On the value distribution properties of the Smarandache double-factorial function

Jianping Wang
College of Science, Chang'an University, Xi'an, 710064, P.R.China

Abstract

For any positive integer n, the famous Smarandache double-factorial function $S D F(n)$ is defined as the smallest positive integer m, such that $m!$! is divisible by n, where the double factorial $m!!=1 \cdot 3 \cdot 5 \cdots m$, if m is odd; and $m!!=2 \cdot 4 \cdot 6 \cdots m$, if m is even. The main purpose of this paper is using the elementary and analytic methods to study the value distribution properties of $S D F(n)$, and give an interesting mean value formula for it.

Keywords The Smarandache double-factorial function, value distribution, mean value, asymptotic formula.

§1. Introduction and results

For any positive integer n, the famous Smarandache double-factorial function $S D F(n)$ is defined as the smallest positive integer m, such that $m!$! is divisible by n, where the double factorial

$$
m!!= \begin{cases}1 \cdot 3 \cdot 5 \cdots m, & \text { if } m \text { is odd } \\ 2 \cdot 4 \cdot 6 \cdots m, & \text { if } m \text { is even }\end{cases}
$$

For example, the first few values of $S D f(n)$ are:

$$
\begin{aligned}
& S D F(1)=1, S D F(2)=2, S D F(3)=3, S D F(4)=4, S D F(5)=5, S D F(6)=6, \\
& S D F(7)=7, S D F(8)=4, S D F(9)=9, S D F(10)=10, S D F(11)=11, S D F(12)=6, \\
& S D F(13)=13, S D F(14)=14, S D F(15)=5, S D F(16)=6 \cdots \cdots
\end{aligned}
$$

In reference [1] and [2], F.Smarancdache asked us to study the properties of $S D F(n)$. About this problem, some authors had studied it, and obtained some interesting results, see reference [3]. In an unpublished paper, Zhu Minhui proved that for any real number $x>1$ and fixed positive integer k, we have the asymptotic formula

$$
\sum_{n \leq x} S D F(n)=\frac{5 \pi^{2}}{48} \cdot \frac{x^{2}}{\ln x}+\sum_{i=2}^{k} \frac{a_{i} \cdot x^{2}}{\ln ^{i} x}+O\left(\frac{x^{2}}{\ln ^{k+1} x}\right)
$$

where a_{i} are computable constants.

The other contents related to the Smarandache double-factorial function can also be found in references [4], [5], [6] and [7]. For example, Dr. Xu Zhefeng [4] studied the value distribution problem of the F.Smarandache function $S(n)$, and proved the following conclusion:

Let $P(n)$ denotes the largest prime factor of n, then for any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x}(S(n)-P(n))^{2}=\frac{2 \zeta\left(\frac{3}{2}\right) x^{\frac{3}{2}}}{3 \ln x}+O\left(\frac{x^{\frac{3}{2}}}{\ln ^{2} x}\right)
$$

where $\zeta(s)$ denotes the Riemann zeta-function.
The main purpose of this paper is using the elementary and analytic methods to study the value distribution problem of the double-factorial function $S D F(n)$, and give an interesting asymptotic formula it. That is, we shall prove the following conclusion:

Theorem 1. For any real number $x>1$ and any fixed positive integer k, we have the asymptotic formula

$$
\sum_{n \leq x}(S D F(n)-P(n))^{2}=\frac{\zeta(3)}{24} \frac{x^{3}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{3}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{k+1} x}\right)
$$

where $P(n)$ denotes the largest prime divisor of n, and all c_{i} are computable constants.
Now we define another function $S(n)$ as follows: Let $S(n)$ denotes the smallest positive integer m such that $n \mid m!$. That is, $S(n)=\min \{m: n \mid m!\}$. It is called the F.Smarandache function. For this function, using the method of proving Theorem 1 we can also get the following:

Theorem 2. For any real number $x>1$ any fixed positive integer k, we have the asymptotic formula

$$
\sum_{n \leq x}(S D F(n)-S(n))^{2}=\frac{\zeta(3)}{24} \frac{x^{3}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{3}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{k+1} x}\right) .
$$

§2. Proof of the theorems

In this section, we shall prove our theorems directly. First we prove Theorem 1. We separate all integers n in the interval $[1, x]$ into two subsets A and B as follows: $A=\{n: 1 \leq$ $n \leq x, P(n)>\sqrt{n}\} ; B=\{n: 1 \leq n \leq x, n \notin A\}$, where $P(n)$ denotes the largest prime divisor of n. If $n \in A$, then $n=m \cdot P(n)$ and $P(m)<P(n)$. So from the definition of A we have $S D F(2)=2$. For any positive integer $n>2$ and $n \in A, S D F(n)=P(n)$, if $2 \dagger n$.
$S D F(n)=2 P(n)$, if $2 \mid n$. From this properties we have

$$
\begin{align*}
& \sum_{\substack{n \leq x \\
n \in A}}(S D F(n)-P(n))^{2} \\
= & \sum_{\substack{2 n \leq x \\
2 n \in A}}(S D F(2 n)-P(2 n))^{2}+\sum_{\substack{2 n-1 \leq x \\
2 n-1 \in A}}\left(S D F(2 n-1)-P(2 n-1)^{2}\right. \\
= & \sum_{\substack{n \leq \frac{x}{2} \\
2 n \in A}}(S D F(2 n)-P(2 n))^{2}=\sum_{\substack{1<n \leq \frac{x}{2} \\
2 n \in A}}(2 P(2 n)-P(2 n))^{2} \\
= & \sum_{\substack{1<n \leq \frac{x}{2} \\
2 n \in A}} P^{2}(2 n)=\sum_{\substack{n p \leq \frac{x}{2} \\
p>2 n}} p^{2}=\sum_{n \leq \frac{\sqrt{x}}{2}} \sum_{2 n<p \leq \frac{x}{2 n}} p^{2} . \tag{1}
\end{align*}
$$

By the Abel's summation formula (See Theorem 4.2 of [8]) and the Prime Theorem (See Theorem 3.2 of [9]):

$$
\pi(x)=\sum_{i=1}^{k} \frac{a_{i} \cdot x}{\ln ^{i} x}+O\left(\frac{x}{\ln ^{k+1} x}\right)
$$

where $a_{i}(i=1,2, \cdots, k)$ are constants and $a_{1}=1$.
We have

$$
\begin{align*}
\sum_{2 n<p \leq \frac{x}{2 n}} p^{2} & =\frac{x^{2}}{(2 n)^{2}} \cdot \pi\left(\frac{x}{2 n}\right)-(2 n)^{2} \cdot \pi(2 n)-2 \int_{2 n}^{\frac{x}{2 n}} y \cdot \pi(y) d y \\
& =\frac{x^{3}}{24 n^{3} \ln x}+\sum_{i=2}^{k} \frac{b_{i} \cdot x^{3} \cdot \ln ^{i} n}{n^{3} \cdot \ln ^{i} x}+O\left(\frac{x^{3}}{n^{3} \cdot \ln ^{k+1} x}\right) \tag{2}
\end{align*}
$$

where we have used the estimate $2 n \leq \sqrt{x}$, and all b_{i} are computable constants.
Note that $\sum_{n=1}^{\infty} \frac{1}{n^{3}}=\zeta(3)$, from (1) and (2) we have

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in A}}(S D F(n)-P(n))^{2}=\frac{\zeta(3)}{24} \frac{x^{3}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{3}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{k+1} x}\right) \tag{3}
\end{equation*}
$$

where all c_{i} are computable constants.
For any positive integer n with $n \in B$, it is clear that $S D F(n) \ll \sqrt{n} \cdot \ln n$ and $P(n) \ll \sqrt{n}$.
So we have the estimate

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in B}}(S D F(n)-P(n))^{2} \ll \sum_{n \leq x} n \cdot \ln ^{2} n \ll x^{2} \cdot \ln ^{2} x \tag{4}
\end{equation*}
$$

Combining (3) and (4) we have

$$
\begin{aligned}
\sum_{n \leq x}(S D F(n)-P(n))^{2} & =\sum_{\substack{n \leq x \\
n \in A}}(S D F(n)-P(n))^{2}+\sum_{\substack{n \leq x \\
n \in B}}(S D F(n)-P(n))^{2} \\
& =\frac{\zeta(3)}{24} \frac{x^{3}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{3}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{k+1} x}\right)
\end{aligned}
$$

where all c_{i} are computable constants. This proves Theorem 1.
Now we prove Theorem 2. Note that $S(n)-P(n)=0$, if $n \in A$; and $|S(n)-P(n)| \ll \sqrt{n}$, if $n \in B$. So from the result of the reference [4] and the proving method of Theorem 1 we have

$$
\begin{aligned}
\sum_{n \leq x}(S D F(n)-S(n))^{2}= & \sum_{n \leq x}(S D F(n)-P(n))^{2}+\sum_{n \leq x}(S(n)-P(n))^{2} \\
& -2 \sum_{n \leq x}(S(n)-P(n)) \cdot(S D F(n)-S(n)) \\
= & \frac{\zeta(3)}{24} \frac{x^{3}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{3}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{k+1} x}\right) .
\end{aligned}
$$

This completes the proof of Theorem 2.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[2] M. L. Perez, Florentin Smarandache Definitions, Solved and Unsolved Problems, Conjectures and Theorems in Number theory and Geometry, Chicago, Xiquan Publishing House, 2000.
[3] C. Dumitrescu and V. Seleccu, Some Notions and Questions in Number Theory, Erhus University Press, Gelndale, 1994.
[4] Xu Zhefeng, The value distribution property of the Smarandache function, Acta Mathematica Sinica, Chinese Series, 49(2006), No. 5, 1009-1012.
[5] Jianbin Chen, Value distribution of the F.Smarandache LCM function, Scientia Magna, 3(2007), No. 2, 15-18.
[6] Jozsef Sandor, On an generalization of the Smarandache function, Notes Numb. Th. Discr. Math, 5(1999), 41-51.
[7] Jozsef Sandor, On an additive analogue of the function S, Smarandance Notes Numb. Th. Discr. Mathe, 5(2002), 266-270.
[8] Tom M. Apostol, Introduction to analytical number theory, Spring-Verlag, New York, 1976.
[9] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shanghai Science and Technology Press, Shanghai, 1988.
[10] Zhang Wenpeng, The elementary number theory, Shaanxi Normal University Press, Xi'an, 2007.

