Value distribution of the F.Smarandache LCM function ${ }^{1}$

Jianbin Chen
School of Science, Xi'an Polytechnic University
Xi'an, 710048, P.R.China

Received November 12, 2006

Abstract

For any positive integer n, the famous F.Smarandache LCM function $S L(n)$ defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, where $[1,2, \cdots, k]$ denotes the least common multiple of $1,2, \cdots, k$. The main purpose of this paper is using the elementary methods to study the value distribution properties of the function $S L(n)$, and give a sharper value distribution theorem.

Keywords F.Smarandache LCM function, value distribution, asymptotic formula.

§1. Introduction and results

For any positive integer n, the famous F.Smarandache LCM function $S L(n)$ defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, where $[1,2, \cdots, k]$ denotes the least common multiple of $1,2, \cdots, k$. For example, the first few values of $S L(n)$ are $S L(1)=1$, $S L(2)=2, S L(3)=3, S L(4)=4, S L(5)=5, S L(6)=3, S L(7)=7, S L(8)=8, S L(9)=9$, $S L(10)=5, S L(11)=11, S L(12)=4, S L(13)=13, S L(14)=7, S L(15)=5, \cdots$. About the elementary properties of $S L(n)$, some authors had studied it, and obtained some interesting results, see reference [3] and [4]. For example, Murthy [3] showed that if n be a prime, then $S L(n)=S(n)$, where $S(n)$ denotes the Smarandache function, i.e., $S(n)=\min \{m: n \mid m!, m \in$ $N\}$. Simultaneously, Murthy [3] also proposed the following problem:

$$
\begin{equation*}
S L(n)=S(n), \quad S(n) \neq n ? \tag{1}
\end{equation*}
$$

Le Maohua [4] completely solved this problem, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

$$
n=12 \text { or } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} p,
$$

where $p_{1}, p_{2}, \cdots, p_{r}, p$ are distinct primes, and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ are positive integers satisfying $p>p_{i}^{\alpha_{i}}, i=1,2, \cdots, r$.

Lv Zhongtian [6] studied the mean value properties of $S L(n)$, and proved that for any fixed positive integer k and any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} S L(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{2}}{\ln ^{i} x}+O\left(\frac{x^{2}}{\ln ^{k+1} x}\right)
$$

[^0]where $c_{i}(i=2,3, \cdots, k)$ are computable constants.
The main purpose of this paper is using the elementary methods to study the value distribution properties of $S L(n)$, and prove an interesting value distribution theorem. That is, we shall prove the following conclusion:

Theorem. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x}(S L(n)-P(n))^{2}=\frac{2}{5} \cdot \zeta\left(\frac{5}{2}\right) \cdot \frac{x^{\frac{5}{2}}}{\ln x}+O\left(\frac{x^{\frac{5}{2}}}{\ln ^{2} x}\right)
$$

where $\zeta(s)$ is the Riemann zeta-function, and $P(n)$ denotes the largest prime divisor of n.

§2. Proof of the theorem

In this section, we shall prove our theorem directly. In fact for any positive integer $n>1$, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ be the factorization of n into prime powers, then from [3] we know that

$$
\begin{equation*}
S L(n)=\max \left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \cdots, p_{s}^{\alpha_{s}}\right\} \tag{2}
\end{equation*}
$$

Now we consider the summation

$$
\begin{equation*}
\sum_{n \leq x}(S L(n)-P(n))^{2} \tag{3}
\end{equation*}
$$

We separate all integers n in the interval $[1, x]$ into four subsets A, B, C and D as follows:
$A: \quad P(n) \geq \sqrt{n}$ and $n=m \cdot P(n), m<P(n)$;
$B: n^{\frac{1}{3}}<P(n) \leq \sqrt{n}$ and $n=m \cdot P^{2}(n), m<n^{\frac{1}{3}}$;
$C: \quad n^{\frac{1}{3}}<p_{1}<P(n) \leq \sqrt{n}$ and $n=m \cdot p_{1} \cdot P(n)$, where p_{1} is a prime;
$D: \quad P(n) \leq n^{\frac{1}{3}}$.
It is clear that if $n \in A$, then from (2) we know that $S L(n)=P(n)$. Therefore,

$$
\begin{equation*}
\sum_{n \in A}(S L(n)-P(n))^{2}=\sum_{n \in A}(P(n)-P(n))^{2}=0 \tag{4}
\end{equation*}
$$

Similarly, if $n \in C$, then we also have $S L(n)=P(n)$. So

$$
\begin{equation*}
\sum_{n \in C}(S L(n)-P(n))^{2}=\sum_{n \in C}(P(n)-P(n))^{2}=0 . \tag{5}
\end{equation*}
$$

Now we estimate the main terms in set B. Applying Abel's summation formula (see Theorem 4.2 of [5]) and the Prime Theorem (see Theorem 3.2 of [7])

$$
\pi(x)=\sum_{p \leq x} 1=\frac{x}{\ln x}+O\left(\frac{x}{\ln ^{2} x}\right)
$$

we have

$$
\begin{align*}
& \sum_{n \in B}(S L(n)-P(n))^{2}=\sum_{\substack{m p^{2} \leq x \\
m<p}}\left(S L\left(m p^{2}\right)-P\left(m p^{2}\right)\right)^{2} \\
= & \sum_{m \leq x^{\frac{1}{3}}} \sum_{m<p \leq \sqrt{\frac{x}{m}}}\left(p^{2}-p\right)^{2} \\
= & \sum_{m \leq x^{\frac{1}{3}}}\left[\left(\frac{x}{m}\right)^{2} \cdot \pi\left(\sqrt{\frac{x}{m}}\right)-4 \int_{m}^{\sqrt{\frac{x}{m}}} y^{3} \pi(y) d x+O\left(m^{5}+\frac{x^{2}}{m^{2}}\right)\right] \\
= & \sum_{m \leq x^{\frac{1}{3}}}\left(\frac{x^{\frac{5}{2}}}{5 m^{\frac{5}{2}} \ln \sqrt{\frac{x}{m}}}+O\left(\frac{x^{\frac{5}{2}}}{m^{\frac{5}{2}} \ln ^{2} \frac{x}{m}}\right)\right) \\
= & \frac{2}{5} \cdot \zeta\left(\frac{5}{2}\right) \cdot x^{\frac{5}{2}} \ln x \tag{6}
\end{align*} O\left(\frac{x^{\frac{5}{2}}}{\ln ^{2} x}\right),
$$

where $\zeta(s)$ is the Riemann zeta-function.
Finally, we estimate the error terms in set D. For any integer $n \in D$, let $S L(n)=p^{\alpha}$. If $\alpha=1$, then $S L(n)=p=P(n)$, so that $S L(n)-P(n)=0$. Therefore, we assume that $\alpha \geq 2$. This time note that $P(n) \leq n^{\frac{1}{3}}$, we have

$$
\begin{align*}
& \sum_{n \in D}(S L(n)-P(n))^{2} \ll \sum_{n \in D}\left(S L^{2}(n)+P^{2}(n)\right) \\
\ll & \sum_{\substack{m p^{\alpha} \leq x \\
\alpha \geq 2, p<x^{\frac{1}{3}}}} p^{2 \alpha}+\sum_{n \leq x} n^{\frac{2}{3}} \ll \sum_{\substack{\alpha \leq x \\
\alpha \geq 2, p \leq x^{\frac{1}{3}}}} p^{2 \alpha} \sum_{m \leq \frac{x}{p^{\alpha}}} 1+x^{\frac{5}{3}} \\
\ll & x \cdot \sum_{\substack{p^{\alpha} \leq x \\
\alpha \geq 2, p \leq x^{\frac{1}{3}}}} p^{\alpha}+x^{\frac{5}{3}} \ll x^{2} . \tag{7}
\end{align*}
$$

Combining (3), (4), (5), (6) and (7) we may immediately obtain the asymptotic formula

$$
\begin{aligned}
& \sum_{n \leq x}(S L(n)-P(n))^{2}=\sum_{n \in A}(S L(n)-P(n))^{2}+\sum_{n \in B}(S L(n)-P(n))^{2} \\
& +\sum_{n \in C}(S L(n)-P(n))^{2}+\sum_{n \in D}(S L(n)-P(n))^{2} \\
= & \frac{2}{5} \cdot \zeta\left(\frac{5}{2}\right) \cdot \frac{x^{\frac{5}{2}}}{\ln x}+O\left(\frac{x^{\frac{5}{2}}}{\ln ^{2} x}\right) .
\end{aligned}
$$

This completes the proof of Theorem.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[2] I.Balacenoiu and V.Seleacu, History of the Smarandache function, Smarandache Notions Journal, 10(1999), 192-201.
[3] A.Murthy, Some notions on least common multiples, Smarandache Notions Journal, 12(2001), 307-309.
[4] Le Maohua, An equation concerning the Smarandache LCM function, Smarandache Notions Journal, 14(2004), 186-188.
[5] Tom M. Apostol. Introduction to Analytic Number Theory. New York, Springer-Verlag, 1976.
[6] Lv Zhongtian, On the F.Smarandache LCM function and its mean value, Scientia Magna, 3(2007), No.1, 22-25.
[7] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shanghai Science and Technology Press, Shanghai, 1988.

[^0]: ${ }^{1}$ This work partly supported by the N.S.F.C.(10671155)

