Vertex-Mean Graphs

A.Lourdusamy
(St.Xavier's College (Autonomous), Palayamkottai, India)
M.Seenivasan
(Sri Paramakalyani College, Alwarkurichi-627412, India)

E-mail: lourdugnanam@hotmail.com, msvasan_22@yahoo.com

Abstract

Let $k \geq 0$ be an integer. A Smarandachely vertex-mean k-labeling of a (p, q) graph $G=(V, E)$ is such an injection $f: E \longrightarrow\left\{0,1,2, \ldots, q_{*}+k\right\}, q_{*}=\max (p, q)$ such that the function $f^{V}: V \longrightarrow \mathbb{N}$ defined by the rule $f^{V}(v)=\operatorname{Round}\left(\frac{\sum_{e \in E_{v}} f(e)}{d(v)}\right)-k$ satisfies the property that $f^{V}(V)=\left\{f^{V}(u): u \in V\right\}=\{1,2, \ldots, p\}$, where E_{v} denotes the set of edges in G that are incident at v, \mathbb{N} denotes the set of all natural numbers and Round is the nearest integer function. A graph that has a Smarandachely vertex-mean k-labeling is called Smarandachely k vertex-mean graph or Smarandachely $k V$-mean graph. Particularly, if $k=0$, such a Smarandachely vertex-mean 0-labeling and Smarandachely 0 vertex-mean graph or Smarandachely $0 V$-mean graph is called a vertex-mean labeling and a vertex-mean graph or V-mean graph, respectively. In this paper, we obtain necessary conditions for a graph to be V-mean and study V-mean behaviour of certain classes of graphs.

Key Words: Smarandachely vertex-mean k-labeling, vertex-mean labeling, edge labeling, Smarandachely k vertex-mean graph, vertex-mean graph.

AMS(2010): 05C78

§1. Introduction

A vertex labeling of a graph G is an assignment f of labels to the vertices of G that induces a label for each edge $x y$ depending on the vertex labels. An edge labeling of a graph G is an assignment f of labels to the edges of G that induces a label for each vertex v depending on the labels of the edges incident on it. Vertex labelings such as graceful labeling, harmonious labeling and mean labeling and edge labelings such as edge-magic labeling, (a,d)-anti magic labeling and vertex-graceful labeling are some of the interesting labelings found in the dynamic survey of graph labeling by Gallian [3]. In fact B. D. Acharya [2] has introduced vertexgraceful graphs, as an edge-analogue of graceful graphs. Observe that, in a variety of practical problems, the arithmetic mean, X, of a finite set of real numbers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ serves as a

[^0]better estimate for it, in the sense that $\sum\left(x_{i}-X\right)$ is zero and $\sum\left(x_{i}-X\right)^{2}$ is the minimum. If it is required to use a single integer in the place of X then $\operatorname{Round}(X)$ does this best, in the sense that $\sum\left(x_{i}-\operatorname{Round}(X)\right)$ and $\sum\left(x_{i}-\operatorname{Round}(X)\right)^{2}$ are minimum, where $\operatorname{Round}(Y)$, nearest integer function of a real number, gives the integer closest to Y; to avoid ambiguity, it is defined to be the nearest even integer in the case of half integers. This motivates us to define the edge-analogue of the mean labeling introduced by R. Ponraj [1]. A mean labeling f is an injection from V to the set $\{0,1,2, \ldots, q\}$ such that the set of edge labels defined by the rule $\operatorname{Round}\left(\frac{f(u)+f(v)}{2}\right)$ for each edge $u v$ is $\{1,2, \ldots, q\}$. For all terminology and notations in graph theory, we refer the reader to the text book by D. B. West [4]. All graphs considered in the paper are finite and simple.

Fig. 1 Some V -mean graphs

Fig. 2

Definition 1.1 Let $k \geq 0$ be an integer. A Smarandachely vertex-mean k-labeling of $a(p, q)$ graph $G=(V, E)$ is such an injection $f: E \longrightarrow\left\{0,1,2, \ldots, q_{*}+k\right\}, q_{*}=\max (p, q)$ such that the function $f^{V}: V \longrightarrow \mathbb{N}$ defined by the rule $f^{V}(v)=\operatorname{Round}\left(\frac{\sum_{e \in E_{v}} f(e)}{d(v)}\right)-k$ satisfies the property that $f^{V}(V)=\left\{f^{V}(u): u \in V\right\}=\{1,2, \ldots, p\}$, where E_{v} denotes the set of edges in G that are incident at v, \mathbb{N} denotes the set of all natural numbers and Round is the nearest integer function. A graph that has a Smarandachely vertex-mean k-labeling is called Smarandachely k vertex-mean graph or Smarandachely $k V$-mean graph. Particularly, if $k=0$, such a Smarandachely vertexmean 0-labeling and Smarandachely 0 vertex-mean graph or Smarandachely $0 V$-mean graph is called a vertex-mean labeling and a vertex-mean graph or V-mean graph, respectively.

Henceforth we call vertex-mean as V-mean. To initiate the investigation, we obtain necessary conditions for a graph to be a V-mean graph and we present some results on this new notion in this paper. In Fig. 1 we give some V-mean graphs and in Fig.2, we give some non V-mean graphs.

§2. Necessary Conditions

Following observations are obvious from Definition 1.1.
Observation 2.1 If G is a V-mean graph then no V-mean labeling assigns 0 to a pendant edge.

Observation 2.2 The graph K_{2} and disjoint union of K_{2} are not V-mean graphs, as any number assigned to an edge $u v$ leads to assignment of same number to each of u and v. Thus every component of a V-mean graph has at least two edges.

Observation 2.3 The minimum degree of any V-mean graph is less than or equal to three ie, $\delta \leqslant 3$ as $\operatorname{Round}(0+1+2+3)$ is 2 . Thus graphs that contain a r-regular graph, where $r \geq 4$ as spanning sub graph are not V-mean graphs and any 3 -edge-connected V-mean graph has a vertex of degree three.

Observation 2.4 If f is a V-mean labeling of a graph G then either (1) or (2) of the following is satisfied according as the induced vertex label $f^{V}(v)$ is obtained by rounding up or rounding down.

$$
\begin{align*}
f^{V}(v) d(v) & \leq \sum_{e \in E_{v}} f(e)+\frac{1}{2} d(v) \tag{1}\\
f^{V}(v) d(v) & \geq \sum_{e \in E_{v}} f(e)-\frac{1}{2} d(v) \tag{2}
\end{align*}
$$

Theorem 2.5 If G is a V-mean graph then the vertices of G can be arranged as $v_{1}, v_{2}, \ldots, v_{p}$ such that $q^{2}-2 q \leq \sum_{1}^{p} k d\left(v_{k}\right) \leq 2 q q_{*}-q^{2}+2 q$.

Proof Let f be a V-mean labeling of a graph G. Let us denote the vertex that has the induced vertex label $k, 1 \leq k \leq p$ as v_{k}. Observe that, $\sum_{v \in V} f^{V}(v) d(v)$ attains it maximum/minimum when each induced vertex label is obtained by rounding up/down and the first
q largest/smallest values of the set $\left\{0,1,2, \cdots, q_{*}\right\}$ are assigned as edge labels by f. This with Observation 2.4 completes the proof.

Corollary 2.6 Any 3-regular graph of order $2 m$, $m \geq 4$ is not a V-mean graph.
Corollary 2.7 The ladder $L_{n}=P_{n} \times P_{2}, n \geq 7$ is not a V-mean graph.
A V-mean labeling of ladders L_{3} and L_{4} are shown in Figure 1.

§3. Classes of V-Mean Graphs

Theorem 3.1 If $n \geq 3$ then the path P_{n} is V-mean graph.
Proof Let $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ be the edge set of P_{n} such that $e_{i}=v_{i} v_{i+1}$. We define $f:$ $E \longrightarrow\left\{0,1,2, \ldots, q_{*}=p\right\}$ as follows:

$$
f\left(e_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq p-2 \\ i+1, & \text { if } i=p-1\end{cases}
$$

It can be easily verified that f is a V-mean labeling.
A V-mean labeling of P_{10} is shown in Fig.3.

Fig. 3

Theorem 3.2 If $n \geq 3$ then the cycle C_{n} is V-mean graph.
Proof Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the edge set of C_{n} such that $e_{i}=v_{i} v_{i+1}, 1 \leq i \leq n-1$, $e_{n}=v_{n} v_{1}$. Let $\zeta=\left\lceil\frac{n}{2}\right\rceil-1$. The edges of C_{n} are labeled as follows: The numbers $0,1,2, \cdots, n$ except ζ are arranged in an increasing sequence $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ and α_{k} is assigned to e_{k}. Clearly the edges of C_{n} receive distinct labels and the vertex labels induced are $1,2, \cdots, n$. Thus C_{n} is V-mean graph.

The corona $G_{1} \odot G_{2}$ of two graphs $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ is defined as the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and then joining the $i^{t h}$ vertex of G_{1} to all the vertices in the $i^{t h}$ copy of G_{2}. The graph $C_{n} \odot K_{1}$ is called a crown.

Theorem 3.3 The corona $P_{n} \odot K_{m}^{C}$, where $n \geq 2$ and $m \geq 1$ is V-mean graph.
Proof Let the vertex set and the edge set of $G=P_{n} \odot K_{m}^{C}$ be as follows:
$V(G)=\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i j}: 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq m\right\}$,
$E(G)=A \bigcup B$,
where $A=\left\{e_{i}=u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$ and $B=\left\{e_{i j}=u_{i} u_{i j}: 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq m\right\}$. We observe that G has order $(m+1) n$ and size $(m+1) n-1$. The edges of G are labeled in three steps as follows :

Step 1. The edges e_{1} and $e_{1 j}, 1 \leq j \leq m$ are assigned distinct integers from 1 to $(m+1)$ in such a way that e_{1} receives the number $\operatorname{Round}\left(\frac{\sum_{j=1}^{m+1} j}{m+1}\right)$.

Step 2. For each $i, 2 \leq i \leq n-1$, the edges e_{i} and $e_{i j}, 1 \leq j \leq m$ are assigned distinct integers from $(m+1)(i-1)+1$ to $(m+1) i$ in such a way that e_{i} receives the number

$$
\operatorname{Round}\left(\frac{f\left(e_{i-1}\right)+\sum_{j=1}^{m+1}(m+1)(i-1)+j}{m+2}\right)
$$

Step 3. The edges $e_{n j}, 1 \leq j \leq m$ are assigned distinct integers from $(m+1)(n-1)+1$ to $(m+1) n$ in such a way that non of these edges receive the number

$$
\operatorname{Round}\left(\frac{f\left(e_{n-1}\right)+\sum_{j=1}^{m+1}(m+1)(n-1)+j}{m+2}\right)
$$

Then the edges of G receive distinct labels and the vertex labels induced are $1,2, \ldots,(m+1) n$. Thus G is V-mean graph.

Fig. 4 displays a V-mean labeling of $P_{5} \odot K_{4}^{C}$.

Fig. $4 \quad$ A V-mean labeling of $P_{5} \odot K_{4}^{C}$

Theorem 3.4 The star graph $K_{1, n}$ is V-mean graph if and only if $n \cong 0(\bmod 2)$.
Proof Necessity: Suppose $G=K_{1, n}, n=2 m+1$ for some $m \geq 1$ is V-mean and let f be a V-mean labeling of G. As no V-mean labeling assigns zero to a pendant edge, f assigns $2 m+1$ distinct numbers from the set $\{1,2, \ldots, 2 m+2\}$ to the edges of G. Observe that, whatever be the labels assigned to the edges of G, label induced on the central vertex of G will be either $m+1$ or $m+2$. In both cases two vertex labels induced on G will be identical. This contradiction proves necessity.

Sufficiency: Let $G=K_{1, n}, n=2 m$ for some $m \geq 1$. Then assignment of $2 m$ distinct numbers except $m+1$ from the set $\{1,2, \ldots, 2 m+1\}$ gives the desired V-mean labeling of G. \square

Theorem 3.5 The crown $C_{n} \odot K_{1}$ is V-mean graph.

Proof Let the vertex set and the edge set of $G=C_{n} \odot K_{1}$ be as follows: $\mathrm{V}(\mathrm{G})=$ $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}, E(G)=A \bigcup B$ where $A=\left\{e_{i}=u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{n}=u_{n} u_{1}\right\}$ and $B=\left\{e_{i}^{\prime}=u_{i} v_{i}: 1 \leq i \leq n\right\}$. Observe that G has order and size both equal to $2 n$. For $3 \leq n \leq 5, V$-mean labeling of G are shown in Fig.5. For $n \geq 6$, define $f: E(G) \longrightarrow$ $\{0,1,2, \ldots, 2 n\}$ as follows:

Case $1 \quad n \equiv 0(\bmod 3)$.

$$
\begin{aligned}
& f\left(e_{i}\right)= \begin{cases}2 i-2 & \text { if } 1 \leq i \leq \frac{n}{3}-1 \\
2 i & \text { if } i=\frac{n}{3} \\
2 i-1 & \text { if } \frac{n}{3}+1 \leq i \leq n\end{cases} \\
& f\left(e_{i}^{\prime}\right)= \begin{cases}2 i-1 & \text { if } 1 \leq i \leq \frac{n}{3} \\
2 i & \text { if } \frac{n}{3}+1 \leq i \leq n\end{cases}
\end{aligned}
$$

Case $2 n \not \equiv 0(\bmod 3)$.

$$
\begin{aligned}
& f\left(e_{i}\right)= \begin{cases}2 i-2 & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor \\
2 i-1 & \text { if }\left\lfloor\frac{n}{3}\right\rfloor+1 \leq i \leq n\end{cases} \\
& f\left(e_{i}^{\prime}\right)= \begin{cases}2 i-1 & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor \\
2 i & \text { if }\left\lfloor\frac{n}{3}\right\rfloor+1 \leq i \leq n\end{cases}
\end{aligned}
$$

It can be easily verified that f is a V-mean labeling of G.
A V-mean labeling of some crowns are shown in Fig.5.

Fig. $5 \quad V$-mean labeling of crowns for $n=3,4,5$
Problem 3.6 Determine new classes of trees and unicyclic graphs which are V-mean graphs.

References

[1] R. Ponraj, Studies in Labelings of Graphs, Ph.D thesis, Manonmaniam Sundaranar University, India (2004).
[2] B. D. Acharya and K. A. Germina, Vertex-graceful graphs, Journal of Discrete Mathemat-
ical Science ξ^{3} Cryptography, Vol. 13(2010), No. 5, pp. 453-463.
[3] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16 (2009), \#DS6.
[4] D. B. west, Introduction to Graph Theory, Prentice-Hall of India Private Limited, New Delhi, 1996.

[^0]: ${ }^{1}$ Received February 12, 2011. Accepted September 10, 2011.

