to at least one vertex of each $G_{i}(1 \leq i \leq r)$, assume that v is adjacent to z in $G_{k}, k \neq 1$. Since M is a monophonic set, z lies on a monophonic path Q joining v and a vertex w of M such that w must necessarily belongs to G_{k}. Thus $w \neq v$. Now, since v is a cut vertex of $G, P \cup Q$ is a path joining u and w in M and thus the vertex x lies on this monophonic path joining two vertices u and w of M_{1}. Thus we have proved that every vertex that lies on a monophonic path joining a pair of vertices u and v of M also lies on a monophonic path joining two vertices of M_{1}. Hence it follows that every vertex of G lies on a monophonic path joining two vertices of M_{1}, which shows that M_{1} is a monophonic set of G. Since $M_{1} \subsetneq M$, this contradicts the fact that M is a minimal monophonic set of G. Hence $v \notin M$ so that no cut vertex of G belongs to any minimal monophonic set of G.

Corollary 2.7 For any non-trivial tree T, the monophonic number $m^{+}(T)=m(T)=k$, where k is number of end vertices of T.

Proof This follows from Theorems 2.4 and 2.6.

Corollary 2.8 For the complete graph $K_{p}(p \geq 2), m^{+}\left(K_{p}\right)=m\left(K_{p}\right)=p$.
Proof Since every vertex of the complete graph, $K_{p}(p \geq 2)$ is an extreme vertex, the vertex set of K_{p} is the unique monophonic set of K_{p}. Thus $m^{+}\left(K_{p}\right)=m\left(K_{p}\right)=p$.

Theorem 2.9 For a cycle $G=C_{p}(p \geq 4), m^{+}(G)=2=m(G)$.
Proof Let x, y be two independent vertices of G. Then $M=\{x, y\}$ is a monophonic set of G so that $m(G)=2$. We show that $m^{+}(G)=2$. Suppose that $m^{+}(G)>2$. Then there exists a minimal monophonic set M_{1} such that $\left|M_{1}\right| \geq 3$. Now it is clear that $M \subsetneq M_{1}$, which is a contradiction to M_{1} a minimal monophonic set of G. Therefore, $m^{+}(G)=2$.

Theorem 2.10 For a connected graph $G, 2 \leq m(G) \leq m^{+}(G) \leq p$.
Proof Any monophonic set needs at least two vertices and so $m(G) \geq 2$. Since every minimal monophonic set is a monophonic set, $m(G) \leq m^{+}(G)$. Also, since $V(G)$ is a monophonic set of G, it is clear that $m^{+}(G) \leq p$. Thus $2 \leq m(G) \leq m^{+}(G) \leq p$.

The following Theorem is proved in [3].

Theorem A Let G be a connected graph with diameter d. Then $g(G) \leq p-d+1$.
Theorem 2.11 Let G be a connected graph with diameter d. Then $m(G) \leq p-d+1$.
Proof Since every geodetic set of G is a monophonic set of G, the assertion follows from Theorem 2.10 and Theorem A.

Theorem 2.12 For a non-complete connected graph $G, m(G) \leq p-k(G)$, where $k(G)$ is vertex connectivity of G.

Proof Since G is non complete, it is clear that $1 \leq k(G) \leq p-2$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be a minimum cutset of vertices of G. Let $G_{1}, G_{2}, \ldots, G_{r}(r \geq 2)$ be the components of $G-U$ and let $M=V(G)-U$. Then every vertex $u_{i}(1 \leq i \leq k)$ is adjacent to at least one vertex of $G_{j}(1 \leq j \leq r)$. Then it follows that the vertex u_{i} lies on the monophonic path x, u_{i}, y, where $x, y \in M$ so that M is a monophonic set. Thus $m(G) \leq p-k(G)$.

The following Theorems 2.13 and 2.15 characterize graphs for which $m^{+}(G)=p$ and $m^{+}(G)=p-1$ respectively.

Theorem 2.13 For a connected graph G of order p, the following are equivalent:
(i) $m^{+}(G)=p$;
(ii) $m(G)=p$;
(iii) $G=K_{p}$.

Proof $(i) \Rightarrow(i i)$. Let $m^{+}(G)=p$. Then $M=V(G)$ is the unique minimal monophonic set of G. Since no proper subset of M is a monophonic set, it is clear that M is the unique minimum monophonic set of G and so $m(G)=p .(i i) \Rightarrow(i i i)$. Let $m(G)=p$. If $G \neq K_{p}$, then
by Theorem 2.11, $m(G) \leq p-1$, which is a contradiction. Therefore $G=K_{p}$. (ii) $\Rightarrow(i i i)$. Let $G=K_{p}$. Then by Corollary $2.8, m^{+}(G)=p$.

Theorem 2.14 Let G be a non complete connected graph without cut vertices. Then $m^{+}(G) \leq$ $p-2$.

Proof Suppose that $m^{+}(G) \geq p-1$. Then by Theorem 2.13, $m^{+}(G)=p-1$. Let v be a vertex of G and let $M=V(G)-\{v\}$ be a minimal monophonic set of G. By Theorem 2.4, v is not an extreme vertex of G. Then there exists $x, y \in N(v)$ such that $x y \notin E(G)$. Since v is not a cut vertex of $G,<G-v>$ is connected. Let $x, x_{1}, x_{2}, \ldots, x_{n}, y$ be a monophonic path in $\langle G-v\rangle$. Then $M_{1}=M-\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a monophonic set of G. Since $M_{1} \subsetneq M, M_{1}$ is not a minimal monophonic set of G, which is a contradiction. Therefore $m^{+}(G) \leq p-2$.

Theorem 2.15 For a connected graph G of order p, the following are equivalent:
(i) $m^{+}(G)=p-1$;
(ii) $m(G)=p-1$;
(iii) $G=K_{1}+\bigcup m_{j} K_{j}, \sum m_{j} \geq 2$.

Proof $(i) \Rightarrow(i i)$. Let $m^{+}(G)=p-1$. Then it follows from Theorem 2.13 that G is non-complete. Hence by Theorem $2.14, G$ contains a cut vertex, say v. Since $m^{+}(G)=p-1$, hence it follows from Theorem 2.6 that $M=V-\{v\}$ is the unique minimal monophonic set of G. We claim that $m(G)=p-1$. Suppose that $m(G)<p-1$.Then there exists a minimum monophonic set M_{1} such that $\left|M_{1}\right|<p-1$. It is clear that $v \notin M_{1}$. Then it follows that $M_{1} \subsetneq M$, which is a contradiction. Therefore $m(G)=p-1$. (ii) $\Rightarrow($ iii $)$. Let $m(G)=p-1$. Then by Theorem 2.11, $d \leq 2$. If $d=1$, then $G=K_{p}$, which is a contradiction. Therefore $d=2$. If G has no cut vertex, then by Theorem 2.12, $m(G) \leq p-2$, which is a contradiction. Therefore G has a unique cut-vertex, say v. Suppose that $G \neq K_{1}+\bigcup m_{j} K_{j}$. Then there exists a component, say G_{1} of $G-v$ such that $<G_{1}>$ is non complete. Hence $\left|V\left(G_{1}\right)\right| \geq 3$. Therefore $<G_{1}>$ contains a chordless path P of length at least two. Let y be an internal vertex of the path P and let $M=V(G)-\{v, y\}$. Then M is a monophonic set of G so that $m(G) \leq p-2$, which is a contradiction. Thus $\left.G=K_{1}+\bigcup m_{j} K_{j} .(i i i) \Rightarrow(i)\right)$. Let $G=K_{1}+\bigcup m_{j} K_{j}$. Then by Theorems 2.4 and $2.6, m^{+}(G)=p-1$.

In the view of Theorem 2.10, we have the following realization result.

Theorem 2.16 For any positive integers $2 \leq a \leq b$, there exists a connected graph G such that $m(G)=a$ and $m^{+}(G)=b$.

Proof Let G be a graph given in Figure 2.1 obtained from the path on three vertices $P: u_{1}, u_{2}, u_{3}$ by adding the new vertices $v_{1}, v_{2}, \ldots, v_{b-a+1}$ and $w_{1}, w_{2}, \ldots, w_{a-1}$ and joining each $v_{i}(1 \leq i \leq b-a+1)$ to each $v_{j}(1 \leq j \leq b-a+1), i \neq j$, and also joining each $w_{i}(1 \leq i \leq a-1)$ with u_{1} and u_{2}. First we show that $m(G)=a$. Let M be a monophonic set of G and let $W=\left\{w_{1}, w_{2}, \ldots, w_{a-1}\right\}$. By Theorem $2.4, W \subseteq M$. It is easily seen that W is not a monophonic set of G. However, $W \cup\left\{u_{3}\right\}$ is a monophonic set of G and so $m(G)=a$. Next we show that $m^{+}(G)=b$. Let $M_{1}=W \cup\left\{v_{1}, v_{2}, \ldots, v_{b-a+1}\right\}$. Then M_{1} is a monophonic

Figure 2: G
set of G. If M_{1} is not a minimal monophonic set of G, then there is a proper subset T of M_{1} such that T is a monophonic set of G. Then there exists $v \in M_{1}$ such that $v \notin T$. By Theorem 2.4, $v \neq w_{i}(1 \leq i \leq a-1)$. Therefore $v=v_{i}$ for some $i(1 \leq i \leq b-a+1)$. Since $v_{i} v_{j}(1 \leq i, j \leq b-a+1), i \neq j$ is a chord, v_{i} does not lie on a monophonic path joining some vertices of T and so T is not a monophonic set of G, which is a contradiction. Thus M_{1} is a minimal monophonic set of G and so $m^{+}(G) \geq b$. Let T^{\prime} be a minimal monophonic set of G with $\left|T^{\prime}\right| \geq b+1$. By Theorem2.4, $W \subseteq T^{\prime}$. Since $W \cup\left\{u_{3}\right\}$ is a monophonic set of $G, u_{3} \notin T^{\prime}$. Since M_{1} is a monophonic set of G, there exists at least one v_{i} such that $v_{i} \notin T^{\prime}$. Without loss of generality let us assume that $v_{1} \notin T^{\prime}$. Since $\left|T^{\prime}\right| \geq b+1$, then u_{1}, u_{2} must belong to T^{\prime}. Now it is clear that v_{1} does not lie on a monophonic path joining a pair of vertices of T^{\prime}, it follows that T^{\prime} is not a monophonic set of G, which is a contradiction. Therefore $m^{+}(G)=b$.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.
[2] F. Buckley, F. Harary, L. V. Quintas, Extremal results on the geodetic number of a graph, Scientia A2, (1988), 17-26.
[3] G. Chartrand, F. Harary, Zhang, On the Geodetic Number of a graph, Networks, 39(1),
(2002) 1-6.
[4] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics, 293(2005), 139-154.
[5] Esamel M. paluga, Sergio R. Canoy, Jr. , Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics, 307 (2007), 1146-1154.
[6] Mitre C. Dourado, Fabio Protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics, 30(2008), 177-1822.

[^0]: ${ }^{1}$ Received August 6, 2010. Accepted December 16, 2010.

