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Abstract For any positive integer n, the famous F.Smarandache LCM function SL(n) defined

as the smallest positive integer k such that n | [1, 2, · · · , k], where [1, 2, · · · , k] denotes the

least common multiple of 1, 2, · · · , k. The main purpose of this paper is using the elementary

methods to study the value distribution properties of the function SL(n), and give a sharper

value distribution theorem.
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§1. Introduction and results

For any positive integer n, the famous F.Smarandache LCM function SL(n) defined as the
smallest positive integer k such that n | [1, 2, · · · , k], where [1, 2, · · · , k] denotes the least
common multiple of 1, 2, · · · , k. For example, the first few values of SL(n) are SL(1) = 1,
SL(2) = 2, SL(3) = 3, SL(4) = 4, SL(5) = 5, SL(6) = 3, SL(7) = 7, SL(8) = 8, SL(9) = 9,
SL(10) = 5, SL(11) = 11, SL(12) = 4, SL(13) = 13, SL(14) = 7, SL(15) = 5, · · · . About the
elementary properties of SL(n), some authors had studied it, and obtained some interesting
results, see reference [3] and [4]. For example, Murthy [3] showed that if n be a prime, then
SL(n) = S(n), where S(n) denotes the Smarandache function, i.e., S(n) = min{m : n|m!, m ∈
N}. Simultaneously, Murthy [3] also proposed the following problem:

SL(n) = S(n), S(n) 6= n ? (1)

Le Maohua [4] completely solved this problem, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

n = 12 or n = pα1
1 pα2

2 · · · pαr
r p,

where p1, p2, · · · , pr, p are distinct primes, and α1, α2, · · · , αr are positive integers satisfying
p > pαi

i , i = 1, 2, · · · , r.
Lv Zhongtian [6] studied the mean value properties of SL(n), and proved that for any fixed

positive integer k and any real number x > 1, we have the asymptotic formula

∑

n≤x

SL(n) =
π2

12
· x2

lnx
+

k∑

i=2

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,
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where ci (i = 2, 3, · · · , k) are computable constants.

The main purpose of this paper is using the elementary methods to study the value distri-
bution properties of SL(n), and prove an interesting value distribution theorem. That is, we
shall prove the following conclusion:

Theorem. For any real number x > 1, we have the asymptotic formula

∑

n≤x

(SL(n)− P (n))2 =
2
5
· ζ

(
5
2

)
· x

5
2

lnx
+ O

(
x

5
2

ln2 x

)
,

where ζ(s) is the Riemann zeta-function, and P (n) denotes the largest prime divisor of n.

§2. Proof of the theorem

In this section, we shall prove our theorem directly. In fact for any positive integer n > 1,
let n = pα1

1 pα2
2 · · · pαs

s be the factorization of n into prime powers, then from [3] we know that

SL(n) = max{pα1
1 , pα2

2 , · · · , pαs
s }. (2)

Now we consider the summation

∑

n≤x

(SL(n)− P (n))2 . (3)

We separate all integers n in the interval [1, x] into four subsets A, B, C and D as follows:

A: P (n) ≥ √
n and n = m · P (n), m < P (n);

B: n
1
3 < P (n) ≤ √

n and n = m · P 2(n), m < n
1
3 ;

C: n
1
3 < p1 < P (n) ≤ √

n and n = m · p1 · P (n), where p1 is a prime;

D: P (n) ≤ n
1
3 .

It is clear that if n ∈ A, then from (2) we know that SL(n) = P (n). Therefore,

∑

n∈A

(SL(n)− P (n))2 =
∑

n∈A

(P (n)− P (n))2 = 0. (4)

Similarly, if n ∈ C, then we also have SL(n) = P (n). So

∑

n∈C

(SL(n)− P (n))2 =
∑

n∈C

(P (n)− P (n))2 = 0. (5)

Now we estimate the main terms in set B. Applying Abel’s summation formula (see
Theorem 4.2 of [5]) and the Prime Theorem (see Theorem 3.2 of [7])

π(x) =
∑

p≤x

1 =
x

lnx
+ O

(
x

ln2 x

)
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we have
∑

n∈B

(SL(n)− P (n))2 =
∑

mp2≤x
m<p

(
SL(mp2)− P (mp2)

)2

=
∑

m≤x
1
3

∑

m<p≤
√

x
m

(
p2 − p

)2

=
∑

m≤x
1
3

[( x

m

)2

· π
(√

x

m

)
− 4

∫ √
x
m

m

y3π(y)dx + O

(
m5 +

x2

m2

)]

=
∑

m≤x
1
3

(
x

5
2

5m
5
2 ln

√
x
m

+ O

(
x

5
2

m
5
2 ln2 x

m

))

=
2
5
· ζ

(
5
2

)
· x

5
2

lnx
+ O

(
x

5
2

ln2 x

)
, (6)

where ζ (s) is the Riemann zeta-function.
Finally, we estimate the error terms in set D. For any integer n ∈ D, let SL(n) = pα. If

α = 1, then SL(n) = p = P (n), so that SL(n)− P (n) = 0. Therefore, we assume that α ≥ 2.
This time note that P (n) ≤ n

1
3 , we have

∑

n∈D

(SL(n)− P (n))2 ¿
∑

n∈D

(
SL2(n) + P 2(n)

)

¿
∑

mpα≤x

α≥2, p<x
1
3

p2α +
∑

n≤x

n
2
3 ¿

∑

pα≤x

α≥2, p≤x
1
3

p2α
∑

m≤ x
pα

1 + x
5
3

¿ x ·
∑

pα≤x

α≥2, p≤x
1
3

pα + x
5
3 ¿ x2. (7)

Combining (3), (4), (5), (6) and (7) we may immediately obtain the asymptotic formula

∑

n≤x

(SL(n)− P (n))2 =
∑

n∈A

(SL(n)− P (n))2 +
∑

n∈B

(SL(n)− P (n))2

+
∑

n∈C

(SL(n)− P (n))2 +
∑

n∈D

(SL(n)− P (n))2

=
2
5
· ζ

(
5
2

)
· x

5
2

lnx
+ O

(
x

5
2

ln2 x

)
.

This completes the proof of Theorem.
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