Smarandache Zero Divisors

W.B.Vasantha Kandasamy
Department of Mathematics
Indian Institute of Technology, Madras
Chennai- 600036

Abstract

In this paper, we study the notion of Smarandache zero divisor in semigroups and rings. We illustrate them with examples and prove some interesting results about them.

Keywords: Zero divisor, Smarandache zero divisor
Throughout this paper, S denotes a semigroup and R a ring. They need not in general be Smarandache semigroups or Smarandache rings respectively. Smarandache zero divisors are defined for any general ring and semigroup.

Definition 1 Let S be any semigroup with zero under multiplication (or any ring R). We say that a non-zero element $a \in S(o r R)$ is a Smarandache zero divisor if there exists a non-zero element b in S (or in R) such that $\mathrm{a} . \mathrm{b}=0$ and there exist $\mathrm{x}, \mathrm{y} \in \mathrm{S} \backslash\{\mathrm{a}, \mathrm{b}, 0\}$ (or $x, y \in R \backslash\{a, b, 0\}), x \neq y$, with

1. $\mathrm{ax}=0$ or $\mathrm{xa}=0$
2. $\quad \mathrm{by}=0$ or $\mathrm{yb}=0$ and
3. $\mathrm{xy} \neq 0$ or $\mathrm{yx} \neq 0$

Remark If S is a commutative semigroup then we will have $\mathrm{ax}=0$ and $\mathrm{xa}=0, \mathrm{yb}=0$ and by $=0$; so what we need is at least one of xa or ax is zero 'or' not in the mutually exclusive sense.

Example 1 Let $Z_{12}=\{0,1,2, \ldots, 11\}$ be the semigroup under multiplication. Clearly, Z_{12} is a commutative semigroup with zero. We have $6 \in \mathrm{Z}_{12}$ is a zero divisor as $6.8 \equiv 0(\mathrm{mod}$ 12). Now 6 is a Smarandache zero divisor as $6.2 \equiv 0(\bmod 12), 8.3 \equiv 0(\bmod 12)$ and $2.3 \not \equiv$ $0(\bmod 12)$. Thus 6 is a Smarandache zero divisor. It is interesting to note that for $3 \in \mathrm{Z}_{12}$, $3.4 \equiv 0(\bmod 12)$ is a zero divisor, but 3,4 is not a Smarandache zero divisor for there does not exist a $\mathrm{x}, \mathrm{y} \in \mathrm{Z}_{12} \backslash\{0\} \mathrm{x} \neq \mathrm{y}$ such that $3 . \mathrm{x} \equiv 0(\bmod 12)$ and $4 \mathrm{y} \equiv 0(\bmod 12)$ with $\mathrm{xy} \not \equiv$ $0(\bmod 12)$.

This example leads us to the following theorem.

Theorem 2 Let S be a semigroup under multiplication with zero. Every Smarandache zero divisor is a zero divisor, but not reciprocally in general.

Proof: Given S is a multiplicative semigroup with zero. By the very definition of a Smarandache zero divisor in S we see it is a zero divisor in S. But if x is a zero divisor in S , it need not in general be a Smarandache zero divisor of S . We prove this by an example. Consider the semigroup Z_{12} given in example 1 . Clearly 3 is a zero divisor in Z_{12} as $3.4 \equiv 0(12)$ but 3 is not a Smarandache zero divisor of 12 .

Example 2 Let $\mathrm{S}_{2 \times 2}=\left\{\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{b}\end{array}\right) / \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{2}=\{0,1\}\right\}$ be the set of all 2×2 matrices with entries from the ring of integers modulo $2 . \mathrm{S}_{2 \times 2}$ is a semigroup under matrix multiplication modulo two. Now $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ in $\mathrm{S}_{2 \times 2}$ is a zero divisor as $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \in \mathrm{S}_{2 \times 2}$ is such that $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. For $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Now take $x=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $y=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ in $S_{2 \times 2}$. We have $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ but $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ but $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ $\neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Finally, $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Hence $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is a Smarandache zero divisor of the semigroup $S_{2 \times 2}$.

Example 3 Let $\mathrm{R}_{3 \times 3}=\left\{\left(\mathrm{a}_{\mathrm{ij}}\right)\right.$ such that $\left.\mathrm{a}_{\mathrm{ij}} \in \mathrm{Z}_{4}=\{0,1,2,3\}\right\}$ be the collection of all 3×3 matrices with entries from Z_{4}. Now $\mathrm{R}_{3 \times 3}$ is a ring under matrix addition and multiplication modulo four. We have

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) \in \mathrm{R}_{3 \times 3} \text { is a Smarandache zero divisor in } \mathrm{R}_{3 \times 3} .
$$

For

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 2 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 2 & 2
\end{array}\right) \in R_{3 \times 3} \text { such that } \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 2 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 2 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 2 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 2 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 2 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 2 & 0
\end{array}\right) \neq\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 2 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 3 & 2 \\
0 & 2 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 2 & 0
\end{array}\right) \neq\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \text { So } \\
& \left(\begin{array}{ll}
1 & 0
\end{array}\right. \\
& 0 \\
& 0
\end{aligned} 0
$$

Example 4: Let $\mathrm{Z}_{20}=\{0,1,2, \ldots, 19\}$ be the ring of integers modulo 20. Clearly 10 is a Smarandache zero divisor. For $10.16 \equiv 0(\bmod 20)$ and there exists $5,6 \in \mathrm{Z}_{20} \backslash\{0\}$ with
$5 \times 16 \equiv 0(\bmod 20)$
$6 \times 10 \equiv 0(\bmod 20)$
$6 \times 5 \equiv 10(\bmod 20)$.
Theorem 3 Let R be a ring; a Smarandache zero divisor is a zero divisor, but not reciprocally in general.

Proof: By the very definition, we have every Smarandache zero divisor is a zero divisor. We have the following example to show that every zero divisor is not a Smarandache zero divisor. Let $Z_{10}=\{0,1,2, \ldots, 9\}$ be the ring of integers modulo 10 .

Clearly 2 in Z_{12} is a zero divisor as $2.5 \equiv 0(\bmod 10)$ which can never be a Smarandache zero divisors in Z_{10}. Hence the claim.

Theorem 4 Let R be a non-commutative ring. Suppose $x \in R \backslash\{0\}$ be a Smarandache zero divisor; with $\mathrm{xy}=\mathrm{yx}=0$ and $\mathrm{a}, \mathrm{b} \in \mathrm{R} \backslash\{0, \mathrm{x}, \mathrm{y}\}$ satisfying the following conditions:

1. $a x=0$ and $x a \neq 0$,
2. $y b=0$ and $b y \neq 0$ and
3. $\mathrm{ab}=0$ and $\mathrm{ba} \neq 0$.

Then we have $(x a+b y)^{2}=0$.
Proof: Given $\mathrm{x} \in \mathrm{R} \backslash\{0\}$ is a Smarandache zero divisor such that $\mathrm{xy}=0=\mathrm{yx}$. We have $\mathrm{a}, \mathrm{b} \in \mathrm{R} \backslash\{0, \mathrm{x}, \mathrm{y}\}$ such that $\mathrm{ax}=0$ and $\mathrm{xa} \neq 0, \mathrm{yb}=0$ and by $\neq 0$ with $\mathrm{ab}=0$ and $\mathrm{ba} \neq 0$. Consider $(x a+b y)^{2}=x a b y+b y x a+x a x a+b y b y$ using $a b=0, y x=0, a x=0$ and $y b=0$ we get $(x a+b y)^{2}=0$.

Theorem 5 Let R be a ring having Smarandache zero divisor satisfying conditions of Theorem 5, then R has a nilpotent element of order 2.

Proof: By Theorem 5 the result is true.
We propose the following problems.
Problem 1: Characterize rings R in which every zero divisor is a Smarandache zero divisor.

Problem 2: Find conditions or properties about rings so that it has Smarandache zero divisors.

Problem 3: Does there exists rings in which no zero divisor is a Smarandache zero divisor?

Problem 4: Find group rings $R G$ which has Smarandache zero divisors?
Problem 5: Let G be a group having elements of finite order and F any field. Does the elements of finite order in G give way to Smarandache zero divisors?

REFERENCES

[1] Raul Padilla, Smarandache Algebraic Structures, Bulletin of Pure and Applied

Sciences, Delhi, Vol 17E, No 1, 119-121, (1998).
[2] Florentin Smarandache, Special Algebraic Structures, in Collected Papers, Vol. III, Oradea, 2000.
[3] W.B.Vasantha Kandasamy, On zero divisors in reduced group rings over ordered groups, Proc. of the Japan Academy Vol. 60, Ser A No 9, 353-359, (1984).
[4] W.B.Vasantha Kandasamy, Zero Square Group Rings, Bull. of Cal. Math. Soc. 80, 105-106, (1988).
[5] W.B.Vasantha Kandasamy, Zero divisors in Group Semi Near Ring, Riazi Journal Karachi Math. Assoc., Vol. 14, 25-28, (1992).
[6] W.B.Vasantha Kandasamy, On a new type of group rings and its zero divisors, Ultra Scientist Phyl. Sciences, Vol. 6, 136-137, (1994).
[7] W.B.Vasantha Kandasamy, Zero divisors in Semi-loop near rings, Matematyka, NR 127, 79-89, (1994).

